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1 Introduction

Dobrinen and Simpson [4] introduced the notions of almost everywhere domination and uni-
form almost everywhere domination to study recursion theoretic analogues of results in set
theory concerning domination in generic extensions of transitive models of ZFC and to study
regularity properties of the Lebesgue measure on 2ω in reverse mathematics. In this article,
we examine one of their conjectures concerning these notions.

Throughout this article, ≤T denotes Turing reducibility and µ denotes the Lebesgue (or
“fair coin”) probability measure on 2ω given by µ({X ∈ 2ω |X(n) = i}) = 1/2. A property
holds almost everywhere or for almost all X ∈ 2ω if it holds on a set of measure 1. For
f, g ∈ ωω, f dominates g if ∃m∀n > m(f(n) > g(n)).

Definition 1.1 (Dobrinen, Simpson). A set A ∈ 2ω is almost everywhere (a.e.) dom-
inating if for almost all X ∈ 2ω and all functions g ≤T X, there is a function f ≤T A such
that f dominates g. A is uniformly almost everywhere (u.a.e.) dominating if there is
a function f ≤T A such that for almost all X ∈ 2ω and all functions g ≤T X, f dominates g.

There are several trivial but useful observations to make about these definitions. First,
although these properties are stated for sets, they are also properties of Turing degrees.
That is, a set is (u.)a.e. dominating if and only if every other set of the same degree is
(u.)a.e. dominating. Second, both properties are closed upwards in the Turing degrees. Third,
u.a.e. domination implies a.e. domination. Finally, if A is u.a.e. dominating, then there is a
function f ≤T A which dominates every computable function.

Dobrinen and Simpson [4] introduced these notions to study the following two regularity
properties of µ in reverse mathematics: for each Gδ set Q ⊆ 2ω and each ε > 0, there is a
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closed set F ⊆ Q such that µ(F ) ≥ µ(Q) − ε, and for each Gδ set Q ⊆ 2ω, there is an Fσ

set S ⊆ Q such that µ(Q) = µ(S). ACA0 is strong enough to prove these statements, so as
the first step toward establishing reversals, they proved the following two theorems. (Reverse
mathematics plays only a motivational role here, but the reader who is not familiar with this
subject is referred to Simpson [18].)

Theorem 1.2 (Dobrinen, Simpson). For A ∈ 2ω, the following are equivalent.

1. A is a.e. dominating.

2. For every Π0
2 set Q ⊆ 2ω and ε > 0, there is a Π0,A

1 set F ⊆ Q such that µ(F ) ≥ µ(Q)−ε.

Theorem 1.3 (Dobrinen, Simpson). For A ∈ 2ω, the following are equivalent.

1. A is u.a.e. dominating.

2. For every Π0
2 set Q ⊆ 2ω, there is a Σ0,A

2 set S ⊆ Q such that µ(Q) = µ(S).

Given these connections, it is reasonable to think that results in computability theory
concerning a.e. domination and u.a.e. domination will have implications for the reverse math-
ematics content of the regularity properties stated above. At the time of Dobrinen and
Simpson [4], several facts about u.a.e. domination were already known:

A ≥T 0′ ⇒ A is u.a.e. dominating ⇒ A′ ≥T 0′′.

The first implication follows from a result of Kurtz [10] that 0′ is u.a.e. dominating and the
second implication follows from a result of Martin [13] that A computes a function which
dominates every computable function if and only A′ ≥T 0′′. (A set A for which A′ ≥T 0′′

is called high.) Furthermore, Dobrinen and Simpson [4] presented an unpublished proof by
Martin that no computable set is a.e. dominating.

Several questions arise naturally from these implications. Does every u.a.e. dominating
set compute 0′? Is every high degree u.a.e. dominating or at least a.e. dominating? Is every
a.e. dominating degree high? Does a.e. domination imply u.a.e. domination?

Cholak, Greenberg and Miller [2] recently answered the first question in the negative
by showing that there is a c.e. set A <T 0′ which is u.a.e. dominating. They also used
their methods to show a number of results in reverse mathematics concerning the regularity
property that for every Gδ set Q there is an Fσ set S ⊆ Q such that µ(Q) = µ(S). In
particular, this property does not imply ACA0 even over WKL0. The fourth question remains
open. Concerning the second and third questions, Dobrinen and Simpson made the following
conjecture.

Conjecture 1.4 (Dobrinen, Simpson). A′ ≥T 0′′ ⇔ A is a.e. dominating.

This conjecture is our main focus. The strongest results appear in Section 5 where we show
that if A ≤T 0′ is a.e. dominating, then A is high (giving a partial answer to the ⇐ direction
of Conjecture 1.4) and that for any a.e. dominating set Z, every set which is 1-random relative
to Z is actually 2-random. As a corollary (applying work of Nies [15]), we obtain the stronger
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property that every a.e. dominating set A ≤T 0′ satisfies 0′′ ≤tt A′, where ≤tt denotes truth
table reducibility. (Such sets are called super high.) Because there are ∆0

2 (even Σ0
1) sets

which are high but not super high, this result refutes the ⇒ direction of Conjecture 1.4.
Before arriving at Section 5, we follow a meandering path to explore the connections

between a.e. domination and notions such randomness and genericity. Because relatively
little is known about a.e. domination, we approach this property from different angles and
occasionally offer more than one proof of our results. Hopefully, others will see additional
connections and push this work towards a more complete understanding of this property.

In Section 2, we give a direct construction of a high computably enumerable (c.e.) set
H which is not a.e. dominating. The construction combines Martin’s technique for showing
the computable sets are not a.e. dominating with a standard technique for constructing high
c.e. degrees. Noam Greenberg and Joe Miller independently obtained a similar (although not
c.e.) result using a different method. In Section 3, we show that if A is 2-random, then A not
a.e. dominating and hence the measure of all a.e. dominating sets is 0. Furthermore, we show
that almost every degree is bounded by a high degree which is not a.e. dominating. It follows
that there are 2ℵ0 many counterexamples to the ⇒ direction of Conjecture 1.4. In Section 4,
we prove that if A is 2-generic (with respect to Cohen forcing), then A is not a.e. dominating.
Furthermore, we show that for any a.e. dominating A, there is a 2-random R whose degree is
c.e. in A.

In Section 6, we approach Conjecture 1.4 from the viewpoint of Turing ideals. Suppose
that an ideal I satisfies ∀X ∈ I ∃Y ∈ I (X <T Y ∧ X ′′ ≤T Y ′). Must I be a Scott set
(that is, contain a path through each infinite subtree of 2<ω contained in I)? In other words,
must such an ideal be the second order part of an ω-model of WKL0? We show that for any
computable tree T ⊆ 2<ω without a computable infinite path, there is a ideal closed under
the highness property above that does not contain a path through T . Hence, this ideal is not
a Scott set and does not give an ω-model of WKL0. Along the same lines, we show that there
is an ideal closed under this highness property that does not contain an a.e. dominating set.

Our notation is standard and mostly follows Soare [19]. Φe denotes the list of partial
computable functionals and we fix a computable bijection 〈x, y〉 between ω2 and ω. For
A ⊆ ω, let A[e] = {x | 〈e, x〉 ∈ A} and for m ∈ ω, let [m,∞) = {n |n ≥ m}. We sometimes
equate sets with reals from the interval [0, 1] by viewing a set B ⊆ ω as the real

∑
n∈B 2−n.

For strings σ and τ , we write σ v τ to indicate that σ is an initial substring of τ . Similarly,
if F1 is a finite set and F2 is a set, then we write F1 v F2 if F1 is an initial segment of F2.

2 Computably enumerable example

In this section, we give a direct construction of a high c.e. set which is not a.e. dominating.
In Section 5, we give an alternate proof of Theorem 2.1 using index sets.

Theorem 2.1. There is a high c.e. set which is not a.e. dominating.

To prove this theorem, we build a c.e. set H such that ∅′′ ≤T H ′ and H is not a.e. domi-
nating. By negating the property of a.e. domination, it suffices to prove there is a set T ⊆ 2ω

of positive measure such that ∀X ∈ T ∃g ≤T X ∀f ≤T H (g is not dominated by f).
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Fix any rational number δ such that 0 < δ < 1. We build a partial computable functional
Φ such that µ({X |Φ(X) is not total}) ≤ δ and we let T = {X |Φ(X) is total}. Therefore,
µ(T ) ≥ 1− δ as required. Furthermore, we ensure that for every e ∈ ω and for every X ∈ T ,
if Φe(H) is total, then Φ(X) is not dominated by Φe(H). These properties suffice to prove
the theorem.

There are two types of requirements: Re requirements which guarantee that H is high and
Me requirements which define the functional Φ and the set T . Our construction takes place
on a tree of strategies which is described below. If α is an Re or Me strategy, then we let A[α]

and H [α] denote A[e] and H [e], 〈α, x〉 denote 〈e, x〉 and Φα denote Φe.
To make H high, we use the following standard trick. Let Tot denote the index set of

total computable functions and let A be a c.e. set such that for all e, if e ∈ Tot, then A[e] = ω
and if e 6∈ Tot, then A[e] is a finite initial segment of ω. To make H high, it suffices to make
H ⊆ A such that if A[e] is infinite then A[e] − H [e] is finite. It follows that if e ∈ Tot, then
H [e] is cofinite (and hence limx H(〈e, x〉) = 1) and if e 6∈ Tot, then H [e] is finite (and hence
limx H(〈e, x〉) = 0). Because Tot = limx H(〈e, x〉), the Limit Lemma gives ∅′′ ≡T Tot ≤T H ′.

Let Re denote the requirement that H [e] ⊆ A[e] and A[e] infinite implies A[e]−H [e] is finite.
An Re strategy α operates under a finite restraint and maintains a parameter oα which is
larger than this restraint and which is only changed when some higher priority strategy raises
its restraint and initializes α. α acts as follows.

1. When α first acts or has been initialized, define oα to be large and set n = oα.

2. Wait for n to enter A[α].

3. When n enters A[α], put n into H [α], increase the value of n by 1 and return to Step 2.

Clearly this strategy makes H [α] ⊆ A[α]. If α is on the true path, then the higher priority
strategies initialize α only finitely often. Therefore, the parameter oα reaches a limit and
every number in A[α] larger that the final value of oα enters H [α].

An Re strategy α has infinitely many possible outcomes: the numbers in ω (which denote
the current value of oα) and Fin. These outcomes are ordered by n <L Fin for every n ∈ ω
and n <L m if n > m. (That is, Fin is the rightmost outcome and the numerical outcomes
increase in value as they move to the left.) The strategy takes outcome oα each time it acts
in Step 3 and it takes outcome Fin otherwise. If A[α] is finite, then the strategy is eventually
stuck in Step 2 forever and cofinitely often takes the Fin outcome. On the other hand, as
long as α is initialized only finitely often, if A[α] is infinite, then there is a final value of oα for
which α takes outcome oα infinitely often.

The second type of requirement concerns building the partial computable functional Φ
and the set T . Globally, we need to make sure that µ(T ) ≥ 1 − δ, and locally we let Me

denote the requirement that if Φe(H) is total, then Φ(X) is not dominated by Φe(H) for any
X ∈ T . To avoid domination, it is enough to make sure that for each e and each X ∈ T ,
there is at least one value x such that Φ(X; x) > Φe(H; x). (See Lemma 2.7 for a proof that
this condition is sufficient.) The action for a single Me strategy α proceeds as follows.

1. Pick a small value εα = 1/2pα for some large pα. (We discuss below how to choose this
number, but in particular εα < δ.)
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2. Divide 2ω into 2pα many disjoint clopen sets Uα
1 , . . . , Uα

2pα each of size εα.

3. Cycle through the Uα
i sets beginning with i = 1.

(a) Pick a large value xα
i and define Φ(X; xα

i ) = 0 for all X 6∈ Uα
i .

(b) Wait for Φα(H; xα
i ) to converge.

(c) If Φα(H; xα
i ) converges, then define Φ(X; xα

i ) > Φα(H; xα
i ) for all X ∈ Uα

i , increase
i by 1 and return to Step 3(a). To preserve the computation Φα(H; xα

i ), restrain
H from changing below the use of this computation.

4. If i eventually runs through Step 3 for all the numbers 1, . . . , 2pα then stop the action
for α and declare it satisfied.

Consider what such a strategy does in isolation. If Φα(H) is total, then it runs through
the cycle in Step 3 for each i between 1 and 2p and defines Φ such that ∀X ∃x (Φ(X; x) >
Φα(H; x)). This action wins Me. If Φα(H) is not total, then there may be an i between 1 and
2pα for which Φ(H; xα

i ) does not halt. In this case, α gets stuck in Step 3(b) during the ith

cycle. Consequently, Φ(X; xα
i ) does not converge for any X ∈ Uα

i and so Φ(X) is not total for
any X ∈ Uα

i . However, because α does not progress past Step 3(b) of the ith cycle, the sets
X ∈ Uα

i are the only sets on which α causes Φ to be partial. Therefore, Me is won trivially
(since Φα(H) is not total) and α contributes a set of measure εα on which Φ is not total. In
each of the two cases described here, α imposes only finitely much restraint since it has only
finitely many cycles to run through.

The action of α when Φα(H) is not total tells us how to pick the values of ε during the
construction. Each strategy which acts for an Me requirement potentially contributes a set
of measure ε on which Φ is not total. Therefore, we have to choose the values of ε as we go
through the construction so that the sum of these values (over all e) is less than δ.

The outcomes for an Me strategy α are the numbers in ω (indicating the current restraint
imposed by α). These outcomes are ordered by n <L m if n > m. (That is, the numerical
values of the outcomes increase as they move left.)

We define the tree of strategies by induction. The empty string λ is assigned to R0. If α
is assigned to Re, then α ∗ Fin and α ∗ n (for n ∈ ω) are assigned to Me. If α is assigned to
Me, then α ∗ n (for n ∈ ω) is assigned to Re+1. In both cases, the outcomes are ordered as
described above.

How do the strategies interact? Suppose α is an M strategy and β is an R strategy. If α
is to the left of β, then β is initialized whenever α acts. In particular, when β nexts acts, it
picks a new value for oβ which is larger than the restraint (if any) imposed by α. If α is an
M strategy such that α ∗m v β, then β is not eligible to act until α has imposed restraint
up to m. Therefore, oβ is chosen > m and β respects α’s restraint. On the other hand, if
β ∗ Fin v α, then each time β puts a number into H [β], α is initialized. If β ∗ Fin is on the
true path, then eventually β always takes outcome β ∗ Fin. Therefore, β causes only finitely
much injury to α.

The one nontrivial interaction is when β ∗ m v α. In this case, α is only eligible to act
if β sets oβ to be m, and α guesses that β will eventually put every number greater than
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oβ = m into H [β]. Therefore, when α sees a convergent computation Φα(H; xα
i ) with use u, it

only believes the computation if every number 〈β, x〉 ≤ u with oβ = m ≤ x is in H. Because
α believes that β will place every such x into H [β], α believes that any computation missing
such a number will eventually be destroyed by the enumeration of x into H [β]. Therefore, the
general construction contains this minor modification for an M strategy β.

We now present the formal construction. At stage 0, let H0 = ∅. At stage s > 0, we let
strategies act beginning with the R0 strategy λ until we reach a strategy of length s. Once
we reach a strategy of length s, end the stage and initialize all strategies of lower priority
than the last strategy eligible to act. Initializing an R strategy α means canceling oα and nα.
Initializing an M strategy α means canceling rα (the current restraint imposed by α), εα and
pα, canceling the partition Uα

i and canceling all witnesses xα
i . Any parameters not canceled

by initialization retain their values at the next stage. Once the initialization is done, we define
Φ(X; y) = 0 for all sets X and all numbers y ≤ s which are not currently witnesses of the
form xα

i for some M strategy α. (Formally, we choose a large value k and let Φ(σ, y) = 0 for
all strings σ of length k.)

When an R strategy α is eligible to act, it acts as follows. If s is the first stage at which
α is eligible to act or if α has been initialized since it was last eligible to act, define oα to be
large and set nα = oα. Check if nα ∈ A

[α]
s . (We begin at this step if nα is already defined.) If

not, then let α ∗ Fin be the next strategy eligible to act. If so, then enumerate nα into H [α],
increase nα by 1 and let α ∗ oα be the next strategy eligible to act.

When an M strategy α is eligible to act, it acts as follows. If s is the first stage at which
α is eligible to act or if α has been initialized since it was last eligible to act then we need to
define rα, εα and pα. Set rα = 0. (The parameter rα denotes α’s current level of restraint.)
Let q be the sum of all εγ parameters defined by all M strategies γ that have been eligible to
act at any time during the construction so far. In the verification below, we prove that q < δ.
Define pα to be a large number so that εα = 1/2pα satisfies q + εα < δ. Partition 2ω into 2pα

many disjoint clopen sets Uα
1 , . . . , Uα

2pα each of size εα.
Begin the cycles for α with this choice of pα. (If pα was already defined, we start the

action of α wherever it left off in this cycle procedure.) Run cycles beginning with i = 1 and
proceeding through i = 2pα . The ith cycle acts as follows. Pick a large value for the witness
xα

i when the cycle begins and define Φ(X; xα
i ) = 0 for all X 6∈ Uα

i . Let β0, . . . , βk−1 denote the
R strategies such that βj ∗mj v α for some mj ∈ ω. Check if Φα,s(Hs; x

α
i ) converges. If not,

let α ∗ rα be the next strategy eligible to act. If it does converge, then let u be the use of the
computation. For each 0 ≤ j ≤ k − 1, check if for every number 〈βj, y〉 ≤ u with mj ≤ y, we

have y ∈ H
[βj ]
s . If not, then let α ∗ rα be eligible to act (and α remains in the ith cycle when it

is next eligible to act). If so, then define Φ(X; xα
i ) > Φα(Hs; x

α
i ) for all X ∈ Uα

i . Redefine rα

to be the maximum of its old value and u, increase i by 1 (so that α will begin the (i + 1)st

cycle when it is next eligible to act) and let α ∗ rα be eligible to act. If iα reaches the value
2pα + 1, then α performs no further actions (unless it is initialized) and takes outcome α ∗ rα

at all future stages.
This completes the description of the formal construction. A strategy α is on the true

path if α is the leftmost strategy of length |α| which is eligible to act infinitely often. A stage
at which α is eligible to act is called an α stage.
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Lemma 2.2. H ⊆ A.

Proof. Numbers are enumerated into H only after they have entered A.

Lemma 2.3. If α is an R strategy on the true path, then oα reaches a limit ôα. Furthermore,
if α ∗ ôα is on the true path, then A[α] = ω and A[α] −H [α] is finite, while if α ∗ Fin is on the
true path, then A[α] is finite.

Proof. Let s be the first α stage such that no strategy to the left of α is eligible to act after
stage s and hence α is never initialized after stage s. Because values of oα are canceled only
by initialization, α defines the final value for oα at stage s.

Once oα has reached its limit ôα, there are only two possible outcomes for α to take at
any future α stage: ôα and Fin. Because ôα is greater than the restraint imposed on α by
any M strategy of higher priority, α is free to place any number bigger than ôα which enters
A[α] into H [α]. Recall that A[α] is either ω or a finite initial segment of ω, that α places nα

into H [α] and increments nα (beginning at ôα) whenever it sees nα enter A[α], and that α only
takes outcome α ∗ ôα when it puts the current value of nα into H [α].

Assume that α ∗ ôα is eligible to act infinitely often. This situation implies the interval
I = [ôα,∞) is contained in A[α] and hence A[α] = ω. Furthermore, each element of I is placed
into H [α] and hence A[α] − H [α] is finite. On the other hand, assume that α ∗ Fin is on the
true path. In this case, there must be a value of nα for which α never sees nα enter A[α] and
hence A[α] is a finite initial segment of ω.

It follows from the previous two lemmas that each requirement Re is met by the construc-
tion, so H has high degree.

Lemma 2.4. Let α be an M strategy that is eligible to act at stage s. Let qα
s be the sum

of all εγ parameters for all M strategies γ that have been eligible to act at any point in the
construction before α is eligible to act at stage s. Then qα

s < δ.

Proof. This lemma follows by induction on s, and for each s by a subinduction on the strategies
which are eligible to act at stage s. If α defines εα at stage s, then by induction qα

s < δ, so α
can define εα such that that qα

s + εα < δ.

Let T = {X |Φ(X) is total} and let qs = qα
s where α is the last M strategy eligible to

act at stage s. By Lemma 2.4, qs < δ and hence lims qs ≤ δ. In other words, the sum of all
parameters εα chosen by M strategies during the construction is ≤ δ.

Lemma 2.5. µ(T ) ≥ 1− δ.

Proof. At the end of each stage s, if x ≤ s and x is not equal to the current value of an xα
i

parameter for some M strategy α, then we define Φ(X; x) = 0 for all X. Fix a number y
and calculate µ({X |Φ(X; y) ↑}). If Φ(X; y) ↑, then for each stage s ≥ y, y must be equal
to the current value of some xα

i parameter. Because new values for these parameters are
always chosen large (and are never reused), there must be a fixed M strategy α and a fixed
cycle number i such that y = xα

i at all stages s ≥ y. (In particular, α is never initialized
after stage y.) When α chose xα

i = y, it defined Φ(Y ; y) = 0 for all Y 6∈ Uα
i . Therefore, if
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Φ(X; y) ↑, then X ∈ Uα
i . Because µ(Uα

i ) = εα, we have that either Φ(X; y) converges for all
X or µ({X |Φ(X; y) ↑}) = εα. Summing over all y, we see that µ({X |Φ(X) not total }) is
bounded by the sum of all values of εβ chosen over the course of the construction by all M
strategies β. As noted above, this sum is ≤ δ.

Lemma 2.6. If α is an M strategy on the true path such that Φα(H) is total, then

∀X ∃x (Φ(X; x) > Φα(H; x)).

Proof. Assume α is on the true path and Φα(H) is total. Let β0, . . . , βk−1 be the R strategies
such that βj ∗ mj v α for some mj ∈ ω. Because each βj ∗ mj is on the true path, if ôβj

denotes the final value of the parameter oβj
, then ôβj

= mj. By the proof of Lemma 2.3, the

interval [mj,∞) is contained in H [βj ] for each 0 ≤ j ≤ k − 1.
Let s be the first α stage after which α is never initialized. At stage s, α defines the

parameters pα and εα, sets rα = 0 and defines the partition Uα
i . After these definitions, α

begins its first cycle for defining Φ. It chooses xα
1 and defines Φ(X, xα

1 ) = 0 for all X 6∈ Uα
1 .

At each α stage t ≥ s, α checks whether Φα,t(Ht; x
α
1 ) converges and if so whether each

number 〈βj, y〉 below the use with mj ≤ y is in Ht. Because Φα(H) is total and each interval
[mj,∞) ⊆ H [βj ], α must eventually see a convergent computation which meets this criterion.
When α sees an appropriate computation at stage t ≥ s, it defines Φ(X; xα

1 ) > Φα,t(Ht; x
α
1 )

and redefines its restraint rα to be greater than the use of Φα,t(Ht; x
α
1 ).

Since t ≥ s, no strategy to the left of α is ever eligible to act after t, so none of these
strategies can place a number into H which will destroy the Φα,t(Ht; x

α
1 ) computation. The

βj strategies have already placed all the numbers below the use into H [βj ] so they will not
destroy this computation. Any R strategy β with β ∗Fin v α never places any more elements
into H since if it did, the path would move to the left of α contradicting the fact that
t ≥ s. Finally, all strategies of lower priority that α respect α’s new restraint. Therefore,
Φα(H; xα

1 ) = Φα,t(Ht; x
α
1 ) and we have met the condition of this lemma for all X ∈ Uα

1 .
We repeat the same argument for α’s remaining cycles to see that for each Uα

i , there is a
witness xα

i such that Φ(X; xα
i ) > Φα(H; xα

i ) for all X ∈ Uα
i . Since the Uα

i partition 2ω, we
have established the lemma.

Lemma 2.7. Each requirement Me is met.

Proof. Assume that some requirement Me is not met. Me is not met means that Φe(H) is
total and that for some set X ∈ T , Φ(X) is dominated by Φe(H). Fix n such that for all
x > n, Φ(X; x) < Φe(H; x). Let e′ be an index for a partial computable functional such that
for all sets Z and all numbers x, if x < n, then Φe′(Z; x) = Φ(X; x) + 1 and if n ≤ x, then
Φe′(Z; x) = Φe(Z; x). (Since X ∈ T , the computations Φ(X; x) for x < n are defined, so
we are just fixing the same finite initial segment of Φe′(Z) for every Z.) Let α′ be the Me′

strategy on the true path. We have that Φα′(H) is total and for all x, Φ(X; x) < Φα′(H; x).
These facts directly contradict Lemma 2.6.
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3 Random examples

In this section, we show that almost every degree is not a.e. dominating and that almost every
degree is bounded by a high degree that is not a.e. dominating. In contrast with the c.e. set
H of the last section, all of the examples here satisfy some degree of randomness and hence
have DNR (diagonally nonrecursive) degree.

Definition 3.1. A Martin-Löf test relative to a set A is a sequence 〈Un : n ∈ ω〉 of Σ0,A
1

classes which is uniform in A such that µ(Un) ≤ 2−n for each n. R is n-A-random (n-
random relative to A) if for each Martin-Löf test relative to A(n−1) (the n − 1st jump of
A), we have R 6∈

⋂
n Un. If A is computable we say that R is n-random. R is weakly

n-A-random if for each Σ0,A
n class C of measure 1, we have R ∈ C.

Notice two consequences of these definitions: if R is n-A-random then R is weakly n-A-
random and if R is n-A-random for some A then R is n-random. For more information about
randomness (including various equivalent definitions), see Kautz [8], Kurtz [10] or the online
manuscript of Downey and Hirschfeldt [5]. One of the fundamental results about randomness
that we will use repeatedly is the following.

Theorem 3.2 (Martin-Löf [14]). For any A and n ≥ 1, the measure of the class of all
n-A-random sets is 1.

We now state the main result of this section which we will prove at the end of this section.

Theorem 3.3. Each 4-random degree is bounded by a high 2-random degree that is not almost
everywhere dominating.

Corollary 3.4. Almost every degree is bounded by a high degree which is not a.e. dominating.

Towards this theorem, as we would like to find degrees that are not almost everywhere
dominating, we need examples of functions that are hard to dominate but are nevertheless
computable by a sufficiently (to be specified later) random oracle. That is, suppose we fix
functions fR ≤T R for each sufficiently random set R. By Theorem 3.2, the measure of such
R is 1. Let A be any a.e. dominating set and let S be a class of sets of measure 1 such that
every function computable from an element of S is dominated by some function computable
from A. Because S has measure 1 and the collection of sufficiently random R has measure 1,
some such R must be in S. Therefore, the a.e. dominating set A must compute a function g
which dominates some fR function. If we can make the fR functions hard to dominate, we
can use them to construct examples of sets which are not a.e. dominating. We begin with the
following theorem. (Kurtz [10] proved that the class of sets R such that there is a set B <T R
for which R is c.e. in B has measure 1 and Kautz [8] later strengthen this result to Theorem
3.5.)

Theorem 3.5 (Kautz [8]). If R is 2-random, then there is a set B such that B <T R and
R is c.e. in B.

9



We will combine this theorem with the following simple observation. Let R be any set
and suppose that R is c.e. in B. For any fixed index e such that R = WB

e , we can define the
computation function c for R relative to this index e by

c(x) = µs(WB
e,s � x = WB

e � x = R � x).

Typically, we will abuse notation by suppressing the index e and referring to c as “the”
computation function for R as a c.e. set in B.

Lemma 3.6. If R is c.e. in B and f dominates the computation function for R as a c.e. set
in B, then f ⊕B ≥T R.

Proof. Assume that e is the index relative to which the computation function is defined.
Because f dominates the computation function, for sufficiently large x we have R � x = WB

e �
x = WB

e,f(x) � x.

For any 2-random set R, fix BR and fR such that BR <T R, R is c.e. in BR and fR is
the computation function for R as a set c.e. in BR. Since fR ≤T BR ⊕ R and BR <T R, we
have fR ≤T R. Therefore, any a.e. dominating set A must be able to compute a function g
which dominates some fR. Hence, for some 2-random R, we must have A ⊕ BR ≥T R. In
other words, any a.e. dominating set must join some predecessor of some 2-random R above
R. Stillwell [20] showed that sufficiently random sets do not have this property.

Lemma 3.7 (Stillwell [20]). For any X,Y ,G, if X 6≤T Y and G is weakly 2-X⊕Y -random,
we have X 6≤T Y ⊕G.

From Lemma 3.7 and the comments above, it follows that if G is 2-random relative to
every 2-random set R, then G is not a.e. dominating. Unfortunately, there is no such set
G. (Suppose there is such a G. Let R = G and notice that R is 2 random, but G cannot
be 2-random relative to R = G.) However, van Lambalgen [11] showed that a set X can be
random relative to every set that is random relative to X, and this turns out to be enough
to prove Theorem 3.9.

Theorem 3.8 (van Lambalgen [11]). Let n ≥ 1. If A is n-random relative to B, and B is
n-random, then B is n-random relative to A and A⊕B is n-random.

Theorem 3.9. If G is 2-random, then G is not a.e. dominating.

Proof. Suppose G is a.e. dominating. There is a set S of measure 1 such that for all partial
computable functionals Φ and all X ∈ S, if Φ(X) is total then Φ(X) is dominated by a
function recursive in G. Because the collection of all sets which are 2-random relative to G
has measure 1 (by Theorem 3.2) and because S has measure 1, S must contain some X that
is 2-random relative to G. In particular, X is 2-random, so by Theorem 3.5, there is a set B
such that B <T X and X is c.e. in B. Let Φ be such that Φ(X) is the computation function
for X as a set c.e. in B. As X is in S, G computes a function dominating Φ(X). By Lemma
3.6, G⊕B ≥T X. By Lemma 3.7, G is not weakly 2-X ⊕B-random. However, X ⊕B ≡T X
since B <T X, so G is not weakly 2-X-random and hence G is not 2-X-random.

X is 2-random relative to G and that G is not 2-random relative to X. Suppose for a
contradiction that G is 2-random. By Theorem 3.8, G is 2-random and X is 2-random relative
to G implies that G is 2-random relative to X, giving the desired contradiction.
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Corollary 3.10. Almost every set is not a.e. dominating.

Proof. This corollary follows from Theorems 3.2 and 3.9.

Given Theorem 3.9, we can ask whether a 2-random set can be high. Kautz [8] showed
that 3-random sets cannot be high, in fact R(n) ≡T R⊕ 0(n) holds for each n + 1-random set
R, n ≥ 1. Also, the argument of Theorem 3.9 does not generalize to all 1-random degrees, as
0′ is a 1-random degree which is a.e. dominating. Nevertheless we get a positive answer.

Definition 3.11. A Turing machine U is called prefix-free if for all finite strings σ, U(σ) ↓
implies that U(τ) ↑ for all proper extensions τ of σ. For any universal prefix-free Turing
machine U , the halting probability of U is

ΩU =
∑
U(σ)↓

2−|σ|.

This notion relativizes to any oracle X and the following lemma lists three properties of
ΩX

U which will be useful for us later. The first two properties are due to Chaitin [1] and the
third is due to Kurtz [10]. (For more information about Ω numbers see [1] and [6].) A real R
is called c.e. in A if the set of rational numbers q < R is c.e. in A.

Lemma 3.12. The following properties hold for any universal prefix-free Turing machine U
and any set X.

1. ΩX
U is a c.e. in X real.

2. ΩX
U is 1-random relative to X.

3. ΩX
U ⊕X ≡T X ′.

Theorem 3.13. There is a high 2-random set below 0′′.

Proof. Fix a universal prefix-free Turing machine U . For any set A, let R = ΩA
U . By Lemma

3.12, R is 1-random relative to A and satisfies A′ ≡T R ⊕ A. Now let A = 0′. Then R is
2-random and 0′′ ≡T R⊕ 0′ ≤T R′.

Proof of Theorem 3.3. Let R1 be 4-random. Let R0 be a 2-random set with 0′′ ≤T R′
0 (which

exists by Theorem 3.13) and let R = R0 ⊕R1. We claim that R is the set we are looking for.
Clearly R ≥T R1. As R ≥T R0, R is high. Since R0 ≤T 0′′, R1 is 2-random relative to R0, so
by Theorem 3.8, R is 2-random and hence by Theorem 3.9, R is not a.e. dominating.

4 Generic examples

In this section, we show that every 2-generic degree is not a.e. dominating.
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Definition 4.1. Let V be any universal Turing machine, and let g be a computable function.
The time-bounded Kolmogorov complexity with time bound g is the function Cg

given by
Cg(x) = min{|p| : V (p) = x in g(|x|) steps }.

(If there is no such p, then Cg(x) = ∞.) Z is Kolmogorov random with time bound g
if there is a constant b such that

(∃∞n)[Cg(Z � n) ≥ n− b].

(We count ∞ > n for all n ∈ ω, so the relation Cg(Z � n) ≥ n− b is computable in Z.)

Theorem 4.2 (Nies, Stephan and Terwijn [16]). For each computable function g with
g(n) ≥ n2 + O(1) and each set Z, the following are equivalent.

1. Z is 2-random.

2. Z is Kolmogorov random with time bound g.

Definition 4.3. Let A and B be sets. We say that A is hyperimmune-free relative to
B, denoted by A is HIF(B), if for each function f ≤T A there is a function g ≤T B such that
f is dominated by g.

The next proposition is a variation on Proposition 2.15 in [16].

Proposition 4.4. Let A be a set. If there is a 2-random set Z such that Z is HIF(A), then
there is a nonempty Π0,A

1 class consisting entirely of 2-random sets.

Proof. By Theorem 4.2, Z is Kolmogorov random with some time bound g and constant b.
Let

f(m) = fZ
g,b(m) = µn(∃p0, . . . , pm ≤ n)(∀i ≤ m)[Cg(Z � pi) ≥ pi − b].

Note that f ≤T Z is a total function. Hence there exists h ≤T A such that h dominates f .
In fact, we can assume that h majorizes f . (That is, h(n) ≥ f(n) for all n.) Consider the
A-recursive tree

T = {σ : (∀m)[|σ| ≥ h(m) → (∃p0, . . . , pm ≤ |σ|)(∀i ≤ m)[Cg(σ � pi) ≥ pi − b]]}.

Since h majorizes f , Z is a path on T and so the set of paths of T is nonempty. Moreover, each
path is time-bounded Kolmogorov random and hence 2-random by Theorem 4.2. Therefore,
the set of paths through T is our desired Π0,A

1 class.

Theorem 4.5 (Jockusch and Soare [7], relativized). Let A be any set. Each nonempty
Π0,A

1 class P has a member R whose degree is c.e. in A.

Proof. The Π0,A
1 class P can be represented as the set of infinite paths through an A-

computable tree TP ⊆ 2<ω. Let R be the leftmost infinite path in TP and we show that
the degree of R is c.e. in A. Consider the set N of all finite binary strings which are either on
R or to the left of R in 2<ω. Because R is the leftmost path in TP , N is c.e. in A, and clearly
we have that N ≤T R. To see that R ≤T N , notice that σ ∈ N is an initial segment of R if
and only if it is the rightmost node of length |σ| in N .
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Alternately, we can view the elements of the Π0,A
1 class P as reals, in which case the proof

of Theorem 4.5 says that R is a c.e. in A real contained in P . (The set N represents the
rational numbers q < R.) This perspective will be useful later when we want to view such a
real as ΩA

U for some universal prefix-free Turing machine U .

Proposition 4.6. Let A be a set. If there is a 2-random set Z such that Z is HIF(A), then
there is a 2-random R whose degree is c.e. in A.

Proof. By Proposition 4.4, there is a nonempty Π0,A
1 class P consisting of 2-random sets. By

Theorem 4.5, there is a path R in P whose degree is c.e. in A.

As above, if we view the elements of P as reals, then Proposition 4.6 says that R is a
c.e. in A real which is 2-random.

Theorem 4.7. If A is a.e. dominating then there is a 2-random R whose degree is c.e. in A.

Proof. Suppose A is a.e. dominating. Let C denote the class of all sets Z such that every
f ≤T Z is dominated by some g ≤T A and let D denote the class of all 2-random sets. By
definition, every Z ∈ C is HIF(A) and because A is a.e. dominating, the measure of C is 1.
Furthermore, since D has measure 1 (by Theorem 3.2), the intersection C ∩D is nonempty.
Therefore, there is a 2-random Z which is HIF(A) and we can apply Proposition 4.6.

In fact, Theorem 4.7 also follows from Theorem 5.5 below by considering ΩA. Such a proof
avoids the notion of time bounded Kolmogorov complexity. However, this approach does not
give the stronger result of Proposition 4.6.

Definition 4.8. Let A and B be sets. We say that A is diagonally nonrecursive in B,
denoted by DNR(B), if there is a function f ≤T A such that for all e, f(e) 6= Φe(B; e).

Notice that no set A can compute a function which is DNR(A) and that under this
definition the DNR(A) degrees are closed upwards trivially. (This definition is not the only
way to relativize the property of diagonally nonrecursiveness.) The following lemma is a
relativized version of the result of Kučera [9] that every 1-random R is DNR(∅).

Lemma 4.9. For any A and any 1-A-random R, R is DNR(A).

Proof. Define a partition of ω by I0 = {0}, I1 = {1, 2}, I3 = {3, 4, 5}, . . ., so that |In| = n+1.
Let f ≤T R be defined by f(n) = R � In. (That is, f(n) is the canonical index for the finite
set R � In.) Let Uk = {X | ∃s∃e ≥ k (X � Ie = Φe,s(A; e))}. Because |Ie| = e + 1, the measure
of all sets X for which X � Ie = Φe(A; e) is 2−(e+1). Therefore, µ(Uk) ≤

∑
e≥k 2−(e+1) = 2−k.

So the Uk classes form a Martin-Löf test relative to A. Since R is 1-A-random, there is a k
such that R 6∈ Uk. Hence there are only finitely many e for which f(e) = Φe(A; e), and so R
computes a DNR(A) function.

Corollary 4.10. Every 2-random R is DNR(0′).

Proof. If R is 2-random, then R is 1-0′-random. By Lemma 4.9, R is DNR(0′).
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We will apply these results to Cohen generic sets. The forcing partial order for Cohen
generics is 2<ω ordered by τ ≤ σ (or τ is an extension of σ) if σ v τ .

Definition 4.11. A set G is called n-A-generic for forcing with a partial order P if for each
Σ0,A

n set D ⊆ P , A either meets D or A meets the set of conditions in P having no extension
in D. A subset D ⊂ P is called dense if every p ∈ P is extended by some d ∈ D. G is
weakly n-A-generic if for each Σ0,A

n dense set D ⊆ P , G meets D.

Lemma 4.12. If G is 2-generic, then G′ is not DNR(0′).

Proof. For a contradiction, assume that G′ is DNR(0′). Each 2-generic is 1-generic and hence
G′ ≡T G⊕ 0′ (see for example [12]). So we can fix an index i such that Φi(G⊕ 0′) is total and
for all e, Φi(G⊕0′; e) 6= Φe(0

′; e). Consider the Σ0
2 set S = {σ ∈ 2<ω | ∃e, τ, s (σ v τ ∧Φi,s(τ ⊕

0′; e) ↓= Φe,s(0
′; e) ↓)}. (Whenever we deal with computations such as Φi,s(τ ⊕ 0′; e) ↓ in

which the oracle has a finite component, we assume that the computation does not query any
number in a finite component of the oracle which is larger than the length of that component.)
Because G is 2-generic and by choice of i, there must be an initial segment ρ of G such that
no extension of ρ is an element of S. However, since Φi(G ⊕ 0′) is total, we know that for
every e, there is some σ w ρ such that Φi(σ ⊕ 0′; e) converges. Notice that 0′ can find such a
σ by searching. Furthermore, since any such σ is not in S, we know that Φi(σ ⊕ 0′; e) is not
equal to Φe(0

′; e). Therefore, 0′ can compute a function that is DNR(0′) giving the desired
contradiction.

Theorem 4.13. If G is 2-generic then G is not a.e. dominating.

Proof. Suppose that G is 2-generic and a.e. dominating. Because G is a.e. dominating, The-
orem 4.7 implies that there is a 2-random R whose degree is c.e. in G. Therefore, R ≤T G′.
On the other hand, by Corollary 4.10, R is DNR(0′). Because the DNR(0′) degrees are closed
upwards, G′ is DNR(0′) which contradicts Lemma 4.12.

5 Degrees below 0′

In this section, we give two proofs that that every a.e. dominating set below 0′ is high. The
first proof builds on Theorem 4.7 while the second proof uses the notion of being “low for
random” to establish the stronger result that every a.e. dominating set is super-high. We begin
with the following lemma which states that any real which satisfies the first two properties of
ΩX

U in Lemma 3.12 is actually an Ω number for some prefix-free universal machine relative to
X.

Lemma 5.1 (Downey, Hirschfeldt, Miller and Nies [6]). For any set A and real R, the
following are equivalent:

1. R is a c.e. real relative to A and 1-random relative to A;

2. R = ΩA
U for some universal prefix-free Turing machine U .
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Lemma 5.2. If A is a.e. dominating and A ≤T 0′ then there exist universal prefix-free
machines U , V with ΩA

U = Ω0′
V .

Proof. By Theorem 4.7 there exists a real R that is 2-random (that is, 1-random in 0′) and is
c.e. in A. Since A ≤T 0′, R is also 1-random in A and c.e. in 0′. Hence by Lemma 5.1, there
exist U , V such that R = ΩA

U = Ω0′
V .

Theorem 5.3. If A is a.e. dominating and A ≤ 0′, then A′ ≡T 0′′.

Proof. By Lemma 5.2 and Property 3 of Lemma 3.12, A′ ≥T ΩA
U ⊕ 0′ = Ω0′

V ⊕ 0′ ≡T 0′′.

This implication can be strengthened using the following theorem from Kautz [8]. (This
theorem is a relativized form of a result first proved by Kučera [9].) For any string σ and
set A, let σ ∗ A denote the set whose characteristic function is χ(n) = σ(n) for n < |σ| and
χ(n) = A(n− |σ|) if n ≥ |σ|.

Theorem 5.4 (Kautz [8]). Let Z be a set and let C be a Π0,Z
1 class of positive measure.

For every 1-Z-random R, there is a string σ and a set A ∈ C such that R = σ ∗ A.

Theorem 5.5. If Z is a.e. dominating then each 1-Z-random is 2-random.

Proof. Let P = U0′
1 = 2ω −U0′

1 where U0′
n , n ∈ ω, is a universal Martin-Löf test relative to 0′.

Note that P is a Π0
2 class of positive measure consisting entirely of 2-random reals. Suppose

Z is a.e. dominating. By Theorem 1.2, P has a Π0,Z
1 subclass C of positive measure.

Let R be 1-Z-random. By Theorem 5.4, there is a string σ and an A ∈ C such that
R = σ ∗ A. A is 2-random because it is in C and we claim that R is 2-random. For a
contradiction, suppose that R is not 2-random. Fix a 0′ Martin-Löf test Vn, n ∈ ω, such
that R ∈

⋂
n Vn. Let V̂n = {τ |σ ∗ τ ∈ Vn+|σ|}. Because 2−|σ|µ(V̂n) ≤ µ(Vn+|σ|), we have

µ(V̂n) ≤ 2|σ|2−(n+|σ|) and hence µ(V̂n) ≤ 2−n. Therefore, V̂n is also a 0′ Martin-Löf test and
A ∈

⋂
n V̂n contradicting the fact that A is 2-random.

Because 2-random is the same as 1-0′-random, we can restate Theorem 5.5 by saying that
if Z is a.e. dominating, then every 1-Z-random set is 1-0′-random. This characterization fits
the following definition from Nies [15].

Definition 5.6. Low-for-random reducibility ≤LR is defined by A ≤LR B iff every 1-B-
random set is 1-A-random.

We can now restate Theorem 5.5 as 0′ ≤LR Z for every a.e. dominating Z. Notice that if
A ≤T B, then A ≤LR B because every Martin-Löf test relative to A is also a Martin-Löf test
relative to B. Nies [15] also proved the following property of LR reducibility. (See Theorem
8.1 and the remarks before Proposition 8.3 in Nies [15].) In this statement, ≤tt denotes truth
table reducibility.

Theorem 5.7 (Nies [15]). A⊕B ≤LR B ⇒ A′ ≤tt B′.

Definition 5.8. If A′ ≥tt 0′′ then we say that A is super-high.
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Corollary 5.9. If Z ≤T 0′ is a.e. dominating then Z ′ ≡tt 0′′ and hence Z is super-high.

Proof. Let Z ≤T 0′ be a.e. dominating. Since Z ≤T 0′, we have Z ′ ≤tt 0′′ (in fact even
Z ′ ≤1 0′′, see for example [19]). On the other hand, since Z is a.e. dominating, 0′ ≤LR Z by
Theorem 5.5. Combining this reduction with 0′ ⊕ Z ≤T 0′ gives 0′ ⊕ Z ≤LR Z. By Theorem
5.7, 0′′ ≤tt Z ′, so we conclude 0′′ ≡tt Z ′.

Using Corollary 5.9, we can give an alternate proof for Theorem 2.1 using index sets. Let
HT = {x | 0′′ ≤T W ′

x} be the index set for high c.e. sets and Htt = {x | 0′′ ≤tt W ′
x} be the

index set for super-high c.e. sets. A proof of the following theorem can be found in Soare [19].

Theorem 5.10 (Schwarz [17]). HT is Σ0
5 complete.

Lemma 5.11. Htt is a Σ0
4 set.

Proof. Let σn, n ∈ ω be a list of the well-formed formulas of sentential logic with sentential
letters An, n ≥ 1. Let B be a set and let v be a truth assignment such that v(An) = T (true)
iff n ∈ B. Let v be the extension of v to all well-formed formulas. Write B |= σn if v(σn) = T .
Then A ≤tt B iff there is a computable function f such that for all x, x ∈ A iff B |= σf(x).
Hence 0′′ ≤tt W ′

x ⇔ (∃e)(∀x)R(e, x) where

R(e, x) ⇔ Φe(x) ↓ & [x ∈ 0′′ ⇐⇒ W ′
x |= σΦe(x)].

So Htt is Σ0
2 in 0′′, or in other words it is Σ0

4.

Corollary 5.12. There exists a high, not super-high c.e. set.

Proof. By Theorem 5.10, HT is not a Σ0
4 set, so Htt 6= HT . As clearly Htt ⊆ HT , we conclude

that Htt ( HT . Let x ∈ HT −Htt; then Wx is high but not super-high.

Corollary 5.13. There is a high c.e. set which is not a.e. dominating.

Proof. Immediate from Corollaries 5.9 and 5.12.

6 High-above ideals

Definition 6.1. An ideal is a set I ⊆ 2ω such that if X ∈ I and Y ≤T X, then Y ∈ I and
if X, Y ∈ I, then X ⊕ Y ∈ I. An ideal I is called a high-above ideal if

(∀A ∈ I)(∃B ∈ I)(A <T B and A′′ ≤T B′).

A trivial example of a high-above ideal is {A | (∃n)(A ≤T 0(n))}. In this section, we
construct two more examples of high-above ideals. In Proposition 6.8, we use Mathias forcing
to show that for any infinite computable tree T ⊆ 2<ω with no computable path, there is a
high-above ideal which does not contain a path through T . Such an ideal is not the second
order part of an ω-model of WKL0. (To see a very different application of Mathias forcing in
recursion theory, the reader is referred to Cholak, Jockusch and Slaman [3].) In Proposition
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6.9, we use the fact that 2-random sets are not a.e. dominating to construct a high-above
ideal which does not contain an a.e. dominating set.

We begin with a relativized version of Martin’s characterization of high degrees in terms of
dominating functions. The proof in Chapter XI of Soare [19] relativizes to give the following
theorem.

Theorem 6.2 (Martin [13], relativized). For any sets A, B, we have (A⊕B)′ ≥T B′′ iff
there is a single function computable in A ⊕ B which dominates all functions computable in
B.

Definition 6.3. Let H be any set. An H-computable Mathias condition is a pair P =
(F, C) where F is a finite subset of ω and C is an infinite H-computable set with max(F ) <
min(C). We say that P1 extends P2 if F2 v F1 ⊆ F2 ∪ C2 and C1 ⊆ C2. We say that a set
G extends a condition P if F v G and G ⊆ F ∪ C.

We view H-computable Mathias conditions as pairs (e, i) where e is a canonical index for
the finite set F and i is an index such that C = WH

i . Using this notation, the set of H-
computable Mathias conditions is ΣH

3 . Furthermore, if (F1, C1) and (F2, C2) are conditions,
then the statement that (F1, C1) extends (F2, C2) is ΠH

2 . Therefore, when discussing H-
computable Mathias forcing, we will not discuss objects which are less that 3-generic, since
merely describing the forcing conditions and their relationships requires statements which are
ΣH

3 .

Lemma 6.4. Let T be an infinite computable subtree of 2<ω and let A be a set such that A
does not compute any path through T . If G is 3-A-generic for A-computable Mathias forcing,
then G⊕ A does not compute a path through T .

Proof. We begin by defining what it means for a Mathias condition (F, C) to force various
statements. We say (F, C)  Φe(G⊕ A; n) ↓ if ∃s(Φe,s(F ⊕ A; n) ↓) and

(F, C)  Φe(G⊕ A; n) ↑⇔ ∀ finite F̂ ∀s (F v F̂ ⊆ F ∪ C → Φe,s(F̂ ⊕ A; n) ↑).

The offset statement is equivalent to saying that no extension of (F, C) forces Φe(G⊕A; n) ↓.
Given a condition (F, C), this statement is ΠA

1 and the statement that says (F, C) forces
Φe(G ⊕ A; n) ↑ for some n is ΣA

2 . Therefore, the set Se of all conditions (F, C) for which
∃n[(F, C)  Φe(G⊕ A; n) ↑] is ΣA

3 .
Assume that G is 3-A-generic for A-computable Mathias forcing and that Φe(G ⊕ A) is

total. Because the set Se of conditions defined above is ΣA
3 , there must be a condition (F, C)

such that G extends (F, C) and (F, C) has no extension in Se. We say that such a condition
forces Φe(G⊕ A) to be total.

There are two important features of conditions (F, C) which force Φe(G⊕A) to be total.
First, for every n and every (F ′, C ′) extending (F, C), there is a condition (F ′′, C ′′) extending
(F ′, C ′) which forces Φe(G ⊕ A; n) to converge. Second, we can take the condition (F ′′, C ′′)
to be a finite modification of (F ′, C ′). That is, we can add a finite number of elements of C ′

to F ′ to get F ′′ and subtract a finite number of elements from C ′ to get C ′′. In particular, if
(F, C) forces Φe(G⊕A) to be total, then there is a set Ĝ ≤T A for which Φe(Ĝ⊕A) is total.
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We construct Ĝ by starting with (F0, C0) = (F, C) and choosing conditions (Fn, Cn) such
that (Fn+1, Cn+1) is a finite modification of (Fn, Cn) which extends (Fn, Cn) and which forces
Φe(G ⊕ A; n) to converge. These choices can be made using only the oracle A since A can
compute C and A allows us to search for convergent computations of the form Φe(F̂ ⊕ A; n)
for finite extensions F̂ of Fn. The set Ĝ = ∪nFn clearly satisfies Φe(Ĝ⊕ A) is total.

Next, we consider conditions which force Φe(G⊕A) to not compute a path in T . Let [T ]
denote the set of paths in T . We say (F, C)  Φe(G⊕ A) 6∈ [T ] ⇔

∃n ((F, C)  Φe(G⊕ A; n) ↑) ∨ ∃n (Φe(F ⊕ A) � n ↓ ∧Φe(F ⊕ A) � n 6∈ T )).

That is, (F, C) forces Φe(G ⊕ A) 6∈ [T ] if (F, C) either forces that Φe(G ⊕ A) is not total or
it forces that some initial segment of Φe(G ⊕ A) converges to a string not in T . As above,
we want to say that (F, C)  Φe(G⊕ A) ∈ [T ] if there is no extension of (F, C) which forces
Φe(G ⊕ A) 6∈ [T ]. If (F, C) already forces Φe(G ⊕ A) to be total, then we can write this
condition as (F, C)  Φe(G⊕ A) ∈ [T ] ⇔

∀ finite F̂ ∀n (F v F̂ ⊆ F ∪ C → (Φe,s(F̂ ⊕ A) � n ↓→ Φe(F̂ ⊕ A) � n ∈ T )).

Because the set of conditions (F, C) which force Φe(G⊕A) 6∈ [T ] is a ΣA
3 set, we know that for

any 3-A-generic G, there is a condition (F, C) such that G extends (F, C) and either (F, C)
forces Φe(G ⊕ A) 6∈ [T ] or (F, C) has no extension that forces Φe(G ⊕ A) 6∈ [T ]. In other
words, Φe(G⊕ A) is either forced into or out of [T ].

For a contradiction, suppose that Φe(G⊕A) is a path in [T ]. There is a condition (F, C)
which is extended by G and which forces Φe(G⊕A) to be total and Φe(G⊕A) ∈ [T ]. Because
(F, C) forces Φe(G ⊕ A) is total, there is a set Ĝ ≤T A such that Ĝ extends (F, C) and
Φe(Ĝ⊕A) is total. Furthermore, because (F, C) forces Φe(G⊕A) ∈ [T ], each initial segment
Φe(Ĝ⊕A) � n must be an element of T . Therefore, Φe(Ĝ⊕A) ∈ [T ]. However, Ĝ⊕A ≤T A,
so we have a contradiction to the fact that A does not compute a path in T .

Definition 6.5. For any set X, the principal function pX is defined by pX(n) = the (n+1)st

element of X.

Lemma 6.6. Let G be weakly 3-A-generic for forcing with A-computable Mathias conditions.
The principal function pG of G dominates all functions recursive in A.

Proof. Let e be any index for which Φe(A) is total. For any condition (F, C), we can A
computably thin out C to C ′ ⊆ C such that pF∪C′ dominates Φe(A). Furthermore, (F, C ′) will
be an extension of (F, C). Therefore, the set of conditions (F̂ , Ĉ) for which pF̂∪Ĉ dominates
Φe(A) is dense and is also a ΣA

3 set. Therefore, G must meet each such set of conditions.

Corollary 6.7. If G is weakly 3-A-generic for forcing with A-computable Mathias conditions,
then A′′ ≤T (G⊕ A)′.

Proof. This corollary follows immediately from Lemmas 6.2 and 6.6.

Proposition 6.8. For any infinite computable tree T ⊆ 2<ω with no computable paths, there
is a high-above ideal I such that no element of I can compute a path through T .
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Proof. We define a sequence of sets I0 <T I1 <T · · · such that In does not compute a path
through T and I ′′n ≤T I ′n+1. I = {X | ∃n(X ≤T In)} has the required properties.

Let I0 = ∅ and notice that I0 does not compute a path through T . Assume that In has
been defined and does not compute a path through T . Let În be a 3-In-generic with respect to
computable In Mathias forcing and let In+1 = In⊕ În. By Lemma 6.4, In+1 does not compute
a path through T and by Corollary 6.7, I ′′n ≤T I ′n+1.

Proposition 6.9. There is a high-above ideal that includes no a.e. dominating set.

Proof. We define a chain Q0 ≤T Q1 ≤T · · · and let I = {X | (∃n)(A ≤T Qn)}. To ensure
Qn ≤T Qn+1 we define first a sequence R0, R1, . . . and let Q0 = R0, Qn+1 = Rn+1 ⊕Qn.

Let R0 = Ω0′
, with respect to an arbitrary universal prefix-free machine. Let Rn+1 =

ΩQ′
n . Note that R0 is 2-random and each Rn+1 is 2-random relative to Qn. Hence by van

Lambalgen’s Theorem, each Rn and Qn is 2-random. Furthermore, Kautz [8] proved that
2-randoms are GL1, so we have that Q′

n ≡T Qn ⊕ 0′ for all n. Using this fact and Property 3
of Lemma 3.12, it follows that

Q′
n+1 ≡T Qn+1 ⊕ 0′ = Rn+1 ⊕Qn ⊕ 0′ ≡T Rn+1 ⊕Q′

n ≡T Q′′
n.

Since each Qn is 2-random (and hence not a.e. dominating by Theorem 3.9), the ideal
generated by the Qn’s contains no a.e. dominating set.
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