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Abstract

Let Pw and PM be the lattices of Π0
1 subsets of 2ω under Muchnik

and Medvedev reducibility respectively. We show that any countable
distributive lattice can be lattice-embedded into Pw below any non-
zero element. We also show that other natural examples of countable
lattices can be similarly embedded into PM .

1 Introduction

The concepts of Medvedev- and Muchnik- reducibility have been de-
fined and investigated in [?], [?], [?] and [?]. A set, A ⊆ ωω, is
Medvedev reducible to B ⊆ ωω, (written A 6M B) if there exists
some recursive fuctional, Φ : B → A. That is, if there exists a re-
cursive function, {e}, such that {e}f ∈ A for all f ∈ B. Muchnik
reducibility is a non-uniform version of Medvedev reducibility - A is
said to be Muchnik reducible to B (A 6w B) if for each f ∈ B, there
is a recursive functional, Φ, such that Φ(f) ∈ A. In this paper we will
restrict these reducibilities to the class of non-empty Π0

1 subsets of 2ω.
P ⊆ 2ω is a Π0

1 class if there is some recursive relation, R ⊆ ω × 2ω

such that
f ∈ P ↔ ∀n R(n, f).
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Π0
1 classes have an alternative characterisation which is both instruc-

tive and useful: P is a Π0
1 class if and only if P is the set of (infinite)

paths through some recursive binary tree.
Two Π0

1 classes, P and Q are Medvedev (Muchnik) equivalent,
A ≡M B (A ≡w B) if A 6M B and B 6M A (A 6w B and B 6w A)
and the set of equivalence classes (Medvedev (Muchnik) degrees) with
the induced partial order forms a distributuve lattice with a top and
bottom element, (see [?]). These lattices will be denoted PM and Pw

respectively. The top element is the Medvedev (Muchnik) degree of
the set of completions of Peano Arithmetic, and the bottom element is
the Medvedev (Muchnik) degree of any Π0

1 set containing a recursive
element.

Introductions to, and some basic results about PM and Pw can be
found in [?], [?], [?], [?], [?] and [?].

In this paper we prove the existence of certain sublattices of these
lattices. Our results are, in essence as follows:

1. The free countable distributive lattice, FD(ω), can be embed-
ded into PM .

2. The free countable Boolean Algebra, FB(ω), can be embedded
into Pw.

3. The lattice of finite (co-finite) subsets of ω can be embedded
into PM .

Here, and in the rest of the paper, an “embedding” is a lattice
embedding. Result 1 implies (but is not equivalent to the fact) that
every finite lattice can be embedded into PM , as every such lattice
can be embedded into FD(ω). Result 2 is as general as possible, as
every countable distributive lattice is embeddable into FB(ω).

Result 3 is not implied by result 1 as neither of these lattices are
embeddable into FD(ω). We will reference these lattice-thoretical
results in the relevant sections.

In simple extentions, all of our results are relativised in the sense
that the embeddings can be made below any non-minimum degree.

The paper is in four sections. Section 2 consists of two priority
arguments. These construct Π0

1 sets that have certain useful inde-
pendence properties. Both build on the constructions in [?], and use
a Sacks preservation argument (see [?], Chapter VII.3). The second
argument is only sketched. If, at first, the reader wishes only to skim
this section and accept Theorems 2.1 and 2.7, he or she should still
find Sections 3 and 4 completely accessible.
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Notation and Preliminaries

We will first establish some standard notation. σ, τ, ρ and λ will be
used to represent binary strings and the length of σ will be written
|σ|. {e}σ

s will denote the longest binary string, τ , such that |τ | 6 s
and {e}σ

s (n) ↓= τ(n) for all n < |τ |. The empty string is denoted by 〈〉
and {e}σ is short for {e}σ

|σ|. The restriction of σ to {0, 1, 2, . . . , n− 1}
is denoted σ

∣∣
n
.

A binary tree is a subset of 2<ω that is closed under taking initial
segments. If T is a binary tree, then [T ] ⊆ 2ω represents the set of
infinite paths through T . If P is a Π0

1 class then Ext(P ) ⊆ 2<ω - the
extendable nodes of P - is the set of strings, {σ : ∃f ∈ P σ ⊂ f}.

The following notation is introduced specifically for our purposes.
Let S be the class of finite sequences of finite strings. The uppercase
Greek letters, Σ, Γ and Λ will be used to represent elements of S. For
ease of notation, a sequence of strings will sometimes be indentified
with its range, so that σ ∈ Σ means σ ∈ rng(Σ); Σ ⊆ Γ means Σ is
a subsequence of Γ and σ ∈ Σ r Γ that σ ∈ rng(Σ) r rng(Γ). We will
reserve the symbol Σm to mean the sequence of all binary strings of
length m in lexicographical order.

If Σ = 〈σi〉ni=1 and Γ = 〈γi〉mi=1, we will say Σ extends Γ if m = n
and σi ⊇ γi for all i 6 n. Σ properly extends Γ if, in addition, σk )
γk for at least one k 6 n. If f1, f2, . . . fn are elements of 2ω, then
〈f1, f2, . . . fn〉 extends Σ is defined similarly.

If Σ = 〈σi〉ni=1 ⊆ Σm and σ ∈ 2<ω, we will make the following
definitions:

• σ− ∈ 2<ω such that, for all n < |σ| − 1, σ−(n) = σ(n + 1). For
f ∈ 2ω, f− is defined similarly.

•
⊕

Σ ∈ 2<ω such that, [⊕
Σ

]
(i) = σk(q),

where i = nq+ k− 1, for some (necesarily unique) k 6 n and q. That
is,

⊕
Σ = 〈σ1(0), σ2(0) . . . σn(0), σ1(1), σ2(1) . . . σn(1) . . . . . . σn(m− 1)〉.

• If 〈fi〉ni=1 is a sequence of elements of 2ω. Then
⊕n

i=1 fi ∈ 2ω is
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defined to be such that, for all i,

[ n⊕
i=1

fi

]
(i) = fk(q),

where, as before, i = nq + k − 1.

• For an arbitrary Γ = 〈γi〉ni=1 ∈ S (with the γi of possibly different
lengths), we define, ⊕

Γ =
n⊕

i=1

γi

∣∣
l
,

where l = min{|γi| : 1 6 i 6 n}.⊕
is not associative but it does have the useful property that if

〈f1, f2, . . . fn〉 extends Σ ⊆ Σm, then
⊕n

i=1 fi ⊃
⊕

Σ. If no confusion
can result, we will write

⊕
fi for

⊕n
i=1 fi.

2 Two Constructions

Theorem 2.1. For any special Π0
1 set, P , there is a Π0

1 set, Q, with
the properties, for all sequences, 〈fi〉ni=1 ⊂ Q,

I. ∀f ∈ Qr 〈fi〉ni=1, f 66T
⊕
fi,

II. ∀f ∈ P, f 66T
⊕
fi

Proof. The proof will closely follow the proof of Theorem 4.7 in [?].
A recursive sequence, 〈ψs〉s∈ω, of recursive functions from 2<ω to 2<ω

will be constructed with the properties that, for all σ ∈ 2<ω and s ∈ ω,

1. ψs(σ
a〈0〉) and ψs(σ

a〈1〉) are incompatible extensions of ψs(σ),
2. range(ψs+1) ⊆ range(ψs),
3. ψ(σ) = limt ψt(σ) exists.

Each ψs determines a recursive tree, namely,

Ts = {τ : for some σ, ψs(σ) ⊇ τ}.

The requiredQ will then be
⋂

s∈ω[Ts]. Q will be non-empty as 〈[Ts]〉s∈ω

is a nested sequence of closed subsets of 2ω. It will be a Π0
1 set because,

f ∈ Q ≡ ∀sf ∈ [Ts] ≡ ∀s∀n∃σ[|σ| 6 n ∧ ψs(σ) ⊂ f ],

and ∃σ[|σ| 6 n ∧ ψs(σ) ⊂ f ] is a recursive predicate.
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Each ψs will induce a mapping, Ψs : S → S, defined by

Ψs(Γ) = 〈ψs(γi)〉ni=1,

where Γ = 〈γi〉ni=1. When it is proved that ψ(σ) exists for all σ, it will
be clear that Ψ(Σ) = lims Ψs(Σ) exists for all Σ ∈ S.

We will define 〈ψs〉s∈ω so that, for every m ∈ ω, Γ ⊆ Σm and
e 6 m, Q satisfies the requirements:

Pm
Γ,e ≡ for all 〈fi〉ni=1 extending Ψ(Γ), {e}

L
fi 6∈ P,

Rm
Γ,e ≡ for all 〈fi〉ni=1 extending Ψ(Γ), and for all σ ∈ Σm r Γ,

{e}
L

fi 6⊃ ψ(σ).

The P requirements guarantees thatQ has property II. of the theorem,
and the R requirements guarantee property I. The set of requirements
can be ordered lexicographically, first on m, then on e and finally with
the conventions that, for all m, and Γ,Γ′ ∈ Σm,

i. Pm
Γ,e precededs Rm

Γ′,e and,

ii. Pm
Γ,e precedes Pm

Γ′,e and Rm
Γ,e precedes Rm

Γ′,e whenever Γ precedes
Γ′ in the lexicographical ordering on Σm.

Priority is given to the requirements in reverse lexicographical order
so that reqirement S0 has higher priority than requirement S1 is it
precedes it in the ordering. Pm

Γ,e is said to be satisfied at stage s if,

{e}
L

Ψs(Γ) 6∈ TP ,

and Rm
Γ,e is satisfied at stage s if, for all σ ∈ Σm r Γ,

{e}
L

Ψs(Γ) 6⊇ ψs(σ).

We now define ψs as follows:

Stage s = 0: ψ0(σ) = σ for all σ ∈ 2ω.

Stage s+1:

We say Pm
Γ,e requires attention at stage s+ 1 if Pm

Γ,e is not satisfied
at stage s + 1 and there is a Λ = 〈λi〉ni=1 properly extending Γ such
that max{|λj | : λj ∈ Λ} 6 s+ 1 and,

i. {e}
L

Ψs(Λ) ∈ TP ,
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ii. {e}
L

Ψs(Λ) ) {e}
L

Ψs(Γ).

We say Rm
Γ,e requires attention at stage s+1 if Rm

Γ,e is not satisfied
at stage s+ 1 and there is a Λ = 〈λi〉ni=1, properly extending Γ, such
that max{|λj | : λj ∈ Λ} 6 s+ 1 and,

{e}
L

Ψs(Λ) ⊇ ψs(σ
a〈x〉), for some x ∈ {0, 1} and σ ∈ Σm r Γ.

If Pm
Γ,e has priority greater than the priority of P s

Σs,s and is the highest
priority requirement requiring attention at stage s + 1, let Λ witness
this fact and define,

ψs+1(ν) =

{
ψs(λ

a
i ν

′) if ν = γa
i ν

′ for some γi ∈ Γ
ψs(ν) if ν 6⊇ γi for any γi ∈ Γ.

If RX
m,e has priority greater than the priority of P s

Σs,s and is the highest
priority requirement requiring attention at stage s+ 1, let Λ, σ and x
witness this and define,

ψs+1(ν) =


ψs(λ

a
i ν

′) if ν = γa
i ν

′ for some γi ∈ Γ,
ψs(σa〈1− x〉aν ′) if ν = σaν ′,

ψs(ν) if ν 6⊇ τ for any τ ∈ Γ ∪ {σ} .

If no requirement of priority greater than the priority of P s
Σs,s requires

attention at stage s+ 1, then let ψs+1 = ψs.

The following lemmas establish the theorem.

Lemma 2.2. For any requirement, S, there is a stage, s0, such that
S does not require attention at any stage t > s0.

Proof. Assume not and let S be the highest priority requirement re-
quiring attention infinitely often. If S = Pm

Γ,e, then let t be a stage
such that Pm

Γ,e has priority greater than P t
Σt,t and such that all higher

priority requirements are satisfied for all stages > t. Let s1, s2, s3, . . .
be an infinite increasing sequence of stages greater than t at which S
requires attention. At each of these stages S will be the highest prior-
ity requirement requiring attention and so s1, s2, s3, . . . will generate
a recursive sequence,

{e}
L

Ψs1 (Γ) ( {e}
L

Ψs2 (Γ) ( {e}
L

Ψs3 (Γ) . . . ,
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of elements of TP . But then
⋃

i{e}
L

Ψsi (Γ) is a recursive path through
TP , contradicting the original assumption that P is special.

Next suppose S = Rm
Γ,e. If t is such that the priority of Rm

Γ,e is
greater than P t

Σt,t, all higher priority requirements are permanently
satisfied at stage t, and S requires attention at stage t, then S will
be satisfied at stage t + 1. Suppose, at some stage u > t, a lower
priority requirement, T , requires attention. If T = Pm′

Λ,e′ or T = Rm′
Λ,e′

with m′ > m, and any Λ and e′, then Ψu+1(Γ) = Ψu(Γ) and S will
remain satisfied at stage u + 1. If T = Rm

Λ,e′ or T = Pm
Λ,e′ , then

Ψu+1(Γ) ⊇ Ψu(Γ) and so S will remain satisfied at stage u + 1. We
then argue by induction that S will remain satisfied, and hence not
require attention, at all stages u > t, contradicting the assumption.

Lemma 2.3. ψ(σ) = lims ψs(σ) exists for all σ.

Proof. Let σ ∈ 2<ω be arbitrary. By Lemma 2.2, there exists a stage,
t, such that for all m 6 |σ|, and all Γ ⊆ Σm, the requirements Rm

Γ,e

and Pm
Γ,e do not require attention after stage t. Then ψt1(σ) = ψt2(σ)

for all t1, t2 > t.

Lemma 2.4. If m ∈ ω, e 6 m and Γ ⊆ Σm are such that {e}
L

Ψ(Γ) ∈
TP , then there does not exist a Λ properly extending Γ such that
{e}

L
Ψ(Λ) ∈ TP and {e}

L
Ψ(Λ) ) {e}

L
Ψ(Γ).

Proof. Suppose such a Λ existed for m, e and Γ. Take t so large that
Ψt(Γ) = Ψ(Γ) and Ψt(Λ) = Ψ(Λ). Then,

{e}
L

Ψt(Λ) = {e}
L

Ψ(Λ) ) {e}
L

Ψ(Γ) = {e}
L

Ψt(Γ),

and so, at some stage u > t, Pm
Γ,e would be the highest priority re-

quirement requiring attention, implying,

{e}
L

Ψu+1(Γ) ) {e}
L

Ψu(Γ) = {e}
L

Ψt(Γ) = {e}
L

Ψ(Γ),

contradicting the fact that Ψu+1(Γ) = Ψ(Γ).

Lemma 2.5. If 〈fi〉ni=1 ⊆ Q then, for all f ∈ P , f 66T
⊕
fi.

Proof. We can assume without losing generality that 〈fi〉ni=1 is in lex-
icographic order. Suppose the lemma is false and let {e}

L
fi ∈ P . Let

m ∈ ω and Γ ⊆ Σm be such that,
i. e 6 m,
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ii. 〈fi〉ni=1 extends Ψ(Γ)

Such a Γ can be found because 〈fi〉ni=1 is in lexicographic order. But
{e}Ψ(Γ) ∈ TP , so there must be a Λ ) Γ such that {e}

L
Ψ(Λ) )

{e}
L

Ψ(Γ), contradicting Lemma 2.4.

Lemma 2.6. For all 〈fi〉ni=1 ⊆ Q and all f ∈ Qr 〈fi〉ni=1,

f 66T

⊕
fi

Proof. Suppose not and let {e}
L

fi = f ∈ Q. Let m ∈ ω, Γ ⊆ Σm

and σ ∈ Σm r Γ be such that,
i. e 6 m,
ii. 〈fi〉ni=1 extends Ψ(Γ),
iii. f ⊃ ψ(σ),

(again we are assuming 〈fi〉ni=1 is in lexicographic order). Let t be
such that Ψu(Γ) = Ψ(Γ) and ψu(σa〈x〉) = ψ(σa〈x〉) for all u > t and
x ∈ {0, 1}. By the supposition, there must be a stage, s > t and a Λ
extending Γ such that

{e}Ψs(Λ) ⊇ ψs(σa〈x〉) for some x ∈ {0, 1}.

So there will be a stage, v > s, at which Rm
Γ,e requires attention and

is, in fact, the highest priority requirement requiring attention. But
then,

Ψv+1(Γ) 6= Ψv(Γ) = Ψ(Γ),

contradicting the fact that v > u.

Theorem 2.1 Lemmas 2.5 and 2.6 prove that Q has properties I.
and II. as required.

Theorem 2.7. Given any special Π0
1 set, P , there is an infinite re-

cursive sequence of Π0
1 sets, 〈Qi : i ∈ ω〉, with the properties, for all

i, j ∈ ω such that i 6= j,

I. ∀f ∈ Qi ∀g ∈ Qj f 66T g,
II. ∀f ∈ Qi ∀g ∈ P g 66T f.
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Proof. (sketch)
A recursive sequence of recursive functions, ψi : 2<ω → 2<ω, is

constructed, the range of each function is the tree Ti and then Qi will
be [Ti]. Each ψi is constructed as the limit of a recursive sequence of
recursive functions, 〈ψi

s〉s and will be defined so that, for every m ∈ ω,
ψi satisfies the requirements:

for all e 6 m; j 6 m; σ ∈ Σm and for all f extending ψi(σ),

Pm ≡ {e}f 6∈ P,

Rm ≡ j 6= i⇒ {e}f 6⊇ ψj(σ).

These requirements are then further specified by indexing them
according to i, j, σ and e (bounded as above), and an exhaustive pri-
ority ordering is given to them. The same method as in Theorem 2
is then used to ensure all are satisfied. If at any stage of construc-
tion an Rm requirement is the highest priority requirement requiring
attention then the requirement is satisfied (permanently) at the next
stage.

If at some stage of construction a Pm requirement will be the
highest priority requirement requiring attention and then the function
being constructed is adapted to keep the requirement unsatisfied (as
per Sacks’ preservation strategy, see [?] Chapter VII.3). An (non-
constructive) argument is then made to show that this strategy will
eventually fail (because P has no recursive elements) and Pm will
eventually be satisfied. These are essentially the arguments of Lemmas
2.5 and 2.6.

3 FD(ω) ↪→ PM

Theorem 3.1. Given any special Π0
1 class, P , FD(ω) can be embed-

ded into PM below P .

Proof. Let P be any special Π0
1 class and suppose Q and ψ are as in

Theorem 2.1. Let {σi : i ∈ ω} be a set of binary strings defined by:

i. |σi| = i+ 1,

ii. σi(n) =

{
1 if n = i,

0 otherwise.
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Then {σi : i ∈ ω} is a pairwise incomparable set of strings and hence
so is {ψ(σi) : i ∈ ω}. Denote by Qi the set of elements of Q extending
ψ(σi), and let Pi = P ∧ Qi. The set {Pi : i ∈ ω} then generates a
sublattice of PM strictly below P . To see this note that if X is a
non-empty finite subset of ω,∨

i∈X

Pi <M P,

because
∨

i∈X Pi 6M P , and if
∨

i∈X Pi >M P then P ∧
∨

i∈X Qi >M

P and some element of
∨

i∈X Qi would compute an element of P ,
contradicting property II. of Theorem 2.1. This is enough to show
that all elements of the generated sublattice are strictly below P .

We will use a standard lattice theoretical result - Theorem II.2.3
in [?] - to show that the lattice generated by the Pi’s is free. If X and
X ′ are finite subsets of ω, then,∧

i∈X Pi 6M
∨

j∈X′ Pj ,

⇒ P ∧
∧

i∈X Qi 6M P ∧
∨

j∈X′ Qj ,

⇒ P ∧
∧

i∈X Qi 6M
∨

j∈X′ Qj ,

so if
⊕

j∈X′ fj ∈
∨

j∈X′ Qj , then there is a g ∈ P ∨
∧

i∈X Qi such
that g 6T

⊕
j∈X′ fj . Therefore, g− 6T

⊕
j∈X′ fj where g− ∈ P or

g− ∈
∧

i∈X Qi. But g− 6∈ P by property II. of Theorem 2.1. And if
j 6∈ X then g− 6∈

∧
i∈X Qi by property I. of Theorem 2.1. Therefore,

j ∈ X and X ∩X ′ 6= ∅ as required by Theorem II.2.3 in [?].

Corollary 3.2. Every finite distributive lattice can be embedded into
PM .

Proof. This follows immediately from Theorem 3.1 and the fact that
every finite distributive lattice is embeddable in FD(ω). This seems
to have first been observed by Simpson. The proof is presented in [?],
along with a different proof of this corollary.

4 FB(ω) ↪→ Pw

In the section we give the second principal embedding theorem - that
the free Boolean algebra on ω generators, FB(ω), is embeddable into
Pw, the lattice of Muchnik degrees. We represent FB(ω) as an al-
gebra of recursive sets and then give an explicit embedding into Pw.
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As before, the argument will use Π0
1 sets constucted using a priority

argument. This time on those Π0
1 sets of Theorem 2.7. Then we show

that all countable distributive lattices embed into FB(ω). Finally we
establish result 3 on page 2.

We will require two constructions given by the following definitions.
Let ∅ 6= A ⊆ ω be recursive and let 〈Pi : i ∈ ω〉 be a recursive sequence
of Π0

1 sets. Let (·, ·) : ω × ω → ω be a recursive bijection.

Definition 4.1. If x ∈ 2ω, we define
(
x
)
i
∈ 2ω by,(

x
)
i
(n) = x((i, n)),

and then the recursive join of 〈Pi : i ∈ A〉, denoted
∨

i∈A Pi, is given
by,

x ∈
∨
i∈A

Pi ⇔
(
x
)
i
∈ Pi for all i ∈ A.

∨
i∈A Pi is clearly a Π0

1 class as,

x ∈
∨
i∈A

Pi ≡ ∀i i ∈ A⇒
(
x
)
i
∈ Pi.

Also, note that there is no restriction on
(
x
)
i
if i 6∈ A.

We will now define a recursive meet. Let A and 〈Pi : i ∈ ω〉 be
as above and, for each i ∈ ω, let Ti be a recursive tree such that
[Ti] = Pi. If T is a recursive tree such that [T ] = DNR2 (or any
Medvedev complete Π0

1 class), then let 〈σj : j ∈ ω〉 be the sequence,
in lexicographical order, of all binary strings such that σj ∈ T but
σa

j 〈x〉 6∈ T for any x ∈ {0, 1}. The sequence will be infinite as [T ] has
no recursive element. Define,

T ∗ = T ∪ {σa
i τ : i ∈ A, τ ∈ Ti}.

Definition 4.2. The recursive meet of 〈Pi : i ∈ A〉, denoted
∧

i∈A Pi,
is [T ∗], the set of paths through T ∗.

Note that if A is finite, the recursive meet and join are Medvedev
equivalent to the standard, lattice-theoretic meet and join respectively,
allowing us some ambiguity of notation. However, it is not to be
assumed that these constructions are necessarily the greatest lower or
least upper bounds when A is infinite.
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Now let 〈Qi : i ∈ ω〉 be as in Theorem 2.7 (with P arbitrary).
Define,

Q̂i =
∧
j 6=i

Qj ,

and, for any recursive, non-empty set, A, let,

Q̂(A) =
∨
i∈A

Q̂i.

Lemma 4.3. If A,B 6= ∅ and A 6= B, then Q̂(A) 6≡w Q̂(B) (and
therefore Q̂(A) 6≡M Q̂(B)).

Proof. Suppose that A and B are as above and that, without losing
generality, j ∈ B rA. Choose any x ∈ Qj and define x̄ by,(

x̄
)
i
= σa

j x for all i ∈ ω.

Then x̄ ∈ Q̂(A) as σa
j x ∈ Q̂i for all i 6= j and, in particular, for all

i ∈ A. Now let y ∈ Q̂j be arbitrary. There are two cases.

Case 1. y = σa
i z for some i 6= j and z ∈ Qi. Then,

y ≡T z 66T x ≡T x̄,

(z 66T x as z ∈ Qi and x ∈ Qj , with i 6= j).

Case 2. y ∈ [T ], where [T ] is the Medvedev complete Π0
1 class used

in the construction of the recursive meet. Then for any i ∈ ω, there
is a z ∈ Qi such that y >T z. We choose some i 6= j, and then fix z.
If x̄ >T y, we would have,

Qj 3 x ≡T x̄ >T y >T z ∈ Qi, with i 6= j,

contrary to construction of 〈Qi : i ∈ ω〉.

Therefore, in both cases we have y 66T x̄. As y was arbitrary, Q̂j 66w

Q̂(A). But Q̂j 6w Q̂(B) via the map x 7→
(
x
)
j

so it must be that

Q̂(B) 66w Q̂(A) and therefore that Q̂(B) 6≡w Q̂(A), as required.

Lemma 4.4. If A and B are non-empty and recursive, then,

Q̂(A ∪B) ≡M Q̂(A) ∨ Q̂(B).
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Proof.

Q̂(A ∪B) = {x : ∀i ∈ A ∪B,
(
x
)
i
∈ Q̂i},

= {x : ∀i ∈ A,
(
x
)
i
∈ Q̂i} ∩ {x : ∀i ∈ B,

(
x
)
i
∈ Q̂i},

= Q̂(A) ∩ Q̂(B).

So, x 7→ x⊕x, is a map from Q̂(A∪B) to Q̂(A)∨Q̂(B), and therefore,
Q̂(A ∪ B) >M Q̂(A) ∨ Q̂(B) . Conversely, let x ⊕ y ∈ Q̂(A) ∨ Q̂(B).
Define, z ∈ 2ω by,

(
z
)
i
=

{(
x
)
i

if i ∈ A(
y
)
i

if i ∈ ω rA.

Then z 6T x ⊕ y and for all i ∈ A ∪ B,
(
z
)
i
∈ Q̂i, so z ∈ Q̂(A ∪ B).

Therefore, Q̂(A ∪B) 6M Q̂(A) ∨ Q̂(B) as required.

Lemma 4.5. If A and B are recursive and A ∩B 6= ∅, then,

Q̂(A ∩B) ≡w Q̂(A) ∧ Q̂(B).

Proof. First, Q̂(A ∩ B) 6w Q̂(A) ∧ Q̂(B) (in fact, 6M ). If x ∈
Q̂(A) ∧ Q̂(B), then define z ∈ Q̂(A ∩B) by,(

z
)
i
=

(
x−

)
i
for all i ∈ ω.

If
(
x
)
i
(0) = 0, then, for all i ∈ A,

(
z
)
i
∈ Q̂i, and, a fortiori, for all

i ∈ A ∩ B,
(
z
)
i
∈ Q̂i. So z ∈ Q̂(A ∩ B). There is a similar argument

if
(
x
)
i
(0) = 1.

Next, Q̂(A∩B) >w Q̂(A)∧Q̂(B). Modulo the following two claims,
the argument will be:

Q̂(A ∩B) =
∨

i∈A∩B Q̂i,

>w
∨

i∈A

∨
j∈B Q̂i ∧ Q̂j (in fact, >M ) Claim 1,

>w
∨

i∈A Q̂i ∧
∨

j∈B Q̂j Claim 2,
= Q̂(A) ∧ Q̂(B).

Proving the Claims :

13



Claim 1. Let x ∈
∨

i∈A∩B Q̂i and take any k ∈ A ∩ B. So
(
x
)
k
∈

Q̂k. We define (recursively in x) z ∈
∨

i∈A

∨
j∈B Q̂i ∧ Q̂j by defining((

z
)
i

)
j

for all i, j ∈ ω, such that,((
z
)
i

)
j
∈ Q̂i ∧ Q̂j for all i ∈ A and j ∈ B.

To this end, let,

((
z
)
i

)
j

=


〈0〉a

(
x
)
i

if i = j,

〈0〉a
(
x
)
k

if i 6= j and
(
x
)
k
6⊇ σi,

〈1〉a
(
x
)
k

if i 6= j and
(
x
)
k
⊇ σi.

So, suppose that i ∈ A and j ∈ B. If i = j, then i ∈ A ∩ B and((
z
)
i

)
j

= 〈0〉a
(
x
)
i
∈ Q̂i ∧ Q̂j . If i 6= j and

(
x
)
k
6⊇ σi, then

(
x
)
k
∈ Q̂i,

and
((
z
)
i

)
j

= 〈0〉a
(
x
)
k
∈ Q̂i ∧ Q̂j . If i 6= j and

(
x
)
k
⊇ σi, then(

x
)
k
∈ Q̂j and

((
z
)
i

)
j

= 〈1〉a
(
x
)
k
∈ Q̂i ∧ Q̂j . These three cases are

exhaustive and so Claim 1 is established. Note that the above is a
uniform procedure for computing z from an arbitrary x, and so the
stronger, Medvedev reducibility has been shown.

Claim 2. Let x ∈
∨

i∈A

∨
j∈B Q̂i ∧ Q̂j . We will construct z 6T x

such that z ∈
∨

i∈A Q̂i ∧
∨

j∈B Q̂j . There are two cases.

Case 1. ∃i ∈ ArB ∀j ∈ B rA
((
x
)
i

)
j
(0) = 1.

Fix such an i, set z(0) = 1 and let,

(
z−

)
k

=

{((
x
)
i

)−
k

if k 6∈ A ∩B,((
x
)
k

)−
k

if k ∈ A ∩B.

Then, if k ∈ B r A,
(
z−

)
k

=
((
x
)
i

)−
k
∈ Q̂k and if k ∈ B ∩ A,(

z−
)
k

=
((
x
)
k

)−
k
∈ Q̂k. So, for all k ∈ B,

(
z−

)
k
∈ Q̂k, giving

z− ∈
∨

j∈B Q̂j and z ∈
∨

i∈A Q̂i ∧
∨

j∈B Q̂j .

Case 2. ∀i ∈ ArB ∃j ∈ B rA
((
x
)
i

)
j
(0) = 0.

Let z(0) = 0 and define,

f(i) =

{
the least such j if i ∈ ArB,

0 otherwise.
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Then f 6T x, and
((
x
)
i

)−
f(i)

∈ Q̂i for all i ∈ A r B. We can then
define, (

z−
)
k

=

{((
x
)
k

)−
f(k)

if k 6∈ A ∩B,((
x
)
k

)−
k

if k ∈ A ∩B.

As above we have
(
z−

)
k
∈ Q̂k, if k ∈ A ∩ B and if k ∈ A r B then(

z−
)
k

=
((
x
)
k

)−
f(k)

∈ Q̂k. So z− ∈
∨

i∈A Q̂i, and z ∈
∨

i∈A Q̂i ∧∨
j∈B Q̂j , as required.

We would like to improve Lemma 4.5 by showing that Q̂(A∩B) ≡M

Q̂(A) ∧ Q̂(B), but the division into cases in the proof of Claim 2 is
non-effective and we have only been able to show the weaker result.
However, we can improve the result under the stricter conditions of
the following lemma.

Lemma 4.6. If the symmetric difference of two recursive sets,

A4B = (ArB) ∪ (B rA),

is finite, then,
Q̂(A ∩B) ≡M Q̂(A) ∧ Q̂(B).

Proof. The proof is identical with the proof of 4.5 noting that in the
proof of Lemma Claim 2 the division into two cases is now effective
as both ArB and B rA are finite.

We are now in a position to prove the theorem in the title of the
section.

Theorem 4.7. The free Boolean algebra on countably many genera-
tors, FB(ω), is lattice-embeddable into Pw.

Proof. Consider the mapping A 7→ Q̂(A). Lemmas 4.3, 4.4 and 4.5
prove that this is an embedding of the lattice of non-empty, recursive
subsets of ω under ∩ and ∪ into Pw. So to prove the theorem it is
sufficient to show that FB(ω) can be represented by a collection of
non-empty, recursive subsets of ω.

Let pj be the jth prime number and let Bj = {npj : n ∈ ω}. Define
B̃j = (ω r Bj) ∪ {0}. The set {Bj : j ∈ ω} generates a distributive
lattice under operations of intersection and union. Further, this lattice
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can be extended to a Boolean algebra with 1 represented by ω, 0
represented by {0} and B̃j the Boolean complement of Bj . It would,
perhaps, seem more natural to have ∅ as the minimum element and
ωrBj as the Boolean complement, however the text definition ensures
that each element of the Boolean algebra is non-empty. This Boolean
algebra is in fact free and therefore a representation of FB(ω). To
show this it is sufficient to show (Exercise II.3.43 [?]) that for all finite
X,Y ⊆ ω, ⋂

i∈X

Bi ⊆
⋃
j∈Y

Bj ⇒ X ∩ Y 6= ∅.

But this is easily seen as
∏

i∈X pi ∈
⋂

i∈X Bi and so, if the antecedent
holds,

∏
i∈X pi ∈ Bj for some j ∈ Y . By primality, this means pj = pi

for some i ∈ X, giving X ∩ Y 6= ∅.

Corollary 4.8. FB(ω) can be embedded into Pw below any given
special Π0

1 set, P .

Proof. Let such a P be given and let 〈Qi : i ∈ ω〉 be as in Theorem
2.7. The required embedding will be,

A 7→ P ∧ Q̂(A).

The fact that this is a homomorphism follows from the lattice theoretic
identities:(

P ∧
∧
i∈A

Q̂i

)
∧

(
P ∧

∧
i∈B

Q̂i

)
= P ∧

( ∧
i∈A

Q̂i ∧
∧
i∈B

Q̂i

)
,

(
P ∧

∧
i∈A

Q̂i

)
∨

(
P ∧

∧
i∈B

Q̂i

)
= P ∧

( ∧
i∈A

Q̂i ∨
∧
i∈B

Q̂i

)
,

and the fact that A 7→ Q̂(A) describes a lattice homomorphism. To
see that it’s an embedding, suppose that A 6= B and take j ∈ B r
A, x ∈ Qj and x̄ ∈ Q̂(A) as in the proof of Lemma 4.3. Let x̄1 =
〈1〉ax̄ ∈ P ∧ Q̂(A). Suppose that there is a y ∈ P ∧ Q̂(B) such that
y 6T x̄1. By the proof of Lemma 4.3 we know that y− 6∈ Q̂(B) (or
else x̄ ≡T x̄1 >T y ≡T y− ∈ Q̂(B), contradiction). But, if y− ∈ P ,
then,

P 3 y− 6T x̄1 ≡T x ∈ Qj ,

contrary to the construction of 〈Qi : i ∈ ω〉. So there is no y ∈
P ∧ Q̂(B), such that y 6T x̄1. Therefore, P ∧ Q̂(B) 66M P ∧ Q̂(A), as
required.
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Theorem 4.9. Every countable distributive lattice can be embedded
into Pw below any given special Π0

1 set.

We show that every countable distributive lattice embeds into
FB(ω) and then apply Theorem 4.7. All the lattice theoretical back-
ground can be found in [?] or [?]. Every countable distributive lattice
can be embedded into a countable Boolean algebra so it is sufficient
to show that every countable Boolean algebra can be embedded into
FB(ω).

It is most convenient here to work with the dual space of FB(ω).
Stone duality gives a contravariant functor from the category of closed
subspaces of 2ω and continuous maps to the category of Boolean Al-
gebras and Boolean homomorphisms. Such a functor will take 2ω

to FB(ω) and continuous surjections to Boolean injections. So it is
enough (in fact equivalent) to prove the following theorem (attributed
to Sierpiński in [?] page 46):

Theorem 4.10. For every closed subset, P , of 2ω, there exists a
continuous surjection,

ψ : 2ω −→ P.

Proof. Recall that Ext(P ) = {σ ∈ 2<ω : ∃f ∈ T f ⊃ σ}. We will
define a continuous surjection, φ : 2<ω −→ Ext(P ), which will then
induce the required map on 2ω. Let

φ(〈〉) = 〈〉,

φ(σa〈i〉) =

{
φ(σ)a〈i〉 if φ(σ)a〈i〉 ∈ Ext(P )
φ(σ)a〈1− i〉 otherwise.

It is straightforward to see that this is a continuous surjection. It
is in fact a retract ([?] page 46) of 2ω.

The next theorem is result 3 of page 2.

Theorem 4.11. Let L1 (L2) be the lattice of finite (co-finite) subsets
of ω under ∩ and ∪. Then, for any special Π0

1 set, P , there is an
embedding of L1 × L2 into PM below P .

Proof. Let E be any infinite, co-infinite recursive subset of ω (for
example the even numbers). Let K be the distributive lattice {X ⊆
ω : X4E is finite } with the operations of ∩ and ∪. Then K ' L1×L2

(represent L1 by finite subsets of odd numbers and L2 by (relatively)
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co-finite sets of even numbers and the isomorphism is witnessed by
(X,Y ) 7→ X ∪ Y ). The symmetric difference of any two elements of
K is finite so Lemmas 4.3, 4.4, 4.6 and the proof of Corollary 4.8 give
the result.

Corollary 4.12. L1 and L2 are embeddable in PM below any special
Π0

1 set.

Proof. Immediate, as L1 and L2 are sublattices of K, above.
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