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Abstract

This is a contribution to the study of the Muchnik and Medvedev
lattices of non-empty Π0

1 subsets of 2ω. In both these lattices, any
non-minimum element can be split, i.e. it is the non-trivial join of two
other elements. In fact, in the Medvedev case, if P >M Q, then P
can be split above Q. Both of these facts are then generalised to the
embedding of arbitrary finite distributive lattices. A consequence of
this is that both lattices have decidible ∃-theories.

1 Introduction

After the concept of Turing reducibility between subsets of ω has been
encountered, it is natural to try to extend this idea to subsets of
ωω. Perhaps the two most obvious such extensions are the notions
of Medvedev and Muchnik reducibility. Let X and Y be subsets of
ωω. X is said to be Muchnik reducible to Y (denoted Y >w X) if, for
every f ∈ Y , there is a g ∈ X such that f >T g. Medvedev reducibility
is the uniform version: X is Medvedev reducible to Y (Y >M X) if
there is a recursive functional mapping Y into X. In [8] §13.7, Rogers
discusses Medvedev reduciblity in terms of mass problems (subsets of
ωω representing solutions to “problems”). We write P ≡w Q if and
only if P >w Q and Q >w P and similarly for ≡M .

This work owes a lot to discussions with Stephen Simpson and to the referee for
suggestions.
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Both these reducibilities are pre-orders on the class of subsets of ωω

and degree structures are induced in the same way as the r.e degrees,
that is,

degw(X) = {Y : Y ≡w X}
and similarly for degM (X). A canonical partial order on the degrees
is then defined by

degw(X) > degw(Y ) if and only if X >w Y

(likewise for the Medvedev degrees).
Recently, it has been suggested by Simpson ([4] Aug 13 1999) that

the class of non-empty Π0
1 subsets of 2ω under Medvedev and Muchnik

reducibility is a natural object of study - the comparison being made
to the r.e. degrees under Turing reducibility. Rogers has also suggested
something similar ([8] §15.1 pg 343). The idea has been investigated
by Cenzer and Hinman [3] as well as Binns and Simpson [2], [1], [11]
and Slaman [12]. This paper should be seen as a continuation of this
project. Including this Introduction, it has three sections. The second
concerns the structure of the Medvedev and Muchnik lattices - proving
splitting and embedding theorems in both. The third proves a model-
theoretic consequence of these theorems - namely the decidibility of the
∃-theories of the lattices. This result can be stated in more generality
as it will be true of any distributive lattice with a maximum and
minimum element with the embedding property of Theorem 9 and a
non-branching minimum.

Let PM and Pw denote the degree structures of the non-empty Π0
1

subsets of 2ω under Medvedev and Muchnik reducibility respectively.
PM and Pw form distributive lattices with maximum and minimum
elements. If P and Q are non-empty Π0

1 subsets of 2ω, the join and
meet of their degrees in both of these lattices are the respective degrees
of:

P ∨Q = {f ⊕ g : f ∈ P and g ∈ Q},
and,

P ∧Q = {0af : f ∈ P} ∪ {1af : f ∈ Q},
where,

iaf(n) =

{
i if n = 0,
f(n− 1) otherwise,
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The operations ∨ and ∧ are applicable to any pairs of subsets of
ωω and have been referred to elsewhere as × and + respectively [1]
[2].

If A and B are any two subsets of ω, then the separating class of
A and B, denoted S(A,B), is the set {X : X ⊇ A, and X∩B = ∅}. If
A and B are r.e. then S(A,B) is a Π0

1 class. In both lattices, the sep-
arating class of {n :{n}(n)↓= 0} and {n :{n}(n)↓= 1} has maximum
degree [10]. Any subset of 2ω with a recursive element is a repre-
sentative of the minimum degree. A special Π0

1 class is one that is
non-empty and has no recursive element. Any recursively bounded Π0

1

subset of ωω is recursively homeomorphic to (and therefore Medvedev
and Muchnik equivalent to) a Π0

1 subset of 2ω, so everything that
follows can be generalised to recursively bounded Π0

1 subsets of ωω.

2 Splitting Theorems

Theorem 1. Let P be any special Π0
1 subset of 2ω. Then there exist

two other (necessarily special) Π0
1 subsets of 2ω, P 0 and P 1, such that:

i. P 0, P 1 <w P,
ii. P 0 ∨ P 1 ≡w P.

The above also holds for the same P 0 and P 1 with <M and ≡M re-
placing <w and ≡w.

The essence of the theorem is contained in the following lemma.
The proof of Theorem 1 will come after the proof of the lemma.

Lemma 2. Let P be any special Π0
1 subset of 2ω and A be any r.e. set.

Then there exist r.e. sets, A0 and A1, such that:

i. A0 ∪A1 = A, A0 ∩A1 = ∅,
ii. for each i ∈ {0, 1} and f ∈ P, Ai 6>T f.

Letting 〈., .〉 : ω2 → ω be a recursive coding bijection, we will
explicitly construct each Ai to satisfy all of the following requirements:

R〈e,i〉 ≡ {e}A
i 6∈ P.

Notation and Conventions:

• If P ⊆ 2ω is a given non-empty Π0
1 class, 〈Ps〉s∈ω will be a recursive

sequence of nested clopen subsets of 2ω such that P =
⋂
s Ps.
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• If P is a Π0
1 class, let TP be a fixed recursive binary tree such that

P is exactly the set of paths through TP . We write TP,s for TPs .

• u(A; i,m, s) is the maximum use made of A ⊆ ω in the computation
{i}As (m). If f ∈ 2ω then u(A;A⊕f, i,m, s) is the maximum use made
of A in the computation {i}A⊕fs (m).

• [n] is the set {0, 1, 2, . . . n − 1} and {i}[n] is a partial sequence of
length n. To say {i}[n] ∈ TP is to say that for all m < n, {i}(m) ↓
and

〈{i}(0), {i}(1), . . . {i}(n − 1)〉 ∈ TP .

• f |u = f restricted to [u]. A|u = χA|u.

• If τ ∈ 2<ω, then |τ | is the length of τ .

The method we will use is very similar to that used to prove Sacks’
Splitting Theorem for the r.e. degrees, and we will closely follow the
exposition in Soare ([13] Theorem VII.3.2). Lemma 2 may also be
seen as a strengthening of Theorem 2 in [6].

Construction: Let P , A and i be as in Lemma 2 and we fix a recur-
sive enumeration of A such that As+1 r As has exactly one element
for each s. For each i we will define a recursive sequence of finite sets,
〈Ai

s〉s∈ω, and Ai will then be
⋃
s Ai

s.

Stage 0: Ai
0 = ∅.

Stage s+1: Assume Ai
s has been defined. We can then make the

following definitions:

Length-of-agreement functions:
ls(e, i) := max{y : {e}A

i
s

s [y] ∈ TP }.
Restraint functions:

rs(e, i) := max{u(Ai
s; e, x, s) : x 6 ls(e, i)}.

Injury sets:
I〈e,i〉 := {x : ∃s x ∈ Ai

s+1rAi
s and x 6 rs(e, i)}.

If x ∈Ai
s+1rAi

s and x 6 rs(e, i), we say R〈e,i〉 is injured at stage s+1.

Let x be the unique element of As+1rAs. Choose the least 〈e, i〉 < s
such that x 6 rs(e, i) and enumerate x into A1−i

s+1. That is, let A1−i
s+1 =
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A1−i
s ∪ {x}. Set Ai

s+1 = Ai
s and say R〈e,i〉 receives attention at stage

s + 1.
If there is no such 〈e, i〉, then enumerate x into A0

s+1 and leave A1
s

unchanged.

Lemma 3. If {e}Ai∈ P , then lims ls(e, i) =∞.

Proof. Suppose {e}Ai ∈ P and let n ∈ ω be arbitrary. Then let u =
max{u(Ai; e,m) : m < n} and now take s′ so large that both the
following hold:

i. Ai
s′ |u = Ai|u,

ii. ∀m < n {e}Ais′ (m)↓ .

Then {e}A
i
s

s [n] = {e}Ai [n] ∈ TP and ls(e, i) > n for all s > s′. As
n was arbitrary, the result follows.

Lemma 4. For all e ∈ ω and i ∈ {0, 1},
I. I〈e,i〉 is finite,
II. {e}Ai 6∈ P,
III. r(e, i) := lims rs(e, i) exists and is finite.

Proof. Take any e ∈ ω and i ∈ {0, 1}. As induction hypothesis assume
I., II., and III. hold for all 〈e′, i′〉 < 〈e, i〉.

I. By III. we can choose t and r such that for all 〈e′, i′〉 < 〈e, i〉
and s > t, rs(e′, i′) = r(e′, i′) and r > r(e′, i′). Now take v > t such
that Av|r = A|r. So R〈e,i〉 cannot be injured after stage v and I. holds
for 〈e, i〉.

II. Assume {e}Ai ∈ P . To get a contradiction we will construct
a recursive path f ∈ P . Let s′ be such that R〈e,i〉 is never injured
after stage s′. Fix any n ∈ ω and we will recursively compute f(n).
Using I., lims ls(e, i) =∞ so choose the least s = s(n) > s′ such that
ls(e, i) > n. If x is enumerated into Ai after stage s, then it must be
greater than u(Ai

s; e, n, s). So {e}A
i
s

s (n) = {e}Ai(n). Set f(n) equal to
{e}A

i
s

s (n) for all n ∈ ω. s is clearly a recursive function of n, so f itself
is recursive and an element of P .

III. Let n be maximum such that {e}Ai [n] ∈ TP . Choose s′ so
large that for all s > s′,
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i. {e}A
i
s

s [n] = {e}Ai [n],
ii. Ai

s|u = Ai|u where u = max{u(Ai; e,m) : m < n},
iii. R〈e,i〉 is not injured at stage s.

If {e}A
i
s

s (n) ↑ for all s > s′, then u(Ai
s; e, n, s) = 0 and rs(e, i) =

rs′(e, i) for all s > s′. So lims rs(e, i) exists. On the other hand,
suppose {e}A

i
t

t (n)↓ for some t > s′. If x ∈ AirAi
t then x ∈ Ai

v+1rAi
v

for some v > t. As R〈e,i〉 is not injured at any stage s > t, x >
rv+1(e, i). But rv+1(e, i) = rt(e, i) by conditions i. and ii. above. So
x > u(Ai

t; e, n, t) and the computation {e}A
i
t

t (n) is preserved forever.
Therefore, for all s > t,

{e}Aiss [n + 1] = {e}Ai [n + 1] 6∈ TP .

So ls(e, i) = lt(e, i) = n and u(Ai
s; e, x, s) = u(Ai

t; e, x, t) for all x 6 n
and s > t. r(e, i) then exists by the definition of rs(e, i).

The construction makes it clear that A = A0 ∪A1 and A0 ∩A1 =
∅, so Lemma 2 follows immediately from Lemma 4. Now we are in
a position to prove Theorem 1. We will prove the Medvedev and
Muchnik cases simultaneously.

Proof. (Theorem 1). Let A and B be such that S = S(A,B) is
Medvedev (and therefore Muchnik) complete. For example, let A =
{n : {n}(n) ↓= 1} and B = {n : {n}(n) ↓= 0} (see [10]). Let A0 and
A1 be as in Lemma 2 and let Si = S(Ai, B) for each i ∈ {0, 1}. Note
that if A0 ⊆ X ⊆ B and A1 ⊆ Y ⊆ B, then A ⊆ X ∪ Y ⊆ B, so it be-
comes clear that S 6M S0∨S1. Also, S ⊆ S0, S1 so S >M S0, S1 and
therefore S >M S0 ∨ S1. That is, S ≡M S0 ∨ S1 (and S ≡w S0 ∨ S1).

Set P i = P ∧Si. It is immediate that P i 6M P and P i 6w P and
because Ai ∈ Si, item ii. of Lemma 2 implies Si 6>w P (and Si 6>M P ).
So in fact, P i <M P and P i <w P for each i ∈ {0, 1}. Finally we can
make the following calculation:

P 0 ∨ P 1 = (P ∧ S0) ∨ (P ∧ S1)
≡M P ∧ (P ∨ S0) ∧ (P ∨ S1) ∧ S
≡M P ∧ (P ∨ S0) ∧ (P ∨ S1).

But,

P >M P ∧ (P ∨ S0) ∧ (P ∨ S1) ≡M P ∨ (P ∧ S0 ∧ S1) >M P,
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so P 0 ∨ P 1 ≡M P and P 0 ∨ P 1 ≡w P . This gives us the required
splitting.

Lemma 2 is true even when P is taken to be a Π0
1 subset of ωω.

This can be seen in two ways. First, the assumption of recursive
boundedness is never used in the proof, so the generalisation follows
immediately from the proof of the lemma. Second, via a theorem
of Jockusch and Soare (Corollary 1.3, [6]) which states that for any
special Π0

2 class, P , there is a special, recursively bounded Π0
1 class,

Q, such that

{degT (f) : f ∈ Q} ⊇ {degT (f) : f ∈ P}.

In this more general form, the lemma implies Sacks’ Splitting The-
orem. Let C be any non-recursive ∆0

2 set. Then {C} is a special
Π0

2 class. Take Q as above and then Lemma 2 easily implies Sacks’
theorem.

In the Medvedev case, we can improve Theorem 1 considerably by
proving the following refinement of Lemma 2:

Lemma 5. Let P and Q be non-empty Π0
1 subsets of 2ω such that

P >M Q, and let A be any r.e. set. Then there exist r.e. sets, A0 and
A1, such that:

i. A0 ∪A1 = A, A0 ∩A1 = ∅,
ii. for each i ∈ {0, 1}, {Ai} ∨Q 6>M P.

We will use this lemma as we used Lemma 2 - this time to prove that
P can be split above Q. This is in contrast to the r.e. degrees, where
Lachlan’s “monster” theorem [7] states that such dense splitting fails.

The requirements for the construction will be:

R∗〈e,i〉 ≡ {e} : {Ai} ∨Q 9 P.

We will make similar definitions to before. The compactness of Π0
1

subsets of 2ω ensures that the following are well defined:

Length-of-agreement functions:
l∗s(e, i) := max{y : for all f ∈ Qs, {e}A

i
s⊕f

s [y] ∈ TP }.
Restraint functions:

r∗s(e, i) := max{u(Ai
s;A

i
s ⊕ f, e, x, s) : x 6 l∗s(e, i), f ∈ Qs}.
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Injury sets:
I∗〈e,i〉 := {x : ∃s x ∈ Ai

s+1rAi
s and x 6 r∗s(e, i)}.

If x ∈Ai
s+1rAi

s and x 6 r∗s(e, i), we say R∗〈e,i〉 is injured at stage s+1.
Note that l∗s(e, i) and r∗s(e, i) are recursive in e, i and s.
Let x be the unique element of As+1rAs. Choose the least 〈e, i〉 < s

such that x 6 r∗s(e, i) and enumerate x into A1−i
s+1.

If there is no such 〈e, i〉, then enumerate x into A0
s+1.

Lemma 6. If {e} : {Ai} ∨Q→ P , then lims l∗s(e, i) =∞.

Proof. Suppose {e} : {Ai} ∨Q→ P and let n∈ω be arbitrary. Then
let:

u = max{u(f ;Ai ⊕ f, e,m) : m < n, f ∈ Q},
(again this exists by compactness)
v = max{u(Ai;Ai ⊕ f |u+1, e,m) : m < n, f ∈ Q},
w = least k, Ai

k|v+1 = Ai|v+1,
t = least k, {τ ∈ TQ,k : |τ | = u + 1} = {τ ∈ TQ : |τ | = u + 1}.

Then for all s > max{w, t} such that {e}A
i
s⊕f

s (m) ↓ for all m < n, we
have, {e}A

i
s⊕f

s [n] = {e}Ai⊕f [n] ∈ TP for all f ∈Qs. That is l∗s(e, i) > n
and, as n was arbitrary, lims ls(e, i) =∞.

Lemma 7. For all e ∈ ω and i ∈ {0, 1},
I. I∗〈e,i〉 is finite,
II. {e} : {Ai} ∨Q9 P,
III. r∗(e, i) := lims r∗s(e, i) exists and is finite.

Proof. Take any e ∈ ω and i ∈ {0, 1}. As induction hypothesis assume
I., II., and III. hold for all 〈e′, i′〉 < 〈e, i〉.

I. By III. we can choose t and r such that for all 〈e′, i′〉 < 〈e, i〉
and s > t, rs(e′, i′) = r(e′, i′) and r > r(e′, i′). Now take v > t such
that Av|r = A|r. So R∗〈e,i〉 cannot be injured after stage v and I. holds
for 〈e, i〉.

II. Assume {e}Ai⊕f ∈ P for all f ∈ Q. Fix any n ∈ ω. Using I.,
let s′ be such that R∗〈e,i〉 is never injured after stage s′. lims l∗s(e, i) =
∞, so choose the least s = s(n) > s′ such that l∗s(e, i) > n. If x
is enumerated into Ai after stage s, then it must be greater than
u(Ai

s;Ai
s ⊕ f, e, n, s) for all f ∈ Q. So {e}A

i
s⊕f

s (n) = {e}Ai⊕f (n) for
all f ∈ Q. s is a recursive function of n, so f 7→ {e}A

i
s⊕f

s describes a
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recursive functional from Q into P , contradicting the fact that P >M

Q.

III. Let n be maximum such that for all f ∈ Q, {e}Ai⊕f [n] ∈ TP .
Using the compactness of Q, choose s′ so large that for all s > s′,

i. {e}A
i
s⊕f

s [n] = {e}Ai⊕f [n], for all f ∈ Q,
ii.Ai

s|u = Ai|u where u = max{u(Ai;Ai ⊕ f, e,m) : m < n, f ∈ Q}
iii. R∗〈e,i〉 is not injured at stage s.

If {e}A
i
s⊕f

s (n)↑ for all s > s′ and f ∈ Q, then u(Ai
s;A

i
s⊕f, e, n, s) =

0 and r∗s(e, i) = r∗s′(e, i) for all s > s′. So lims r∗s(e, i) exists. On the

other hand, suppose {e}A
i
t⊕f

t (n) ↓ for some t > s′ and f ∈ Q. As
before, R∗〈e,i〉 is not injured at any stage > s′, so the computation is
preserved forever. Therefore l∗s(e, i) = n for all s > t also as before.

By compactness, there is a v such that for all f ∈ Q, x 6 n and
s > t,

{e}A
i
s⊕f

s (x) ' {e}A
i
t⊕f

t (x)

' {e}A
i
t⊕f |v

t (x).

Let k > t be a stage when {f |v : f ∈ Qk} = {f |v : f ∈ Q} and then
for all s > k, f ∈ Qs and x 6 n, u(Ai

s;Ai
s ⊕ f, e, x, s) = u(Ai

k;A
i
k ⊕

f, e, x, k) and l∗s(e, i) = n. Finally we have, for all s > k,

r∗s(e, i) = max{u(Ai
s;A

i
s ⊕ f, e, x, s) : x 6 l∗s(e, i), f ∈ Qs}

= max{u(Ai
k;A

i
k ⊕ τ, e, x, k) : x 6 n, τ ∈ TQ, |τ | = v}

which is the maximum of a fixed finite set. Therefore lims r∗s(e, i)
exists and is finite.

This also concludes the proof of Lemma 5, the main purpose of
which is to prove the following “dense splitting” theorem.

Theorem 8. For any two non-empty Π0
1 subsets of 2ω, P >M Q,

there exist two other Π0
1 subsets of 2ω, P 0 and P 1 such that:

i. P 0, P 1 <M P,
ii. P 0 ∨ P 1 ≡M P ,
iii. P 0, P 1 >M Q.

Proof. Let A = {n : {n}(n) ↓= 0}, B = {n : {n}(n) ↓= 1} so that
S = S(A,B) is Medvedev complete. Take A0 and A1 to be as in
Lemma 5, and Si = S(Ai, B) for i ∈ {0, 1}. Then set P i = P∧(Si∨Q).
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P i 6M P and as Ai ∈ Si, Lemma 5 implies Si∨Q 6>M P . So P i <M P .
Also,

P 0 ∨ P 1 = (P ∧ (Q ∨ S0)) ∨ (P ∧ (Q ∨ S1))
≡M P ∧ (Q ∨ S0 ∨ S1)
≡M P

As P 0 and P 1 must be Medvedev incomparable, the theorem fol-
lows.

Theorem 8 implies immediately the density of PM . The proof given
here, however, is significantly different from the ones given in [3] and
[1].

Theorems 1 and 8 can be extended even further to a “generalised
splitting” theorem and a “generalised dense splitting” theorem respec-
tively:

Theorem 9. Let P be any special Π0
1 subset of 2ω and L be any finite

distributive lattice. Then there is a lattice embedding of L into Pw
sending the maximum element of L to the Muchnik degree of P .

Theorem 10. Given Π0
1 subsets of 2ω, P >M Q, and any finite dis-

tributive lattice, L, there is a lattice embedding of L into PM between
P and Q taking the maximum element of L to the Medvedev degree of
P .

These theorems then have Theorems 1 and 8 as corollaries if L is
taken to be the four element diamond lattice. The proofs will use the
following lattice-theoretic lemma.

Lemma 11. Every finite distributive lattice can be lattice-embedded
into a free finite distributive lattice, in a way that preserves the max-
imum element.

Proof. Let FD(m) be the free distributive lattice with m generators
and let Bn denote the lattice of subsets of N = {0, 1, 2, . . . , n − 1}
under ∪ and ∩. Let L be a distributive lattice with operations ∨ and
∧.

First observe that, using a representation theorem for finite dis-
tributive lattices (Theorem II.1.9 [5]), L can be represented as a sub-
lattice of Bn for some n (in fact n is the number of join-irreducible
elements of L) and that the maximum element of L is represented
by N - the maximum element of Bn . So it is enough to embed Bn
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into FD(n) preserving the maximum element. We will constuct an
embedding, ε : Bn ↪→ FD(n), which preserves the least element of Bn.
As both Bn and FD(n) are self dual, it is easy to convert this to an
embedding that preserves the maximum.

Let FD(n) be freely generated by Y = {y0, y1, . . . yn−1} and let ŷi
denote

∧
j 6=i yj. If Z ⊆ N , we define,

ε(Z) =


∨
i∈Z

ŷi if Z 6= ∅∧
i∈N

yi if Z = ∅

∧
i∈N yi is the minimum of FD(n) so ε preserves the minimum. It

is also clear that ε(Z1 ∪ Z2) = ε(Z1) ∨ ε(Z2). To see that ε preserves
meets, note that ŷi ∧ ŷj =

∧
i∈N yi if i 6= j and that the distributive

laws then give, ∨
i∈Z1

ŷi ∧
∨
i∈Z2

ŷi =
∨

i∈Z1∩Z2

ŷi.

The proof that ε is one-to-one is also straightforward - if ε(X) =
ε(Y ) and k ∈ X r Y then,

ŷk 6
∨
i∈X

ŷi =
∨
i∈Y

ŷi 6 yk,

contradicting freeness (see Theorem II.2.3 in [5]).

The proofs of Theorems 9 and 10 now proceed as before. First,
analogues of Lemmas 2 and 5 are established (Lemmas 12 and 13) and
then Theorems 9 and 10 follow.

Lemma 12. Let P be any special Π0
1 subset of 2ω and A be any r.e. set.

Then there exist r.e. sets, Ai, 0 6 i 6 n− 1, such that:

i. {Ai : 0 6 i 6 n− 1} forms a partition of A,
ii. for each i ∈ {0, 1, . . . n− 1} and f ∈ P ,

⊕
j 6=i

Aj 6>T f.

Proof. (sketch)
The proof will be virtually the same as Lemma 2. The require-

ments will be:

R〈e,i〉 ≡ {e} :
{⊕
j 6=i

Aj
}
9 P,
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and corresponding changes are made to the definitions of the length-
of-agreement function, restraint function and injury set. To construct
the partition, one takes the least 〈e, i〉 < s such that x 6 rs(e, i) and
enumerates x into Ai

s+1 (or A0
s+1 if no such 〈e, i〉 exists).

Now Theorem 9 can be proved.

Proof. (Theorem 9) The lemma is sufficient to prove that FD(n) can
be embedded into Lw below P with the top element going to P . In
fact we show that {P ∧ Si : 0 6 i 6 n − 1} freely generates FD(n)
where, as before, Si = S(Ai, B). To do this, it is sufficient to show
that for all non-empty I ( {0, 1, 2 . . . n− 1},

P ∧
∨
i∈I

Si 6>w P ∧
∧
i6∈I

Si,

(again use Theorem II.2.3 in [5]). Fix I as above. The requirements
imply that

{⊕
i∈I Ai

}
6>w P as I is a proper subset of {0, 1, 2 . . . n−1}.

But if
{⊕

i∈I Ai
}
>w

∧
i6∈I Si, then

{⊕
i∈I Ai

}
>w Sj for some j 6∈ I.

This implies {⊕
i6=j

Ai
}
>w

∨
i<n

Si ≡w S(A,B) >w P,

contradicting R〈e,j〉. Therefore
{⊕

i∈I Ai
}
6>w P ∧

∧
i6∈I Si and so

P ∧
∨
i∈I Si 6>w P ∧

∧
i6∈I Si, as required. The top element of FD(n)

is P ∧
∨
i<n Si ≡w P . Lemma 11 then completes the proof.

To prove Theorem 10 we need the following slightly more complex
lemma.

Lemma 13. Let P and Q be non-empty Π0
1 subsets of 2ω such that

P >M Q, and let A be any r.e. set. Then there exist r.e. sets, Ai,
0 6 i 6 n− 1, such that:

i. {Ai : 0 6 i 6 n− 1} forms a partition of A,
ii. for each non-empty J ( {0, 1, . . . n− 1},

{
⊕
i∈J

Ai} ∨Q 6>M P ∧
∧
i6∈J

Si.

12



Proof. (sketch) Let AJ =
⊕

i∈J Ai and AJ
s =

⊕
i∈J Ai

s. Let T J be a
recursive tree whose set of paths is P ∧

∧
i6∈J Si and T J

s be a recursive
tree whose set of paths is Ps ∧

∧
i6∈J Sis. The requirements for the

construction are:

R〈e,J〉 ≡ {e} :
{
AJ
}
∨Q9 P ∧

∧
i6∈J

Si.

The length-of-agreement function, restraint function and injury sets
are:

ls(e, J) := max{y : for all f ∈ Qs, {e}A
J
s⊕f

s [y] ∈ T J
s },

rs(e, J) := max{u(Ai
s;AJ

s ⊕f, e, x, s) : i ∈ J, x 6 ls(e, J), f ∈ Qs},
I〈e,J〉 := {x : ∃s ∃i ∈J x ∈ Ai

s+1rAi
s and x 6 rs(e, J)}.

As before, to construct the partition, at stage s, one takes the least
〈e, J〉 < s such that x 6 rs(e, J) and the least i 6∈ J and enumerates
x into Ai

s+1 (or into A0
s+1 if no such 〈e, J〉 exists). The equivalents of

Lemmas 6 and 7 are then proved in the same way.

Proof. (Theorem 10.) It will be shown that {(P ∧ Si) ∨ Q : 0 6
i 6 n− 1} generates FD(n) above Q. Straightforward manipulations
show that P is the top element of this copy of FD(n). Let J be a
non-empty, proper subset of {0, 1, 2, . . . n− 1}. Then,

Q ∨
{
AJ
}
6>M P ∧

∧
i6∈J Si

⇒ Q ∨
∨
i∈J Si 6>M P ∧

∧
i6∈J Si

⇒
∨
i∈J Q ∨ Si 6>M

∧
i6∈J P ∧ Si

⇒
∨
i∈J(P ∧ Si) ∨Q 6>M

∧
i6∈J(P ∧ Si) ∨Q.

Applying Theorem II.2.3 in [5] again is then enough to finish the
proof.

3 The ∃-theories of Pw and PM
Definition 14. If L′ is a first-order language in the predicate calculus
and M is an L′-structure, then the ∃-theory of M in L′ is the set of
all L′-sentences of the form ∃x1x2 . . . xnφ (where φ is a quantifier-free
formula) that are true in M. If M |= ∃x1x2 . . . xnφ, then φ is said
to be satisfiable in M. An ∃-theory is decidable if the set of Gödel
numbers of its elements is recursive.

13



The main theorem to be proved in this section is:

Theorem 15. The ∃-theories of Pw and PM in the language 〈∧,∨,6
,=,0,1〉 are identical and decidable.

What follows is a proof only that the ∃-theory of Pw in the language
〈∧,∨,=,0,1〉 is decidable. The proof of the PM case will be the same
and it will be clear that the decision procedure for the ∃-theory of PM
is identical to the decision procedure for the ∃-theory of Pw - implying
that their ∃-theories are the same. 6 can be defined in terms of ∧ and
= so Theorem 15 will follow.

In order to avoid confusion between propositional connectives and
lattice operations we will use · and + for the lattice operations ∧ and
∨.
∏

and
∑

will be used to denote general products and sums.
Let L01 be the language 〈·,+,=,0,1〉 with intended interpreta-

tion in Pw as ∧, ∨, = and the minimum and maximum elements of
Pw respectively. The languages L = 〈·,+,=〉 and L1 = 〈·,+,=,1〉
will be restrictions of L01. Two L01-terms, σ and τ , with free vari-
ables among x1, x2 . . . xn are said to be equivalent (over Pw) if Pw |=
∀x1x2 . . . xn(τ = σ). Two formulas, ψ and φ, with free variables among
x1, x2, . . . xn are equivalent (over Pw) if Pw |= ∀x1x2 . . . xn(φ↔ ψ).

Lemma 16. The ∃-theory of Pw in L is decidable.

Proof. One can argue from Theorem 9 that a quantifier-free L-formula,
ψ, is satisfiable in Pw if and only if it is satisfiable in some finite dis-
tributive lattice. As there are only finitely many distributive lattices
of any given finite size, determining if ψ is satisfiable in a distibutive
lattice of size m ∈ N is a finite task. To decide, then, if ψ is satisfiable
in Pw it is enough to compute, uniformly in ψ, an m such that if ψ is
satisfiable in some distributive lattice, it is satisfiable in a distributive
lattice of size at most m. We do this now. m will depend only on the
number of free variables in ψ.

Suppose ψ is as above with free variables x1, x2, . . . xn. Then ψ is
equivalent to a formula of the form:∨

i∈I

[ ∧
j∈Ji

(τij = σij) ∧
∧
j̄∈J̄i

(τij̄ 6= σij̄)
]
,

where τij, σij , τij̄ and σij̄ are L-terms and I, Ji and J̄i are finite sets.
If it is decidable whether or not each disjunct of ψ is satisfiable in Pw,
then it is decidable if ψ is satisfiable. So without losing generality, we
can assume ψ is of the form:

14



∧
j∈J

(τj = σj) ∧
∧
j̄∈J̄

(τj̄ 6= σj̄),

As before, let FD(n) denote the free distributive lattice on n gen-
erators. If {τk = σk : k 6 m} is a finite set of lattice relations on
FD(n), then we can form the quotient lattice, {[σ] : σ ∈ FD(n)},
where [σ] = [τ ] if and only if σ can be transformed formally into τ
by applications of the axioms of distributive lattices and substitutions
described by the relations. The lattice operations on the quotient
lattice are then canonically induced. The claim is that if ψ is satisfi-
able in some lattice, then it is satifiable in the quotient of FD(n) by
{τj = σj : j ∈ J}.

To see this, note that
∧
j∈J(τj = σj) is satisfiable in this quotient

lattice, and if some subformula of ψ of the form τj̄ 6= σj̄ were not
satisfied in the quotient lattice, then τj̄ could be transformed into σj̄
by applications of distributive laws and the relations {τj = σj : j ∈ J}.
But this could be done in any distributive lattice satisfying {τj = σj :
j ∈ J} and so ψ would not be satisfiable in any distributive lattice.
Therefore, if ψ is satisfiable in some distributive lattice, it is satisfiable
in the quotient of FD(n) by {τj = σj : j ∈ J}.

The cardinality of the quotient lattice is less than the cardinality
of FD(n) which is bounded by 22n−2 (Theorem II.2.1(iii) [5]). So this
is the required m.

Lemma 17. The ∃-theory of Pw in L1 is decidable.

Proof. Let ψ be a quantifier-free L1-formula with x1, x2, . . . xn its free
variables. As above, we can assume ψ is of the form:∧

j∈J
(τj = σj) ∧

∧
j̄∈J̄

(τj̄ 6= σj̄).

Every such L1-formula can be transformed using standard manip-
ulations into an equivalent one of the form:∧

k∈K
(νk = 1) ∧

∧
k̄∈K̄

(νk̄ 6= 1) ∧ φ

where φ is a quantifier-free L-formula, νk and νk̄ are L-terms, and K
and K̄ are finite index sets. Let ψ∗ be an L-formula formed from ψ
by replacing every occurrence of 1 by

∑
i6n xi. The claim is that ψ is
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satisfiable in Pw if and only if ψ∗ is. Lemma 16 then gives the required
result.

Suppose ψ∗ is satisfiable in Pw. Then it is satisfiable in some
quotient, L, of FD(n). The element

∑
i6n[xi] is the maximum of L

and by Theorem 9 we can embed L into Pw with
∑

i6n[xi] mapping
to 1. So ψ∗ ∧

∑
i6n xi = 1 is satisfiable in Pw and therefore so is ψ.

Conversely, suppose ψ is satisfied in Pw by a given assignment of
variables. There are two cases based on the form of ψ.

Case 1. K = ∅. Let φ be satisfiable in some finite distributive lattice,
L, and let p be an intermediate element of Pw. Then L can be em-
bedded into Pw below p (Theorem 9). Under the induced assignment
of variables, νk̄ 6= 1 is satisfied for all k̄ ∈ K̄. So ψ∗ is satisfiable.

Case 2. K 6= ∅. νk = 1 formally implies
∑

i6n xi = 1. So any
assignment of variables that satisfies νk = 1 will satisfy

∑
i6n xi = 1.

This also means that for all k̄ ∈ K̄, νk̄ 6=
∑

i6n xi under the given
assignment. So ψ∗ is satisfiable in Pw.

Theorem 18. The ∃-theory of Pw in L01 is decidable.

Proof. An effective procedure will be described that, given a quantifier-
free formula, ψ, of L01, will produce a quantifier-free formula, ψ1, of
L1 which is satisfiable in Pw if and only if ψ is. Lemma 17 will then
complete the proof.

Suppose ψ is as above with free variables x1, x2, . . . xn. As before,
we can assume ψ is of the form:∧

j∈J
(τj = σj) ∧

∧
j̄∈J̄

(τj̄ 6= σj̄), (1)

for some finite sets, J and J̄ . ψ is then equivalent to a formula of the
form ∧

k∈K
(νk = 0) ∧

∧
k̄∈K̄

(νk̄ 6= 0) ∧ φ, (2)

where K and K̄ and are finite sets, φ is a quantifier-free L1-formula
and νk and νk̄ are L-terms.

Case 1. K = ∅. Suppose φ is satisfiable in the finite lattice, L. The
proof of Lemma 9 describes an embedding of L into Pw strictly above
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0. So νk̄ 6= 0 will be satisfied for all k̄ ∈ K̄ by such an embedding. So
ψ is satisfiable in Pw if and only if φ is.

Case 2. K 6= ∅. For each k ∈ K, νk is equivalent to
∑

s∈S
∏
t∈Ts yst

where yst ∈ {x1, x2, . . . xn} and Ts and S are some finite index sets.
Using the fact that Pw |= ∀x, y[x · y = 0 ↔ (x = 0 ∨ y = 0)], we can
calculate that νk = 0 is equivalent to

∧
s∈S

∨
t∈Ts(yst = 0). So ψ is

equivalent to a formula of the form∧
m∈M

∨
p∈Pm

(ymp = 0) ∧
∧
k̄∈K̄

(νk̄ 6= 0) ∧ φ. (3)

Putting this in disjunctive normal form, and re-indexing appropri-
ately, we get something of the form∨

u∈U

[ ∧
v∈Vu

(yuv = 0) ∧
∧
k̄∈K̄

(νk̄ 6= 0) ∧ φ]. (4)

Again it is enough to decide the satisfiablity of each disjunct, so
we assume ψ is equivalent to a formula of the form∧

v∈V
(yv = 0) ∧

∧
k̄∈K̄

(νk̄ 6= 0) ∧ φ. (5)

Let ψ∗ be the formula obtained by replacing, for all v ∈ V , each
occurrence of yv with 0. ψ∗ is satisfiable if and only if ψ is, and ψ∗

is equivalent to a formula of the same form as Equation (1) but with
strictly fewer variables.

By iterating the above process we get, finally, either 0 = 0 or a
formula to which Case 1 applies.
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