
Structure and Information

Stephen Binns

Department of Mathematics
King Fahd University of Petroleum and Minerals

binns@kfupm.edu.sa

Stephen Binns Structure and Information



Computability Theory.

Computability theory begins with the question:

What is a function?

Functions are usually introduced to undergraduates as
"black boxes" - things which take inputs and produce
outputs.
This is in keeping with the accepted set-theoretical
definition of a function as a (single-valued) set of ordered
pairs.
There is no process that creates the output from the input -
just an unexamined assignment of output to input.

Stephen Binns Structure and Information



Computability Theory.

Computability theory begins with the question:

What is a function?

Functions are usually introduced to undergraduates as
"black boxes" - things which take inputs and produce
outputs.
This is in keeping with the accepted set-theoretical
definition of a function as a (single-valued) set of ordered
pairs.
There is no process that creates the output from the input -
just an unexamined assignment of output to input.

Stephen Binns Structure and Information



Computability Theory.

Computability theory begins with the question:

What is a function?

Functions are usually introduced to undergraduates as
"black boxes" - things which take inputs and produce
outputs.
This is in keeping with the accepted set-theoretical
definition of a function as a (single-valued) set of ordered
pairs.
There is no process that creates the output from the input -
just an unexamined assignment of output to input.

Stephen Binns Structure and Information



In computability theory we are concerned with those functions
(from N to N) that can be evaluated by some kind of algorithmic
or mechanistic process.

Definition (informal)
A computable function is a function whose black box is a
machine.

There is no a priori reason to believe that this vague notion
of machine is formally definable - or even coherent.
But it turns out that it can be captured by the
mathematically definable concept of a Turing Machine.

Stephen Binns Structure and Information



In computability theory we are concerned with those functions
(from N to N) that can be evaluated by some kind of algorithmic
or mechanistic process.

Definition (informal)
A computable function is a function whose black box is a
machine.

There is no a priori reason to believe that this vague notion
of machine is formally definable - or even coherent.
But it turns out that it can be captured by the
mathematically definable concept of a Turing Machine.

Stephen Binns Structure and Information



In computability theory we are concerned with those functions
(from N to N) that can be evaluated by some kind of algorithmic
or mechanistic process.

Definition (informal)
A computable function is a function whose black box is a
machine.

There is no a priori reason to believe that this vague notion
of machine is formally definable - or even coherent.
But it turns out that it can be captured by the
mathematically definable concept of a Turing Machine.

Stephen Binns Structure and Information



Alan Turing’s Machines

A Turing machine (TM) consists of an infinite (in one
direction) tape divided into cells. Each cell has a 0 or a 1
written in it.
The machine can read the contents of a cell and write over
it if necessary. The reading head can move to the left or
right as required. At each stage of operation, the machine
is in a given state - indexed by a natural number.
Inputs and outputs are given by (finite) initial sequences of
1s.

Stephen Binns Structure and Information



Alan Turing’s Machines

A Turing machine (TM) consists of an infinite (in one
direction) tape divided into cells. Each cell has a 0 or a 1
written in it.
The machine can read the contents of a cell and write over
it if necessary. The reading head can move to the left or
right as required. At each stage of operation, the machine
is in a given state - indexed by a natural number.
Inputs and outputs are given by (finite) initial sequences of
1s.

Stephen Binns Structure and Information



Alan Turing’s Machines

A Turing machine (TM) consists of an infinite (in one
direction) tape divided into cells. Each cell has a 0 or a 1
written in it.
The machine can read the contents of a cell and write over
it if necessary. The reading head can move to the left or
right as required. At each stage of operation, the machine
is in a given state - indexed by a natural number.
Inputs and outputs are given by (finite) initial sequences of
1s.

Stephen Binns Structure and Information



The TM is programmed with lists of instructions of the form:

If the machine is in state n reading i ∈ {0,1},
write j ∈ {0,1}, move to the left (or right)
and go into state m.

Definition (formal)
A computable function is a function that can be evaluated using
a Turing machine.

There is nothing canonical about this definition - there are
potentially thousands of other definitions of machine - and
hence of computable function.

Stephen Binns Structure and Information



Essential Properties of TMs.

Church-Turing Thesis: Any algorithmic procedure can be
carried out on a Turing machine.
The domain and co-domain of a computable function can
be any countable sets of finitely describable objects. For
example finite binary strings, finite graphs, finite algebraic
structures and so on.
Every attempt to define the intuitive concept of a
computing machine has turned out to be no stronger than
the TM definition - that is every general computing
machine computes only Turing-computable functions.
There is a universal Turing machine - one that can take a
program and a natural number n as input and implement
that program on n.

Stephen Binns Structure and Information



Essential Properties of TMs.

Church-Turing Thesis: Any algorithmic procedure can be
carried out on a Turing machine.
The domain and co-domain of a computable function can
be any countable sets of finitely describable objects. For
example finite binary strings, finite graphs, finite algebraic
structures and so on.
Every attempt to define the intuitive concept of a
computing machine has turned out to be no stronger than
the TM definition - that is every general computing
machine computes only Turing-computable functions.
There is a universal Turing machine - one that can take a
program and a natural number n as input and implement
that program on n.

Stephen Binns Structure and Information



Essential Properties of TMs.

Church-Turing Thesis: Any algorithmic procedure can be
carried out on a Turing machine.
The domain and co-domain of a computable function can
be any countable sets of finitely describable objects. For
example finite binary strings, finite graphs, finite algebraic
structures and so on.
Every attempt to define the intuitive concept of a
computing machine has turned out to be no stronger than
the TM definition - that is every general computing
machine computes only Turing-computable functions.
There is a universal Turing machine - one that can take a
program and a natural number n as input and implement
that program on n.

Stephen Binns Structure and Information



Essential Properties of TMs.

Church-Turing Thesis: Any algorithmic procedure can be
carried out on a Turing machine.
The domain and co-domain of a computable function can
be any countable sets of finitely describable objects. For
example finite binary strings, finite graphs, finite algebraic
structures and so on.
Every attempt to define the intuitive concept of a
computing machine has turned out to be no stronger than
the TM definition - that is every general computing
machine computes only Turing-computable functions.
There is a universal Turing machine - one that can take a
program and a natural number n as input and implement
that program on n.

Stephen Binns Structure and Information



Essential properties cont.

No consideration of time or space usage is made.
When studying computability theory we rarely have any
particular model of computation in mind. Any programable
generalised device is a good intuition.
Countable objects may be computable or non-computable
- that is there may be a Turing machine that can produce
them, or there may not be.

For example π = 3.14159... is computable. But...

Matiyasevich’s solution to Hilbert’s Tenth Problem:
There is no computer program that given a Diophantine
equation decides whether or not it has a solution, so the
set of solvable Diophantine equations is non-computable.

Stephen Binns Structure and Information



Essential properties cont.

No consideration of time or space usage is made.
When studying computability theory we rarely have any
particular model of computation in mind. Any programable
generalised device is a good intuition.
Countable objects may be computable or non-computable
- that is there may be a Turing machine that can produce
them, or there may not be.

For example π = 3.14159... is computable. But...

Matiyasevich’s solution to Hilbert’s Tenth Problem:
There is no computer program that given a Diophantine
equation decides whether or not it has a solution, so the
set of solvable Diophantine equations is non-computable.

Stephen Binns Structure and Information



Essential properties cont.

No consideration of time or space usage is made.
When studying computability theory we rarely have any
particular model of computation in mind. Any programable
generalised device is a good intuition.
Countable objects may be computable or non-computable
- that is there may be a Turing machine that can produce
them, or there may not be.

For example π = 3.14159... is computable. But...

Matiyasevich’s solution to Hilbert’s Tenth Problem:
There is no computer program that given a Diophantine
equation decides whether or not it has a solution, so the
set of solvable Diophantine equations is non-computable.

Stephen Binns Structure and Information



Essential properties cont.

No consideration of time or space usage is made.
When studying computability theory we rarely have any
particular model of computation in mind. Any programable
generalised device is a good intuition.
Countable objects may be computable or non-computable
- that is there may be a Turing machine that can produce
them, or there may not be.

For example π = 3.14159... is computable. But...

Matiyasevich’s solution to Hilbert’s Tenth Problem:
There is no computer program that given a Diophantine
equation decides whether or not it has a solution, so the
set of solvable Diophantine equations is non-computable.

Stephen Binns Structure and Information



Essential properties cont.

No consideration of time or space usage is made.
When studying computability theory we rarely have any
particular model of computation in mind. Any programable
generalised device is a good intuition.
Countable objects may be computable or non-computable
- that is there may be a Turing machine that can produce
them, or there may not be.

For example π = 3.14159... is computable. But...

Matiyasevich’s solution to Hilbert’s Tenth Problem:
There is no computer program that given a Diophantine
equation decides whether or not it has a solution, so the
set of solvable Diophantine equations is non-computable.

Stephen Binns Structure and Information



Kolmogorov Complexity.

How complex is a finite binary string?

10001101010101010100010110100100100001010101
is quite complex, but

00000000000000000000011111111111111111111111
is not.

Definition
The Kolmogorov complexity of σ, denoted C(σ), is the length of
shortest program (written in binary) needed to output σ.

We think of the program as a description of the output string.
Strings with short descriptions have low complexity.

Stephen Binns Structure and Information



Kolmogorov Complexity.

How complex is a finite binary string?

10001101010101010100010110100100100001010101
is quite complex, but

00000000000000000000011111111111111111111111
is not.

Definition
The Kolmogorov complexity of σ, denoted C(σ), is the length of
shortest program (written in binary) needed to output σ.

We think of the program as a description of the output string.
Strings with short descriptions have low complexity.

Stephen Binns Structure and Information



Kolmogorov Complexity.

How complex is a finite binary string?

10001101010101010100010110100100100001010101
is quite complex, but

00000000000000000000011111111111111111111111
is not.

Definition
The Kolmogorov complexity of σ, denoted C(σ), is the length of
shortest program (written in binary) needed to output σ.

We think of the program as a description of the output string.
Strings with short descriptions have low complexity.

Stephen Binns Structure and Information



C(σ) depends on the type of computer and the language used,
so we should define:

CM(σ) = length of shortest program needed to output σ on
machine M.

Fact: If M and N are two different (universal) machines, then
there is a constant k = k(M,N) such that for all σ

CM(σ) 6 CN(σ) + k .

So we just fix a (universal) machine, U and let C(σ) := CU(σ).
Then for any machine M,

C(σ) = CM(σ) + k ,

(with k depending only on M.)

Stephen Binns Structure and Information



C(σ) depends on the type of computer and the language used,
so we should define:

CM(σ) = length of shortest program needed to output σ on
machine M.

Fact: If M and N are two different (universal) machines, then
there is a constant k = k(M,N) such that for all σ

CM(σ) 6 CN(σ) + k .

So we just fix a (universal) machine, U and let C(σ) := CU(σ).
Then for any machine M,

C(σ) = CM(σ) + k ,

(with k depending only on M.)

Stephen Binns Structure and Information



C(σ) depends on the type of computer and the language used,
so we should define:

CM(σ) = length of shortest program needed to output σ on
machine M.

Fact: If M and N are two different (universal) machines, then
there is a constant k = k(M,N) such that for all σ

CM(σ) 6 CN(σ) + k .

So we just fix a (universal) machine, U and let C(σ) := CU(σ).
Then for any machine M,

C(σ) = CM(σ) + k ,

(with k depending only on M.)

Stephen Binns Structure and Information



C(σ) depends on the type of computer and the language used,
so we should define:

CM(σ) = length of shortest program needed to output σ on
machine M.

Fact: If M and N are two different (universal) machines, then
there is a constant k = k(M,N) such that for all σ

CM(σ) 6 CN(σ) + k .

So we just fix a (universal) machine, U and let C(σ) := CU(σ).
Then for any machine M,

C(σ) = CM(σ) + k ,

(with k depending only on M.)

Stephen Binns Structure and Information



Gödel’s Incompleteness Theorem

Kurt Gödel proved in 1931 that mathematics was
incomplete. He produced a mathematical sentence (in fact
a sentence in number theory) that could neither be proved
nor disproved from the axioms of number theory (Peano
axioms). Any sufficiently strong axiom system will have
these sentences. If we take ZFC - the axioms of Set
Theory - as the axiomatic foundation for mathematics, then
there are mathematical statements that can neither be
proved nor disproved using any mathematical technique
(for example the Continuum Hypothesis).
The sentence Gödel produced was extremely complicated
and had no independent mathematical standing other than
to prove his theorem.
There are however simple statements in Komolgorov
complexity theory that cannot be proved or disproved
mathematically (from ZFC).

Stephen Binns Structure and Information



Gödel’s Incompleteness Theorem

Kurt Gödel proved in 1931 that mathematics was
incomplete. He produced a mathematical sentence (in fact
a sentence in number theory) that could neither be proved
nor disproved from the axioms of number theory (Peano
axioms). Any sufficiently strong axiom system will have
these sentences. If we take ZFC - the axioms of Set
Theory - as the axiomatic foundation for mathematics, then
there are mathematical statements that can neither be
proved nor disproved using any mathematical technique
(for example the Continuum Hypothesis).
The sentence Gödel produced was extremely complicated
and had no independent mathematical standing other than
to prove his theorem.
There are however simple statements in Komolgorov
complexity theory that cannot be proved or disproved
mathematically (from ZFC).

Stephen Binns Structure and Information



Gödel’s Incompleteness Theorem

Kurt Gödel proved in 1931 that mathematics was
incomplete. He produced a mathematical sentence (in fact
a sentence in number theory) that could neither be proved
nor disproved from the axioms of number theory (Peano
axioms). Any sufficiently strong axiom system will have
these sentences. If we take ZFC - the axioms of Set
Theory - as the axiomatic foundation for mathematics, then
there are mathematical statements that can neither be
proved nor disproved using any mathematical technique
(for example the Continuum Hypothesis).
The sentence Gödel produced was extremely complicated
and had no independent mathematical standing other than
to prove his theorem.
There are however simple statements in Komolgorov
complexity theory that cannot be proved or disproved
mathematically (from ZFC).

Stephen Binns Structure and Information



Gödel’s Incompleteness Theorem

Kurt Gödel proved in 1931 that mathematics was
incomplete. He produced a mathematical sentence (in fact
a sentence in number theory) that could neither be proved
nor disproved from the axioms of number theory (Peano
axioms). Any sufficiently strong axiom system will have
these sentences. If we take ZFC - the axioms of Set
Theory - as the axiomatic foundation for mathematics, then
there are mathematical statements that can neither be
proved nor disproved using any mathematical technique
(for example the Continuum Hypothesis).
The sentence Gödel produced was extremely complicated
and had no independent mathematical standing other than
to prove his theorem.
There are however simple statements in Komolgorov
complexity theory that cannot be proved or disproved
mathematically (from ZFC).

Stephen Binns Structure and Information



Chaitin’s Incompleteness Theorem

Theorem
There is an N ∈ N such that, for any binary string σ, no
statement of the form C(σ) > N is provable in mathematics
(from ZFC).

This is peculiar because it is easy to see that

∀n ∈ N ∃σ C(σ) > n,

because there are only a limited number of short descriptions,
and so there must be strings with arbitrarily long descriptions.
In other words it is impossible to prove that any given binary
string has a complexity above a certain limit, however one can
prove that such strings must exist.

Stephen Binns Structure and Information



Chaitin’s Incompleteness Theorem

Theorem
There is an N ∈ N such that, for any binary string σ, no
statement of the form C(σ) > N is provable in mathematics
(from ZFC).

This is peculiar because it is easy to see that

∀n ∈ N ∃σ C(σ) > n,

because there are only a limited number of short descriptions,
and so there must be strings with arbitrarily long descriptions.
In other words it is impossible to prove that any given binary
string has a complexity above a certain limit, however one can
prove that such strings must exist.

Stephen Binns Structure and Information



Proof of Chaitin’s Incompleteness Theorem

Proof.
Consider a machine M that works as follows: taking input n in
binary form, it searches for a string σ and a proof from ZFC of
the statement C(σ) > n. If our theorem is incorrect, then the
computer will always eventually find such a string. The
computer then outputs σ. Thus n serves as a description for σ
via machine M. So

CM(σ) 6 log2(n) + 1.

Also, C(σ) 6 CM(σ) + k , where k is a constant depending only
on M. Now choose N so that

N > log2(N) + 1 + k .

Stephen Binns Structure and Information



Proof of Chaitin’s Incompleteness Theorem

Proof.
Consider a machine M that works as follows: taking input n in
binary form, it searches for a string σ and a proof from ZFC of
the statement C(σ) > n. If our theorem is incorrect, then the
computer will always eventually find such a string. The
computer then outputs σ. Thus n serves as a description for σ
via machine M. So

CM(σ) 6 log2(n) + 1.

Also, C(σ) 6 CM(σ) + k , where k is a constant depending only
on M. Now choose N so that

N > log2(N) + 1 + k .

Stephen Binns Structure and Information



Proof of Chaitin’s Incompleteness Theorem

Proof.
Consider a machine M that works as follows: taking input n in
binary form, it searches for a string σ and a proof from ZFC of
the statement C(σ) > n. If our theorem is incorrect, then the
computer will always eventually find such a string. The
computer then outputs σ. Thus n serves as a description for σ
via machine M. So

CM(σ) 6 log2(n) + 1.

Also, C(σ) 6 CM(σ) + k , where k is a constant depending only
on M. Now choose N so that

N > log2(N) + 1 + k .

Stephen Binns Structure and Information



Proof of Chaitin’s Incompleteness Theorem

Proof.
Consider a machine M that works as follows: taking input n in
binary form, it searches for a string σ and a proof from ZFC of
the statement C(σ) > n. If our theorem is incorrect, then the
computer will always eventually find such a string. The
computer then outputs σ. Thus n serves as a description for σ
via machine M. So

CM(σ) 6 log2(n) + 1.

Also, C(σ) 6 CM(σ) + k , where k is a constant depending only
on M. Now choose N so that

N > log2(N) + 1 + k .

Stephen Binns Structure and Information



Proof cont.
Then run machine M on input N. If σ is the output, then we
have:

C(σ) 6 CM(σ) + k 6 log2(N) + 1 + k < N.

Thus C(σ) < N and yet ZFC proves that C(σ) > N. So if ZFC is
consistent, we get a contradiction.

Stephen Binns Structure and Information



Proof cont.
Then run machine M on input N. If σ is the output, then we
have:

C(σ) 6 CM(σ) + k 6 log2(N) + 1 + k < N.

Thus C(σ) < N and yet ZFC proves that C(σ) > N. So if ZFC is
consistent, we get a contradiction.

Stephen Binns Structure and Information



Proof cont.
Then run machine M on input N. If σ is the output, then we
have:

C(σ) 6 CM(σ) + k 6 log2(N) + 1 + k < N.

Thus C(σ) < N and yet ZFC proves that C(σ) > N. So if ZFC is
consistent, we get a contradiction.

Stephen Binns Structure and Information



Proof cont.
Then run machine M on input N. If σ is the output, then we
have:

C(σ) 6 CM(σ) + k 6 log2(N) + 1 + k < N.

Thus C(σ) < N and yet ZFC proves that C(σ) > N. So if ZFC is
consistent, we get a contradiction.

Stephen Binns Structure and Information



Hausdorff Dimension.

For A ⊆ Rn we define, for each s ∈ Q:

Definition

Hs
δ(A) = inf

{
kn
∑
Bi∈C

diam(Bi)
s}

where the infimum is taken over all open covers C of A
consisting of n-dimensional balls Bi of diameter less than δ.

Definition

Hs(A) = lim
δ→0
Hs
δ(A).

Definition
The Hausdorff dimension of A ⊆ Rn is

dimH(A) = inf{s : Hs(A) = 0} = sup{s : Hs(A) =∞}.

Stephen Binns Structure and Information



Hausdorff Dimension.

For A ⊆ Rn we define, for each s ∈ Q:

Definition

Hs
δ(A) = inf

{
kn
∑
Bi∈C

diam(Bi)
s}

where the infimum is taken over all open covers C of A
consisting of n-dimensional balls Bi of diameter less than δ.

Definition

Hs(A) = lim
δ→0
Hs
δ(A).

Definition
The Hausdorff dimension of A ⊆ Rn is

dimH(A) = inf{s : Hs(A) = 0} = sup{s : Hs(A) =∞}.

Stephen Binns Structure and Information



Hausdorff Dimension.

For A ⊆ Rn we define, for each s ∈ Q:

Definition

Hs
δ(A) = inf

{
kn
∑
Bi∈C

diam(Bi)
s}

where the infimum is taken over all open covers C of A
consisting of n-dimensional balls Bi of diameter less than δ.

Definition

Hs(A) = lim
δ→0
Hs
δ(A).

Definition
The Hausdorff dimension of A ⊆ Rn is

dimH(A) = inf{s : Hs(A) = 0} = sup{s : Hs(A) =∞}.

Stephen Binns Structure and Information



Computable Hausdorff Dimension.

Definition

We say H1,s(A) = 0 if there is a computable sequence of open
covers Cn for A, each of which is a computable sequence of
open balls 〈Bi〉 and such that for each n∑

Bi∈Cn

diam(Bi)
s 6 2−n.

Definition
The computable Hausdorff dimension of A ⊆ Rn is

dim1
H(A) = inf{s : H1,s(A) = 0}.

Stephen Binns Structure and Information



Computable Hausdorff dimension - Results.

For any A ⊆ R, dim1
H(A) > dimH(A).

For X ∈ R it is possible (in fact usual) that

dim1
H(X ) := dim1

H({X}) 6= 0.

dim1
H(A) = sup{dim1

H(X ) : X ∈ A}.

For computably closed classes (that is, classes whose
complements are computable sequences of open balls),

dim1
H(P) = dimH(P).

Stephen Binns Structure and Information



Computable Hausdorff dimension - Results.

For any A ⊆ R, dim1
H(A) > dimH(A).

For X ∈ R it is possible (in fact usual) that

dim1
H(X ) := dim1

H({X}) 6= 0.

dim1
H(A) = sup{dim1

H(X ) : X ∈ A}.

For computably closed classes (that is, classes whose
complements are computable sequences of open balls),

dim1
H(P) = dimH(P).

Stephen Binns Structure and Information



Computable Hausdorff dimension - Results.

For any A ⊆ R, dim1
H(A) > dimH(A).

For X ∈ R it is possible (in fact usual) that

dim1
H(X ) := dim1

H({X}) 6= 0.

dim1
H(A) = sup{dim1

H(X ) : X ∈ A}.

For computably closed classes (that is, classes whose
complements are computable sequences of open balls),

dim1
H(P) = dimH(P).

Stephen Binns Structure and Information



Computable Hausdorff dimension - Results.

For any A ⊆ R, dim1
H(A) > dimH(A).

For X ∈ R it is possible (in fact usual) that

dim1
H(X ) := dim1

H({X}) 6= 0.

dim1
H(A) = sup{dim1

H(X ) : X ∈ A}.

For computably closed classes (that is, classes whose
complements are computable sequences of open balls),

dim1
H(P) = dimH(P).

Stephen Binns Structure and Information



Computable Hausdorff dimension and Complexity.

If X ∈ R, then

dim1
H(X ) = lim inf

n

C(X � n)

n
.

That is, the computable Hausdorff dimension of an element
of R is the limit infimum of the information density of its
initial segments.

If P is a computably closed class, then

dimH(P) = sup
X∈P
{lim inf

n

C(X � n)

n
}.

Stephen Binns Structure and Information



Computable Hausdorff dimension and Complexity.

If X ∈ R, then

dim1
H(X ) = lim inf

n

C(X � n)

n
.

That is, the computable Hausdorff dimension of an element
of R is the limit infimum of the information density of its
initial segments.

If P is a computably closed class, then

dimH(P) = sup
X∈P
{lim inf

n

C(X � n)

n
}.

Stephen Binns Structure and Information



The previous theorem again...

If P is a computably closed class, then

dimH(P) = sup
X∈P
{lim inf

n

C(X � n)

n
}.

Notice:

This is a “global vs local" type equation.
It is also a “classical vs computable" type equation.
Is it possible to compute classical dimensions of sets using
the concept of complexity?

Stephen Binns Structure and Information



The previous theorem again...

If P is a computably closed class, then

dimH(P) = sup
X∈P
{lim inf

n

C(X � n)

n
}.

Notice:

This is a “global vs local" type equation.
It is also a “classical vs computable" type equation.
Is it possible to compute classical dimensions of sets using
the concept of complexity?

Stephen Binns Structure and Information



The previous theorem again...

If P is a computably closed class, then

dimH(P) = sup
X∈P
{lim inf

n

C(X � n)

n
}.

Notice:

This is a “global vs local" type equation.
It is also a “classical vs computable" type equation.
Is it possible to compute classical dimensions of sets using
the concept of complexity?

Stephen Binns Structure and Information



The previous theorem again...

If P is a computably closed class, then

dimH(P) = sup
X∈P
{lim inf

n

C(X � n)

n
}.

Notice:

This is a “global vs local" type equation.
It is also a “classical vs computable" type equation.
Is it possible to compute classical dimensions of sets using
the concept of complexity?

Stephen Binns Structure and Information



An example.

Theorem
If C =the Cantor middle third set, then dimH(C) = ln 2/ ln 3.

Sketch of Proof.
Consider the elements of unit interval to be identified with their
ternary expansions. C consists of all elements with no 1s in
them. Given any n there are 2n ternary strings that have no 1s
in them. So it requires about log3(2

n) = n ln(2)/ ln(3) bits to
describe one in ternary. Therefore, for any X ∈ C, C(X � n) is
(in general) about n ln(2)/ ln(3). As C is a computably closed
class,

dimH(C) = lim inf
n

n ln 2/ ln 3
n

= ln 2/ ln 3.

Stephen Binns Structure and Information



An example.

Theorem
If C =the Cantor middle third set, then dimH(C) = ln 2/ ln 3.

Sketch of Proof.
Consider the elements of unit interval to be identified with their
ternary expansions. C consists of all elements with no 1s in
them. Given any n there are 2n ternary strings that have no 1s
in them. So it requires about log3(2

n) = n ln(2)/ ln(3) bits to
describe one in ternary. Therefore, for any X ∈ C, C(X � n) is
(in general) about n ln(2)/ ln(3). As C is a computably closed
class,

dimH(C) = lim inf
n

n ln 2/ ln 3
n

= ln 2/ ln 3.

Stephen Binns Structure and Information



An example.

Theorem
If C =the Cantor middle third set, then dimH(C) = ln 2/ ln 3.

Sketch of Proof.
Consider the elements of unit interval to be identified with their
ternary expansions. C consists of all elements with no 1s in
them. Given any n there are 2n ternary strings that have no 1s
in them. So it requires about log3(2

n) = n ln(2)/ ln(3) bits to
describe one in ternary. Therefore, for any X ∈ C, C(X � n) is
(in general) about n ln(2)/ ln(3). As C is a computably closed
class,

dimH(C) = lim inf
n

n ln 2/ ln 3
n

= ln 2/ ln 3.

Stephen Binns Structure and Information



Notes on the proof.

It is essential here is that C contains a random sequence of
0s and 2’s - that is one of maximum complexity - so it
achieves this dimension. It is also essential that C is a
computably closed class.
The dimension was calculated with reference to only one
of its elements. Any subset of C that contains a random
sequence of 0s and 2 will have the same Hausdorff
dimension.
No use of self-similarity is made.

Stephen Binns Structure and Information



Notes on the proof.

It is essential here is that C contains a random sequence of
0s and 2’s - that is one of maximum complexity - so it
achieves this dimension. It is also essential that C is a
computably closed class.
The dimension was calculated with reference to only one
of its elements. Any subset of C that contains a random
sequence of 0s and 2 will have the same Hausdorff
dimension.
No use of self-similarity is made.

Stephen Binns Structure and Information



Notes on the proof.

It is essential here is that C contains a random sequence of
0s and 2’s - that is one of maximum complexity - so it
achieves this dimension. It is also essential that C is a
computably closed class.
The dimension was calculated with reference to only one
of its elements. Any subset of C that contains a random
sequence of 0s and 2 will have the same Hausdorff
dimension.
No use of self-similarity is made.

Stephen Binns Structure and Information



The End.

THANK YOU!

Stephen Binns Structure and Information


