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Abstract

Let (G, τ) be a commutative Hausdorff locally solid lattice group. In this
paper we prove the following:

(1) If (G, τ) has the A(iii)-property, then its completion (Ĝ, τ̂) is an order-
complete locally solid lattice group.

(2) If G is order-complete and τ has the Fatou property, then the order intervals
of G are τ -complete.

(3) If (G, τ) has the Fatou property, then G is order-dense in Ĝ and (Ĝ, τ̂) has
the Fatou property.

(4) The order-bound topology on any commutative lattice group is the finest
locally solid topology on it.

As an application, a version of the Nikodym boundedness theorem for set func-
tions with values in a class of locally solid topological groups is established.
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1 Introduction

The theory of topological Riesz spaces is very rich, and vector measures with values

in these spaces and order-complete Riesz spaces have been extensively studied (for

example, see Aliprantis [1], Fremlin [12], Schmidt [18] and Swartz [19]). In recent

years, contributions to the theory of topological groups have been made by Comfort

et. al [8-9], Bonales [6] and Raczkowski [17]; in particular, they have studied totally

bounded group topologies, Bohr topology and the relevance to locally convex spaces

of the celebrated theorem of Pontryagin-Van Kampen which states that every locally

compact Abelian group satisfies group duality (for details, see [6], p. 76). Thereby, the

School of Mathematicians led by W.W. Comfort, has generated tremendous activities

in this area of investigations. Topological Riesz groups and their special case, namely,

topological lattice groups and measures with values in such groups have been considered

by Kalton [15], Khan and Rowlands [16], Avallone and Valente [4] and Jakubik [13].

However, still some partial results have been obtained for functions taking values in

this class of ordered groups mainly due to the lack of topology on them (see [5], p. 171).

In this paper we establish results specifically related to the topological completion of

a Hausdorff locally solid topological lattice group.

This paper is organized as follows: Let G be a commutative lattice group (hence-

forth called an `-group), with a locally solid Hausdorff group topology τ . In this paper

we investigate some of the properties of (G, τ) which are inherited by its completion

(Ĝ, τ̂). In particular, in Section 3, we show that, if every bounded monotonic sequence

in G is τ -Cauchy, then (Ĝ, τ̂) is an order-complete locally solid `-group; this extends

Theorem 1 by Kalton [15]. Fremlin [11] has proved (in Theorm 1) that, if (E, ξ) is a

topological vector lattice with a Hausdorff locally solid topology which has the Fatou

property, then its completion (Ê, ξ̂) has the Fatou property and E is order-dense in

Ê. A new proof of Fremlin’s theorem was given by Aliprantis and Burkinshaw in [2],
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using their ideas we prove an analogue of Fremlin’s result for a locally solid `-group

with the Fatou property. We also obtain the Nikodym boundedness theorem for lattice

group-valued submeasures which extends Theorem 1 of Drewnoski [10]. Finally, in

Section 4, we introduce the analogue of the order-bound topology on G and show that

it is the finest locally solid group topology on an `-group.

2 Notation and Preliminaries

Throughout this paper all groups are commutative and are written additively. By

an `-group, we mean a partially ordered group G in which each pair of elements x, y

has a supremum (denoted by x ∨ y) and an infimum (denoted by x ∧ y). We write

x+ = x ∨ 0, x− = (−x) ∨ 0, x = x+ − x− and |x| = x+ + x− for any x ∈ G. For the

elementary properties of `-groups we refer the reader to [14].

An `-group G is said to be σ-complete (resp. order-complete) if every bounded

increasing sequence (net) in G has a supremum. An `-subgroup H of G is said to

be order-dense in G, if, for each x ≥ 0 in G, x = sup{y ∈ H : 0 ≤ y ≤ x}. Let

G+ = {x ∈ G : x ≥ 0}. An `-group is said to be Archimedean if, for x, y in G+,

ny ≤ x (n = 1, 2, . . .) implies y = 0. Clearly, a σ-complete group is Archimedean and,

if G is an Archimedean `-group, then an `-subgroup H is order-dense in G if and only

if, for each u > 0 in G, there exists a v > 0 in H such that 0 < v ≤ u.

If G is an `-group, a subset V of G is said to be solid if a ∈ V and |x| ≤ |a| implies

that x ∈ V . We note that a solid set is symmetric; that is, V = −V . A group topology

τ on G is said to be locally solid if it has a base of τ -neighborhoods of 0 consisting of

solid sets. If a subgroup of G is solid, then it is said to be an ideal in G.

A function q on G is said to be a quasi-norm if it has the following properties for

all a, b in G.

(i) q(a) ≥ 0,
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(ii) q(0) = 0,

(iii) q(a + b) ≤ q(a) + q(b),

(iv) q(−a) = q(a).

If, in addition, (v) q(x) ≤ q(y) for all x, y in G with |x| ≤ |y|, then it is said to be an

`-quasi-norm.

A family of quasi-norms (resp. `-quasi-norms) determines a (locally solid) group

topology on G; on the other hand, if τ is a (locally solid) group topology on G, then τ

may be determined by the family of all τ -continuous quasi-norms (`-quasi-norms) on

G (cf. [12], 22C)). A subset B of (G, τ) is said to be bounded if sup
x∈B

η(x) < +∞ for

all τ -continuous quasi-norms η on G. A locally solid topology τ on G is said to have

the Fatou property if there exists a base U of τ -neighborhoods of 0 with the following

properties:

(1) each U ∈ U is solid,

and

(2) if A ⊆ U and A ↑ x (A upwards directed with supremum x), then x ∈ U .

An `-quasi-norm ρ is said to have the Fatou property if A ↑ x in G+ implies ρ(x) =

sup{ρ(y) : y ∈ A}. A family of Fatou `-quasi-norms determines a Fatou topology on

G; conversely, a locally solid topology τ with the Fatou property may be determined

by the family of all τ -continuous Fataou `-quasi-norms (cf. [12], 23B)).

A subset A of G is said to be order-bounded if there exists an element x in G

such that A ⊆ [−|x|, |x|]. A sequence {un} in G is said to order-converge to an

element u in G, written as un
(0)→ u, if there exists a sequence {vn} in G such that

|un − u| ≤ vn ↓ 0 (n = 1, 2, . . .). Following the notation of [1], a locally solid `-group

(G, τ) is said to have the A (iii)-property (resp. A(iv)-property) if and only if every

order-bounded increasing sequence (net) is τ -Cauchy.
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By modifying the proof of ([15], Lemma 2) we have the following:

Lemma 1 Let (G, τ) be a locally solid `-group. Then (G, τ) has the A(iii)-property if

and only if it has the A(iv)-property.

3 The Completion Group

If (G, τ) is a (Hausdorff) topological group, then there exists a (Hausdorff) complete

topological group, (Ĝ, τ̂) say, such that G may be isomorphically embedded in Ĝ as

a τ̂ -dense subgroup and τ̂ induces the original topology τ on G (for details of the

construction, we refer the reader to ([7], pp. 242–250)). In the sequel, we shall refer

to (Ĝ, τ̂) as the topological completion of (G, τ). In this section we investigate some

properties of (G, τ) which are inherited by its completion (Ĝ, τ̂).

We begin with the following generalization of Theorem 1 due to Kalton [15].

Theorem 1 Let (G, τ) be a Hausdorff locally solid `-group with the A(iii)-property.

Then (Ĝ, τ̂) is an order-complete locally solid `-group.

Proof. Since τ is locally solid, the mapping x → x+ is uniformly continuous and so

the positive cone P = {x ∈ G : x ≥ 0} is τ -closed. Let P̂ denote the τ̂ -closure of P .

Then, as in the proof of ([1], Theorem 2.1), P̂ is a cone in Ĝ; that is, P̂ + P̂ ⊆ P̂ and

P̂ ∩ −P̂ = {0}. The partial ordering induced by P̂ on Ĝ extends the partial ordering

on G and makes Ĝ into an `-group.

Let U be a base of solid τ -neighborhoods of 0 in G. A base Û of τ̂ -neighborhoods

of 0 in Ĝ consists of the sets Û , where U ∈ U and Û denotes the τ̂ -closure of U . Let V̂

by any τ̂ -neighborhood of 0. Then, as in the proof of ([1], Theorem 2.1), there exists a

τ̂ -neighborhood Û of 0 such that the solid hull of Û , S(Û) say, is contained in V̂ ; that

is, Û ⊆ S(Û) ⊆ V̂ . It follows that (Ĝ, τ̂) is a locally solid `-group.

To sow that (Ĝ, τ̂) is order-complete we modify the proof of ([15], Theorem 1) and

use neighborhoods instead of quasi-norms, as follows.
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Suppose that an ∈ Ĝ, an ↑ and an ≤ 0 (n = 1, 2, . . .). Let V̂ be any τ̂ -neighborhood

of 0 and let Û be a τ̂ -neighborhood of 0 in Ĝ such that Û + Û + Û ⊆ V̂ . For each n,

there exists a solid τ̂ -neighborhood Ûn of 0 such that Û1 + Û2 + · · · + Ûn ⊆ Û and an

element xn in G, with xn ≤ 0, such that |xn − an| ∈ Ûn.

Let y1 = x1, yn+1 = yn ∨ xn+1 (n ≥ 1), so that yn ∈ G, yn ↑ and yn ≤ 0. Now

|yx ∨ xn+1 − an+1| ≤ |xn+1 − an|+ |yn − an|,

which implies that, for n = 1, 2, . . .,

|yn − an| ≤ |x1 − a1|+ |x2 − a2|+ · · ·+ |xn − an|,

and so

|yn − an| ∈ Û1 + · · ·+ Ûn ⊆ Û .

Thus, for any integer p and n = 1, 2, . . .,

|an+p − an| ≤ |an+p − yn+p|+ |yn+p − yn|+ |yn − an|,

and so, since (G, τ) has the A(iii)-property, it follows that, for n sufficiently large,

|an+p − an| ∈ Û + Û + Û ⊆ V̂ .

Thus (Ĝ, τ̂) has the A(iii)-property and so, by Lemma 1, has the A(iv)-property. Sup-

pose that {xα : α ∈ I} is a bounded increasing net in Ĝ. Then, since Ĝ is complete,

xα
τ̂→ x in Ĝ and it is not difficult to see that x ≥ xα (α ∈ I). Also, if y ≥ xα for

all α ∈ I, then y − xα ∈ P̂ and y − xα
τ̂→ y − x ∈ P̂ . Thus x = sup xa, and so Ĝ is

order-complete, as required.

In [2], Aliprantis and Burkinshaw gave a new proof of the following theorem (due to

Nakano) and on a subsequent ‘revisit’ to Nakano’s theorem in [3] were able to simplify

their proof even further.

Theorem N (Nakano) If (E, τ) is an order-complete locally solid vector lattice with

the Fatou property, then the order intervals are τ -complete.
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We now prove a version of the above theorem for an order-complete locally solid

`-group with the Fatou property; our proof is based on the proof of Theorem N but we

make use of `-quasi-norms instead of neighborhoods. For this, we require the following

pair of lemmas.

Lemma 2 Let (G, τ) be a Hausdorff locally solid `-group and (Ĝ, τ̂) its completion.

Then the following are equivalent:

(i) G is an ideal in Ĝ,

(ii) every order interval in Ĝ is τ -complete.

Proof. This is a trivial modification of the proof of ([1], Theorem 2.2).

Lemma 3 Let G be an `-group and suppose that the sequence {un} order-converges to

u ∈ G. If ρ is a Fatou `-quasi-norm, then ρ(u) ≤ sup
n

ρ(un).

Proof. Since un
(0)→ u, there exists a sequence {vn} in G such that |un − u| ≤ vn ↓

0 (n = 1, 2, . . .). Now | |un| − |u| | ≤ |un − u| ≤ vn ↓ 0 implies that (|un| − vn)+ ↑ |u|
and (|u| − vn)+ ≤ |un| (n = 1, 2, . . .). Since ρ is a Fatou quasi-norm,

ρ(u) = ρ(|u|) = sup
n

ρ((|u| − vn)+) ≤ sup
n

ρ(un),

as required.

Theorem 2 Let (G, τ) be an order-complete Hausdorff locally solid `-group with the

Fatou property. Then the order intervals of G are τ -complete.

Proof. By Lemma 2 it is sufficient to show that G is an ideal in Ĝ. We first show that

G is order-dense in A(G), the ideal generated by G in Ĝ; A(G) = {û ∈ Ĝ : ∃ x in G

such that |û| ≤ |x|}.
Let û be an element of A(G) and so there is an element u in G such that 0 < û ≤ u.

Since τ̂ is Hausdorff, there exists a Fatou τ -neighborhood V of 0 such that û 6∈ V̂
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and corresponding to V there is a τ -continuous Fatou `-quasi-norm η on G such that

{x ∈ G : η(x) < 1} ⊆ V . Now η has a unique extension to a τ̂ -continuous `-quasi-

norm, η̂ say, on Ĝ, and we can choose a sequence {un} in G such that 0 ≤ un ≤ u and

η̂(û− un) < 2−(n+4). Thus, for any positive integer p,

η(un+1 − un) ≤ η̂(un+1 − û) + η̂(û− un) < 2−(n+3) (n = 1, 2, . . .)

implies that η(un+p − un) < 2−(n+2).

Let n be any positive integer and let wn,p = sup{um : n ≤ m ≤ n + p}. Then

0 ≤ wn,p − un = sup{um − un : n ≤ m ≤ n + p}

≤ sup{|um − un| : n ≤ m ≤ n + p}

≤
n+p−1∑
m=n

|um+1 − um|,

and so η(wn,p − un) < 2−(n+2). Since G is order-complete wn =
∨

m≥n

um exists in G

and wn,p ↑ wn. This implies that 0 ≤ wn,p − un ↑ wn − un and so, since η is a Fatou

`-quasi-norm, η(wn − un) ≤ 2−(n+2). Thus, for any positive integer q,

η(wn+q − un) ≤ η(wn+q − un+q) + η(un+q − un)

≤ 2−(n+q+2) + 2−(n+2)

< 2−(n+1).

Since G is order-complete, there exists a w ≥ 0 in G such that wn ↓ w. Now |wn+q −
un| (0)→ |w − un| as q → ∞, and so by Lemma 3, η(|w − un|) ≤ 2−(n+1). ¿From

û − w = û − un + un − w, we have that η̂(û − w) < 2−n and, since n is any positive

integer, it follows that η̂(û − w) = 0. Let S = {v ∈ G+ : η(w − v) = 0}. Clearly, S

is non-empty. Assume that s = inf S ∈ G. The set L = {z ∈ G : η(z) = 0} is a solid

subgroup of G with the Fatou property and w− S ⊆ L. Now sup(w− S) = w− s and

so, since L has the Fatou property, w− s ∈ L. It follows that s > 0; for, if s = 0, then

η(w) = 0, and so η̂(û) = 0, which contradicts the fact that û 6∈ V̂ .
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Next, let W be any Fatou τ -neighborhood of 0 in G such that W ⊆ V . Then there

exists a τ -continuous Fatou `-quasi-norm, ρ say, such that {x ∈ G : ρ(x) < 1} ⊆ W .

Let ξ(x) = max(ρ(x), η(x)). Then ξ is a τ -continuous Fatou `-quasi-norm and {x ∈
G : ξ(x) < 1} ⊆ W . By repeating the argument used above there exists an element a

in G+ such that ξ̂(û − a) = 0. This implies that η̂(û − a) = 0 and form the identity

a− w = a− û + û− w, it follows that η(a− w) = 0. Thus a ∈ S and so s ≤ a. This

implies that 0 ≤ (s−û)+ ≤ (a−u)+ and, since ξ̂((a−û)+) = 0 and ξ̂ is an `-quasi-norm,

it follows that ξ̂((s− û)+) = 0. Hence (s− û)+ ∈ Ŵ for all Fatou τ -neighborhoods W

of 0 in G with W ⊆ V . This implies that (s− û)+ = 0 and so 0 < s ≤ û; that is, G is

order-dense in A(G).

By Theorem 1, Ĝ is order-complete and so, in particular, A(G) is Archimedean.

Thus û = sup{v ∈ G : 0 ≤ v ≤ û}. We recall that û ≤ u and so, since G is order-

complete, z = sup{v ∈ G : 0 ≤ v ≤ û} exists in G. Since G is order-dense in A(G),

z = û which implies that G is an ideal in Ĝ. This completes the proof of the theorem.

In [2], Aliprantis and Burkinshaw gave a new proof of the following theorem due to

Fremlin ([11], Theorem 1).

Theorem F (Fremlin) Let (E, τ) be a Hausdorff locally solid vector lattice with the

Fatou property. Then

(i) E is order-dense in Ê.

and

(ii) (Ê, τ̂) satisfies the Fatou property.

For a Hausdorff locally solid `-group with the Fatou property, we have the following.

Theorem 3 Let (G, τ) be a Hausdorff locally solid `-group with the Fatou property.

Then
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(i) G is order-dense in Ĝ,

and

(ii) (Ĝ, τ̂) has the Fatou property.

Proof. Suppose first that G is order-complete. Then, by Theorem 2, the order intervals

of G are τ -complete and so G is an ideal in Ĝ by Lemma 2. In particular, this implies

that G is order-dense in Ĝ (cf. [1], p. 110)).

The proof of (ii) and the proof of the theorem when G is not order-complete, follow

from the arguments used by Aliprantis and Burkinshaw to prove Theorem F and so

will be omitted.

The topological approach to measure-theoretic studies and the applications of topol-

ogy to measure theory are very well-studied (see, for example, Drewnowski [10] and

the references therein, Kalton [15] and Fremlin [11]). We continue this theme and close

this section with a version of the Nikodym boundedness theorem for functions assum-

ing values in a class of locally solid topological groups; our proof is order-theoretic in

nature (not related to the completion procedure of the group).

The Nikodym boundedness theorem, from measure theory, has received a great deal

of attention and has been generalized in several directions; its versions, for example, for

lattice-valued and vector-valued measures may be found in [19] and [20], respectively.

Let us first briefly recall some definitions.

Let G be a Hausdorff topological group and R a ring of subsets of a set X. A

function µ : R→ G is said to be (i) measure if µ(φ) = 0 and µ(E ∪F ) = µ(E) + µ(F )

where E and F are in R with E ∩ F = φ (ii) exhaustive if for every sequence {En} of

pairwise disjoint sets in R, lim
n→∞

µ(En) = 0.

The notion of a submeasure, with enormous applications, has been extensively

studied by Drewnoski (see [10] and the references therein, [4], [16]). Group-valued

submeasures have been introduced by Khan and Rowlands [16] and their work has
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been recently further investigated by Avallone and Valente [4].

Following Khan and Rowlands [16], a function µ on R with values in an `-quasi-

normed group is a submeasure if µ(φ) = 0, µ(E ∪F ) ≤ µ(E) + µ(F ) for all E, F in R
with E ∩ F = φ and µ(E) ≤ µ(F ) for all E, F in R with E ⊆ F . Clearly, in this case

µ(E) ≥ 0 for all E in R.

Although Theorem 1 due to Drewnoski [10] has been proved in the context of a

quasi-normed group, his proof can be readily modified to the case of any Hausdorff

topological group G; thereby, we achieve the following version of the Nikodym bound-

edness theorem.

Theorem 4 Let M be a family of exhaustive G-valued measures on a σ-ring R such

that for each E ∈ R, {µ(E) : µ ∈ M} is a bounded subset of G. Then {µ(E) : E ∈
R, µ ∈ M} is a bounded subset of G.

The assumption that R is a σ-ring is essential in the above theorem (see [10],

Example, p. 117).

The next result generalizes Theorem 4 for group-valued submeasures.

Theorem 5 Let (G, q) be an `-quasi-normed group and M be a family of G-valued

submeasures on a σ-ring R such that

sup
µ∈M

q(µ(E)) < +∞

for each E in R. Then sup
µ∈M

E∈R
q(µ(E)) < +∞.

Proof. Let H be the group of all G-valued mappings on M . Clearly, H is a commu-

tative partially ordered group, the ordering being f ≤ g if and only if f(µ) ≤ g(µ) for

all µ ∈ M . Define the functional φ on H by

φ(f) = sup
µ∈M

q(f(µ)).
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Note that φ is an R∗+-valued quasi-norm on H such that φ(f) ≤ φ(g) if 0 ≤ f ≤ g.

Define a mapping ν : R→ H by

ν(E)(µ) = µ(E).

Clearly, ν is an H-valued submeasure on R.

Suppose not; with the above notation, sup
E∈R

φ(ν(E)) = +∞. Thus, for each positive

integer n, there exists a set En in R such that φ(ν(En)) > n. Let E =
∞⋃

n=1

En, E ∈ R
and φ(ν(E)) = +∞. This implies that sup

µ
q(µ(E)) = +∞, which contradicts the

hypothesis. Thus sup
µ∈M

E∈R
q(µ(E)) is finite.

4 The Order-Bound Topology

Let G be an `-group and let S be the family of all quasi-norms such that each p ∈ S
is bounded on order-bounded subsets of G. The topology τb induced by S on G is the

analogue of the order-bound topology in the theory of locally convex partially ordered

vector spaces, and so, in the sequel, we refer to τb as the order-bound topology on G. It

is easy to see that τb is the finest group topology on G such that every order-bounded

subset of G is topologically bounded.

Definition 1 A homomorphism φ of a topological `-group (G, τ) into a topological

group (H, ξ) is said to be order-bounded if it maps order-bounded subsets of G into

ξ-bounded sets.

Now, we obtain the following useful result.

Proposition 1 Let (G, τ) be a topological `-group. Then the following statements are

equivalent:

(i) τb ⊆ τ ,
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(ii) every order-bounded homomorphism of (G, τ) into a topological `-group (H, ξ) is

continuous.

Proof. (ii) ⇒ (i). The identity mapping of (G, τ) into (G, τb) is an order-bounded

homomorphism and so is continuous. It follows that τb ⊆ τ .

(i) ⇒ (ii). Let p be any ξ-continuous quasi-norm. Then p ◦ φ is a quasi-norm on G

bounded on order-bounded sets. Thus p ◦ φ is τb-continuous and so is τ -continuous. It

follows that, for any ξ-neighborhood U of 0 in H, φ−1(U) is a τ -neighborhood of 0 in

G; that is, φ is continuous, as required.

Theorem 6 Let G be an `-group. Then the order-bound topology on G is the finest

locally solid topology on G.

Proof. First we show that every locally solid topology on G is weaker than τb. Let ξ be

any locally solid topology on G. Then ξ is determined by the family of all ξ-continuous

`-quasi-norms. Let q be any ξ-continuous `-quasi-norm on G. If z ∈ [−|x|, |x|], then

q(z) ≤ q(x). This implies that every order-bounded interval is ξ-bounded and so ξ ⊆ τb.

We now prove that τb is locally solid.

Let η be any member of S. Since η is bounded on the order-bounded intervals,

we can use the same construction as that given by Kalton in [15] to define a new

quasi-norm |η|, as follows. For each a ∈ G with a ≥ 0, let

n∗(a) = sup
0≤c≤a

η(c),

and define

|η|(a) = inf{η∗(b) : −b ≤ a ≤ b}.

Clearly, |η| is bounded on order-bounded sets; also |η|(a) = η∗(a) for all a ≥ 0. This

implies that |η|(|a|) = |η|(a) (a ∈ G), and so the topology τ ′b defined by the quasi-

norms {|η|} (η ∈ S) is locally solid. Thus by the first part of the proof τ ′b ⊆ τb. On

the other hand, if U is any τb-neighborhood of 0 in G, then there exists a q ∈ S and a
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positive number ε such that {x : q(x) < ε} ⊆ U . Now q(x) ≤ 2|q|(x) ([15], Lemma 3),

and so we have {x : |q|(x) < ε/2} ⊆ U . This implies that τb ⊆ τ ′b and so τb = τ ′b. Thus

τb is locally solid, as required.
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