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Abstract. We introduce three-step iterative schemes with errors for two and
three nonexpansive maps and establish weak and strong convergence theorems
for these schemes. Mann-type and Ishikawa-type convergence results are in-
cluded in the analysis of these new iteration schemes. The results presented
in this paper substantially improve and extend the results due to Khan and
Fukhar-ud-din (2005), Shahzad (2005), Takahashi and Tamura (1995), Tan
and Xu (1993) and Senter and Dotson (1974).

1. Introduction

Let C be a nonempty convex subset of a real Banach space E. A map T : C → C
is called : (i) nonexpansive if ‖Tx− Ty‖ ≤ ‖x− y‖ for all x, y ∈ C;(ii) quasi-
nonexpansive if the set F (T ) of fixed points of T is nonempty and ‖Tx− Ty‖ ≤
‖x− y‖ for all x ∈ C and y ∈ F (T ).

Das and Debata [1] introduced the following iteration scheme:




x1 ∈ C,

yn = (1− βn)xn + βnT2xn,

xn+1 = (1− αn)xn + αnT1yn, for all n ≥ 1,

(1.1)

where T1, T2 are quasi-nonexpansive selfmaps with compact domain and {αn}, {βn}
are sequences in [0, 1]. They used the scheme (1.1) to approximate common fixed
points of the maps when E is strictly convex. For T1 = T2, the scheme (1.1)
was introduced by Ishikawa [2] (see also Mann [3]). The weak convergence of the
Ishikawa sequence for a nonexpansive map in a uniformly convex Banach space
with the Opial property (or whose norm is Fréchet differentiable) has been stud-
ied by many authors(see, eg., [4],[5],[6]). Takahashi and Tamura [7] proved weak
convergence of the iterates {xn} defined by (1.1) in a uniformly convex Banach
space E which satisfies the Opial property or whose norm is Fréchet differentiable
and T1, T2 are nonexpansive selfmaps on a closed convex subset of E. Recently,
Shahzad [8] extended Theorem 3.3 of Takahashi and Tamura [7] to a class of uni-
formly convex Banach spaces which neither satisfies the Opial property nor has a
Fréchet differentiable norm.
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Goebel and Kirk [9] in 1972, introduced the notion of an asymptotically nonex-
pansive map. A map T : C → C is asymptotically nonexpansive(cf. [9]) if there
exists a sequence {kn} ⊂ [1,∞) with limn→∞ kn = 1 such that ‖Tnx− Tny‖ ≤
kn ‖x− y‖ , for all x, y ∈ C and for all n ≥ 1; in particular, if kn = 1 for all n ≥ 1,
it becomes nonexpansive. The map T is uniformly L−Lipschitzian if there exists
some positive constant L such that ‖Tnx− Tny‖ ≤ L ‖x− y‖ , for all x, y ∈ C
and for all n ≥ 1. They, also, established that if C is a nonempty closed convex
bounded subset of a uniformly convex Banach space and T is an asymptotically
nonexpansive selfmap of C, then T has a fixed point. Bose [10] in 1978, initiated
the study of iterative construction of asymptotically nonexpansive maps. Schu [11],
in 1991, considered the following modified Mann iteration process (cf. Mann [3])
for an asymptotically nonexpansive map T on C and {αn} a sequence in [0, 1]:

{
x1 ∈ C,

xn+1 = (1− αn)xn + αnTnxn, for all n ≥ 1.

In 1994, Tan and Xu [12] studied the modified Ishikawa iteration process (cf.
Ishikawa [2]) for an asymptotically nonexpansive map T on C, {αn} in [0, 1], {βn}
bounded away from 1 and the scheme described as:





x1 ∈ C,

yn = (1− βn)xn + βnTnxn,

xn+1 = (1− αn)xn + αnTnyn, for all n ≥ 1.

In 2002, Xu and Noor [13] introduced a three-step iterative scheme for an asymp-
totically nonexpansive map T on C and {αn}, {βn}, {γn} sequences in [0, 1], as
follows:





x1 ∈ C,

zn = (1− γn)xn + γnTnxn,

yn = (1− βn)xn + βnTnzn,

xn+1 = (1− αn)xn + αnTnyn, for all n ≥ 1.

Recently Cho. et al. [14] and Liu and Kang [15] have studied weak and strong
convergence of three-step iterations with errors for an asymptotically nonexpansive
map in a uniformly convex Banach space.

Finding common fixed points of maps acting on a Hilbert space is a problem
that often arises in applied mathematics. In fact, many algorithms have been
introduced for different classes of maps with a nonempty set of common fixed points.
Unfortunately, the existence results of common fixed points of maps are not known
in many situations. Therefore, it is natural to consider approximation results for
these classes of maps. Approximation of common fixed points of two or more
nonexpansive maps and asymptotically nonexpansive maps by iteration has been
studied by many authors (see, eg., [7,8,12,16-20]).
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For three maps Ti : C → C(i = 1, 2, 3), we define the following three-step
iteration scheme with errors (cf. [17] and reference therein; see also [13]):





x1 ∈ C,

zn = α
(3)
n xn + β(3)

n T3xn + γ
(3)
n u

(3)
n ,

yn = α
(2)
n xn + β(2)

n T2zn + γ
(2)
n u

(2)
n ,

xn+1 = α
(1)
n xn + β(1)

n T1yn + γ
(1)
n u

(1)
n , for all n ≥ 1,

(1.2)

where{u(j)
n } is a bounded sequence in C for each j = 1, 2, 3 and {α(j)

n }, {β(j)
n } and

{γ(j)
n } are sequences in [0, 1] satisfying:

α(j)
n + β(j)

n + γ(j)
n = 1 for all n ≥ 1 and each j = 1, 2, 3.

If we choose T1 = T3 in (1.2), it reduces to the following three-step iteration
scheme of two maps:





x1 ∈ C,

zn = α
(3)
n xn + β(3)

n T1xn + γ
(3)
n u

(3)
n ,

yn = α
(2)
n xn + β(2)

n T2zn + γ
(2)
n u

(2)
n ,

xn+1 = α
(1)
n xn + β(1)

n T1yn + γ
(1)
n u

(1)
n , for all n ≥ 1.

(1.3)

The choice α
(3)
n = 1 in (1.2), leads to the following iterative scheme [17] :




x1 ∈ C,

yn = α
(2)
n xn + β(2)

n T2xn + γ
(2)
n u

(2)
n ,

xn+1 = α
(1)
n xn + β(1)

n T1yn + γ
(1)
n u

(1)
n , for all n ≥ 1.

(1.4)

In case β(3)
n = 0 and γ

(j)
n = 0 in (1.2), we get (1.1).

We study the iteration schemes (1.2) and (1.3) and prove their weak convergence
to a common fixed point of nonexpansive maps in a uniformly convex Banach space.
Our weak convergence result applies not only to Hilbert spaces and Lp spaces
(1 < p < ∞) but also to the rather large class of spaces admitting the Kadec-Klee
property(cf. [21, p. 573]). We also discuss strong convergence of these schemes. It
is remarked that the results presented in this paper are new even for nonexpansive
maps. Our convergence theorems improve, unify and generalize many important
results in the current literature.

2. Prliminaries and Notations

Recall that a Banach space E is said to be uniformly convex if for each r ∈ [0, 2],
the modulus of convexity of E given by:

δ(r) = inf
{

1− 1
2
‖x + y‖ : ‖x‖ ≤ 1, ‖y‖ ≤ 1, ‖x− y‖ ≥ r

}

satisfies the inequality δ(r) > 0 for all r > 0.



4 HAFIZ FUKHAR-UD-DIN AND ABDUL RAHIM KHAN

For sequences, the symbol → (resp.⇀) indicates norm (resp. weak) convergence.
Let S = {x ∈ E : ‖x‖ = 1} and let E∗ be the dual of E, that is, the space of all
continuous linear functionals f on E. The space E has : (i) Gâteaux differentiable
norm [5] if

lim
t→0

‖x + ty‖ − ‖x‖
t

exists for each x and y in S; (ii) Fréchet differentiable norm [5] if for each x in S,
the above limit exists and is attained uniformly for y in S and in this case, it has
been shown in [5] that

〈h, J(x)〉+
1
2
‖x‖2 ≤ 1

2
‖x + h‖2 ≤ 〈h, J(x)〉+

1
2
‖x‖2 + b(‖h‖) (2.1)

for all x, h in E, where J is the Fréchet derivative of the functional 1
2 ‖.‖2 at x ∈

X, 〈., .〉 is the pairing between E and E∗, and b is a function defined on [0,∞)
such that limt↓0

b(t)
t = 0; (iii) Opial property [22] if for any sequence {xn} in

E, xn ⇀ x implies that lim supn→∞ ‖xn − x‖ < lim supn→∞ ‖xn − y‖ for all y ∈ E
with y 6= x and (iv) Kadec-Klee property if for every sequence {xn} in E, xn ⇀ x
and ‖xn‖ → ‖x‖ together imply xn → x as n →∞.

A mapping T : C → E is demiclosed at y ∈ E if for each sequence {xn} in C
and each x ∈ E, xn ⇀ x and Txn → y imply that x ∈ C and Tx = y.

We recall the following useful lemmas for the development of our results.
Lemma 2.1 [5, Lemma1]. Let {sn} and {tn} be two nonnegative real sequences
such that

sn+1 ≤ sn + tn for all n ≥ 1.

If
∑∞

n=1 tn < ∞, then limn→∞ sn exists.
Lemma 2.2 [14, Lemma 1.7]. Let C be a nonempty bounded closed convex subset of
a uniformly convex Banach space. Then there is a strictly increasing and continuous
convex function g : [0,∞) → [0,∞) with g(0) = 0 such that, for Lipschitzian
continuous map T : C → X and for all x, y ∈ C and t ∈ [0, 1], the following
inequality holds:

‖T (tx + (1− t)y)− (tTx + (1− t)Ty)‖ ≤ Lg−1(‖x− y‖ − L−1 ‖Tx− Ty‖)
where L ≥ 1 is the Lipschitz constant of T.

Note that the above lemma reduces to the corresponding lemma of Bruck [23]
for L = 1.
Lemma 2.3 [14, Lemma 1.6]. Let C be a nonempty closed convex subset of a uni-
formly convex Banach space and let T : C → C be an asymptotically nonexpansive
map; in particular, nonexpansive map. Then I − T is demiclosed at 0.
Lemma 2.4 [21, Lemma 2]. Let E be a reflexive Banach space such that E∗

has the Kadec-Klee property. Let {xn} be a bounded sequence in E and x∗, y∗ ∈
ωw(xn)(weak w-limit set of {xn}). Suppose limn→∞ ‖txn + (1− t)x∗ − y∗‖ exists
for all t ∈ [0, 1]. Then x∗ = y∗.
Lemma 2.5 [11, Lemma 1.3]. Suppose that E is a uniformly convex Banach space
and 0 < p ≤ tn ≤ q < 1 for all positive integers n. Also suppose that {xn} and {yn}
are two sequences of E such that lim supn→∞ ‖xn‖ ≤ r, lim supn→∞ ‖yn‖ ≤ r and
limn→∞ ‖tnxn + (1− tn)yn‖ = r hold for some r ≥ 0. Then limn→∞ ‖xn − yn‖ =
0.
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In the sequel, ∩2
i=1F (Ti) or ∩3

i=1F (Ti) will be denoted by F.

3. Preparatory Lemmas

In this section, we prove some lemmas which play key role to establish weak and
strong convergence results for the schemes (1.2) and (1.3).
Lemma 3.1. Let C be a nonempty closed convex subset of a normed space E and
let Ti(i = 1, 2, 3) be nonexpansive selfmaps on C. Let {xn} be the sequence defined
in (1.2) with F 6= φ and

∑∞
n=1 γ

(j)
n < ∞ for j = 1, 2, 3. Then limn→∞ ‖xn − p‖

exists for any p ∈ F.

Proof. Let p ∈ F. Since {u(j)
n } is bounded for each j = 1, 2, 3, there exists M > 0

such that M = max{supn≥1

∥∥∥u
(j)
n − p

∥∥∥ : j = 1, 2, 3} for any p ∈ F.

Now consider

‖xn+1 − p‖ =
∥∥∥β(1)

n (T1yn − p) + α(1)
n (xn − p) + γ(1)

n (u(1)
n − p)

∥∥∥

≤ β(1)
n ‖T1yn − p‖+ α(1)

n ‖xn − p‖+ γ(1)
n

∥∥∥u(1)
n − p

∥∥∥

≤ β(1)
n ‖yn − p‖+ α(1)

n ‖xn − p‖+ γ(1)
n

∥∥∥u(1)
n − p

∥∥∥

≤ β(1)
n

∥∥∥β(2)
n (T2zn − p) + α(2)

n ( xn − p) + γ(2)
n (u(2)

n − p)
∥∥∥

+α(1)
n ‖xn − p‖+ γ(1)

n M

≤ β(1)
n β(2)

n ‖T2zn − p‖+ β(1)
n γ(2)

n

∥∥∥u(2)
n − p

∥∥∥
+(α(1)

n + α(2)
n β(1)

n ) ‖xn − p‖+ γ(1)
n M

≤ β(1)
n β(2)

n ‖zn − p‖+ (α(1)
n + α(2)

n β(1)
n ) ‖xn − p‖

+β(1)
n γ(2)

n

∥∥∥u(2)
n − p

∥∥∥ + γ(1)
n M

≤ β(1)
n β(2)

n

∥∥∥α(3)
n ( xn − p) + β(3)

n (T3xn − p) + γ(3)
n (u(3)

n − p)
∥∥∥

+(α(1)
n + α(2)

n β(1)
n ) ‖xn − p‖+ (β(1)

n γ(2)
n + γ(1)

n )M

≤
(
α(1)

n + α(2)
n β(1)

n + α(3)
n β(1)

n β(2)
n + β(1)

n β(2)
n β(3)

n

)
‖xn − p‖

+(β(1)
n β(2)

n γ(3)
n + β(1)

n γ(2)
n + γ(1)

n )M

≤ ‖xn − p‖+ (γ(1)
n + γ(2)

n + γ(3)
n )M.

By Lemma 2.1, limn→∞ ‖xn − p‖ exists for any p ∈ F.
Lemma 3.2. Let C be a nonempty closed convex subset of a uniformly convex
Banach space E andTi(i = 1, 2, 3) be nonexpansive selfmaps on C. Let {xn} be the
sequence defined in (1.2) with F 6= φ and

∑∞
n=1 γ

(j)
n < ∞ for j = 1, 2, 3. Then,

for any p1, p2 ∈ F, limn→∞ ‖txn + (1− t)p1 − p2‖ exists for any t ∈ [0, 1].
Proof. By Lemma 3.1, limn→∞ ‖xn − p‖ exists for any p ∈ F and therefore {xn}
is bounded. Hence, there exists a ball Br(0) = {x ∈ E : ‖x‖ ≤ r} for some r > 0
such that {xn} ⊂ K = Br(0) ∩ C. Thus K is a nonempty bounded closed convex
subset of E. Let an(t) = ‖txn + (1− t)p1 − p2‖ . Then limn→∞ an(0) = ‖p1 − p2‖
and limn→∞ an(1) = limn→∞ ‖xn − p2‖ exists as proved in Lemma 3.1. Define
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Wn : K → K by:

Wnx = α(1)
n T1[α(2)

n T2(α(3)
n x + β(3)

n T3x + γ(3)
n u(3)

n ) + β(2)
n x + γ(2)

n u(2)
n ] + β(1)

n x + γ(1)
n u(1)

n .

It is easy to verify that

‖Wnx−Wny‖ ≤ ‖x− y‖ for all x, y ∈ K.

Set

Rn,m = Wn+m−1Wn+m−2...Wn, m ≥ 1 and

bn,m = ‖Rn,m(txn + (1− t)p1)− (tRn,mxn + (1− t)p1)‖ .

Then

‖Rn,mx−Rn,my‖ ≤ ‖x− y‖ and Rn,mxn = xn+m.

We first show that for any p ∈ F, ‖Rn,mp− p‖ → 0 as n →∞ and for all m ≥ 1 .
Consider

‖Rn,mp− p‖ ≤ ‖Wn+m−1Wn+m−2...Wnp−Wn+m−1Wn+m−2...Wn+1p‖
+ ‖Wn+m−1Wn+m−2...Wn+1p−Wn+m−1Wn+m−2...Wn+2p‖
+... + ‖Wn+m−1p− p‖

≤ ‖Wnp− p‖+ ‖Wn+1p− p‖+ ... + ‖Wn+m−1p− p‖
≤ (γ(1)

n + γ(2)
n + γ(3)

n )M + (γ(1)
n+1 + γ

(2)
n+1 + γ

(3)
n+1)M

+... + (γ(1)
n+m−1 + γ

(2)
n+m−1 + γ

(3)
n+m−1)M

=
m−1∑

k=0

(γ(1)
n+k + γ

(2)
n+k + γ

(3)
n+k)M → 0 as n →∞.

By Lemma 2.2, there exists a strictly increasing continuous function g : [0,∞) →
[0,∞) with g(0) = 0 such that

g(bn,m) ≤ ‖xn − p1‖ − ‖Rn,mxn −Rn,mp1‖
= ‖xn − p1‖ − ‖(Rn,mxn − p1) + (p1 −Rn,mp1)‖
≤ ‖xn − p1‖+ ‖p1 −Rn,mp1‖ − ‖Rn,mxn − p1‖
= ‖xn − p1‖ − ‖xn+m − p1‖+ ‖p1 −Rn,mp1‖ → 0 as n →∞.

Hence bn,m → 0 as n →∞ and for all m ≥ 1.
Finally, from the inequality

an+m(t) = ‖txn+m + (1− t)p1 − p2‖
≤ bn,m + ‖Rn,m(txn + (1− t)p1)− p2‖
≤ bn,m + an(t) + ‖Rn,mp2 − p2‖ ,

it follows that

lim sup
m→∞

an+m(t) ≤ lim sup
m→∞

bn,m + an(t) + lim sup
m→∞

‖Rn,mp2 − p2‖ .

That is,

lim sup
m→∞

am(t) ≤ lim inf
n→∞

an(t).

Hence, limn→∞ ‖txn + (1− t)p1 − p2‖ exists for any t ∈ [0, 1].
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This completes the proof.
Lemma 3.3. Let C be a nonempty closed convex subset of a uniformly convex
Banach space E and Ti(i = 1, 2, 3) be nonexpansive selfmaps on C. Let {xn} be the
sequence defined in (1.2) with F 6= φ and

∑∞
n=1 γ

(j)
n < ∞ for j = 1, 2, 3. Then, for

any p1, p2 ∈ F, limn→∞ 〈xn, J(p1 − p2)〉 exists; in particular, 〈p− q, J(p1 − p2)〉 =
0 for all p, q ∈ ωw(xn).
Proof. Take x = p1 − p2 with p1 6= p2 and h = t(xn − p1) in the inequality (2.1)
to get:

1
2
‖p1 − p2‖2 + t 〈xn − p1, J(p1 − p2)〉 ≤ 1

2
‖txn + (1− t)p1 − p2‖2

≤ 1
2
‖p1 − p2‖2 + t 〈xn − p1, J(p1 − p2)〉

+b(t ‖xn − p1‖).
As supn≥1 ‖xn − p1‖ ≤ M´ for some M´> 0, it follows that

1
2
‖p1 − p2‖2 + t lim sup

n→∞
〈xn − p1, J(p1 − p2)〉 ≤ 1

2
lim

n→∞
‖txn + (1− t)p1 − p2‖2

≤ 1
2
‖p1 − p2‖2 + b(tM´)

+t lim inf
n→∞

〈xn − p1, J(p1 − p2)〉 .

That is,

lim sup
n→∞

〈xn − p1, J(p1 − p2)〉 ≤ lim inf
n→∞

〈xn − p1, J(p1 − p2)〉+
b(tM´)
tM´

M´.

If t → 0, then limn→∞ 〈xn − p1, J(p1 − p2)〉 exists for all p1, p2 ∈ F ; in particular,
we have 〈p− q, J(p1 − p2)〉 = 0 for all p, q ∈ ωw(xn).
Lemma 3.4. Let C be a nonempty closed convex subset of a uniformly convex
Banach space E and Ti(i = 1, 2, 3) be nonexpansive selfmaps on C. Let {xn} be
the sequence defined in (1.2) with F 6= φ. If, for each j = 1, 2, 3; β(j)

n ∈ [δ, 1 − δ]

for some δ ∈ (0,
1
2
) and

∑∞
n=1 γ

(j)
n < ∞, then

lim
n→∞

‖xn − Tixn‖ = 0 for i = 1, 2, 3.

Proof. Let p ∈ F. As proved in Lemma 3.1, limn→∞ ‖xn − p‖ exists and let it be
c. Let M be the real number introduced in the proof of Lemma 3.1. When c = 0,
there is nothing to prove. Assume c > 0.

Observe that

‖zn − p‖ =
∥∥∥α(3)

n xn + β(3)
n T3xn + γ(3)

n u(3)
n − p

∥∥∥

≤ β(3)
n ‖T3xn − p‖+ (1− β(3)

n ) ‖xn − p‖+ γ(3)
n

∥∥∥u(3)
n − xn

∥∥∥
≤ β(3)

n ‖xn − p‖+ (1− β(3)
n ) ‖xn − p‖+ γ(3)

n M

= ‖xn − p‖+ γ(3)
n M (3.1)
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and

‖yn − p‖ =
∥∥∥β(2)

n (T2zn − p) + (1− β(2)
n )(xn − p) + γ(2)

n (u(2)
n − xn)

∥∥∥

≤ β(2)
n ‖T2zn − p‖+ (1− β(2)

n ) ‖xn − p‖+ γ(2)
n

∥∥∥u(2)
n − xn

∥∥∥
≤ β(2)

n ‖zn − p‖+ (1− β(2)
n ) ‖xn − p‖+ γ(2)

n M. (3.2)

From (3.1) and (3.2), we get

‖yn − p‖ ≤ ‖xn − p‖+
(
β(2)

n γ(3)
n + γ(2)

n

)
M.

Taking lim sup on both sides, we have

lim sup
n→∞

‖yn − p‖ ≤ c. (3.3)

We note that:∥∥∥T1yn − p + γ(1)
n (u(1)

n − xn)
∥∥∥ ≤ ‖T1yn − p‖+ γ(1)

n

∥∥∥u(1)
n − xn

∥∥∥
≤ ‖yn − p‖+ γ(1)

n M.

By applying lim sup on both sides of this inequality and then using (3.3), we get

lim sup
n→∞

∥∥∥T1yn − p + γ(1)
n (u(1)

n − xn)
∥∥∥ ≤ c.

Also ∥∥∥xn − p + γ(1)
n (u(1)

n − xn)
∥∥∥ ≤ ‖xn − p‖+ γ(1)

n

∥∥∥u(1)
n − xn

∥∥∥
≤ ‖xn − p‖+ γ(1)

n M

gives that

lim sup
n→∞

∥∥∥xn − p + γ(1)
n (u(1)

n − xn)
∥∥∥ ≤ c.

Further, limn→∞ ‖xn+1 − p‖ = c means that

lim
n→∞

∥∥∥β(1)
n (T1yn − p + γ(1)

n (u(1)
n − xn)) + (1− β(1)

n )(xn − p + γ(1)
n (u(1)

n − xn))
∥∥∥ = c.

Now by Lemma 2.5, we obtain

lim
n→∞

‖xn − T1yn‖ = 0.

Since

‖xn − p‖ ≤ ‖xn − T1yn‖+ ‖T1yn − p‖
≤ ‖xn − T1yn‖+ ‖yn − p‖ ,

therefore we obtain

c ≤ lim inf
n→∞

‖yn − p‖ ≤ lim sup
n→∞

‖yn − p‖ ≤ c.
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That is,

lim
n→∞

‖yn − p‖ = c.

Now limn→∞ ‖yn − p‖ = c means that

lim
n→∞

∥∥∥β(2)
n (T2zn − p + γ(2)

n (u(2)
n − xn)) + (1− β(2)

n )(xn − p + γ(2)
n (u(2)

n − xn))
∥∥∥ = c.

Moreover,

lim sup
n→∞

∥∥∥T2zn − p + γ(2)
n (u(2)

n − xn)
∥∥∥ ≤ c

and

lim sup
n→∞

∥∥∥xn − p + γ(2)
n (u(2)

n − xn)
∥∥∥ ≤ c.

So again by Lemma 2.5, we have

lim
n→∞

‖T2zn − xn‖ = 0.

Now

‖xn − p‖ ≤ ‖xn − T2zn‖+ ‖T2zn − p‖
≤ ‖xn − T2zn‖+ ‖zn − p‖ ,

yields:

c ≤ lim inf
n→∞

‖zn − p‖ ≤ lim sup
n→∞

‖zn − p‖ ≤ c.

That is,

lim
n→∞

‖zn − p‖ = c,

or

lim
n→∞

∥∥∥β(3)
n (T3xn − p + γ(3)

n (u(3)
n − xn)) + (1− β(3)

n )(xn − p + γ(3)
n (u(3)

n − xn))
∥∥∥ = c

and hence again by Lemma 2.5,

lim
n→∞

‖T3xn − xn‖ = 0.

Next

‖T2xn − xn‖ ≤ ‖T2xn − T2zn‖+ ‖T2zn − xn‖
≤ ‖xn − zn‖+ ‖T2zn − xn‖
≤ β(3)

n ‖xn − T3xn‖+ ‖T2zn − xn‖+ γ(3)
n M

gives that

lim
n→∞

‖T2xn − xn‖ = 0.

Finally,

‖T1xn − xn‖ ≤ ‖T1xn − T1yn‖+ ‖T1yn − xn‖
≤ ‖xn − yn‖+ ‖T1yn − xn‖
≤ β(2)

n ‖xn − T2zn‖+ ‖T1yn − xn‖+ γ(2)
n M
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implies that

lim
n→∞

‖T1xn − xn‖ = 0.

From the above conclusions, we have

lim
n→∞

‖Tixn − xn‖ = 0 for i = 1, 2, 3.

Lemma 3.5. Let C be a nonempty closed convex subset of a uniformly convex
Banach space E and let Ti : C → C(i = 1, 2) be nonexpansive maps with F 6= φ

and
∑∞

n=1 γ
(j)
n < ∞ for each j = 1, 2, 3. Then, for the sequence {xn} given by

(1.3), where β(j)
n ∈ [δ, 1− δ] for some δ ∈ (0, 1) and j = 1, 2, we have

lim
n→∞

‖xn − Tixn‖ = 0 for i = 1, 2.

Proof. Let p ∈ F. If we choose T3 = T1, then as in Lemma 3.4, we can show that

lim
n→∞

‖xn − T1yn‖ = 0

and

lim
n→∞

‖T2zn − xn‖ = 0.

Since

‖xn − yn‖ ≤ β(2)
n ‖xn − T2zn‖+ γ(2)

n

∥∥∥u(2)
n − xn

∥∥∥ → 0 as n →∞,

therefore we have

‖T1xn − xn‖ ≤ ‖T1xn − T1yn‖+ ‖xn − T1yn‖
≤ ‖xn − yn‖+ ‖xn − T1yn‖ → 0 as n →∞.

On the other hand

‖xn − zn‖ ≤ β(3)
n ‖xn − T1xn‖+ γ(3)

n

∥∥∥u(3)
n − xn

∥∥∥ → 0 as n →∞,

gives that

‖T2xn − xn‖ ≤ ‖T2xn − T2zn‖+ ‖T2zn − xn‖
≤ ‖xn − zn‖+ ‖T2zn − xn‖ → 0 as n →∞.

This completes the proof.
Remark 3.1. A comparision of the statements of Lemma 3.4 and Lemma 3.5
reveals that replacement of the scheme (1.2) of three maps by the scheme (1.3)
of two maps, makes the condition 0 < β(3)

n < 1 superfluous so that the scheme
(1.3) can be used to approximate the common fixed points under a free parameter .
Moreover, all the above Lemmas 3.1-3.5 which hold for the scheme (1.2), also hold
for the scheme (1.3).

4. Weak and Strong Convergence Theorems

In this section, we prove our weak and strong convergence theorems.
Theorem 4.1. Let C be a nonempty closed convex subset of a uniformly convex
Banach space E and Ti : C → C(i = 1, 2, 3) be nonexpansive maps. Let {xn} be the
sequence defined in (1.2) with F 6= φ and for each j = 1, 2, 3; β(j)

n ∈ [δ, 1 − δ] for

some δ ∈ (0,
1
2
) and

∑∞
n=1 γ

(j)
n < ∞. Assume that one of the following conditions

holds: (1) E satisfies the Opial property; (2) E has a Fréchet differentiable norm;
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(3) E∗ has the Kadec-Klee property. Then {xn} converges weakly to some p ∈ F.
Proof. Let p ∈ F. Then limn→∞ ‖xn−p‖ exists by Lemma 3.1. Since E is reflexive,
there exists a subsequence {xni

} of {xn} converging weakly to some z1 ∈ C. By
Lemma 3.4 and Lemma 2.3, limn→∞ ‖xn−Tixn‖ = 0 and I −Ti is demiclosed at 0
for each i = 1, 2, 3, respectively. Therefore, we obtain Tiz1 = z1 for each i = 1, 2, 3.
That is, z1 ∈ F. In order to show that {xn} converges weakly to z1, take an other
subsequence {xnj

} of {xn} converging weakly to some z2 ∈ C. Again, as before,
we can prove that z2 ∈ F. Next, we prove that z1 = z2. Assume (1) is given and
suppose that z1 6= z2. Then by the Opial property, we obtain:

lim
n→∞

‖xn − z1‖ = lim
ni→∞

‖xni
− z1‖

< lim
ni→∞

‖xni − z2‖
= lim

n→∞
‖xn − z2‖

= lim
nj→∞

‖xnj − z2‖
< lim

nj→∞
‖xnj

− z1‖
= lim

n→∞
‖xn − z1‖.

This contradiction implies that z1 = z2. Next suppose that (2) is satisfied. From
Lemma 3.3, we have that 〈p− q, J(p1 − p2)〉 = 0 for all p, q ∈ ωw(xn). Now
‖z1 − z2‖2 = 〈z1 − z2, J(z1 − z2)〉 = 0 gives that z1 = z2. Finally, let (3) be
given. As limn→∞ ‖txn + (1− t)z1 − z2‖ exists, therefore by Lemma 2.4, we obtain
z1 = z2. Hence xn ⇀ p ∈ F. This completes the proof.

The following results are immediate consequences of our weak convergence the-
orem.
Corollary 4.1 [7, Theorem 3.2]. Let E be a uniformly convex Banach space sat-
isfying the Opial property or whose norm is Fréchet differentiable. Let C be a
nonempty closed convex subset of E and T1, T2 : C → C be nonexpansive maps
with F 6= φ. For an arbitrary x1 ∈ C, define {xn} by (1.1), where αn, βn ∈ [δ, 1−δ]

for some δ ∈ (0,
1
2
). Then {xn} converges weakly to some p ∈ F.

Corollary 4.2 [8, Theorem 4.1]. Let E be a uniformly convex Banach space and
E∗ has the Kadec-Klee property. Let C be a nonempty closed convex subset of E
and T1, T2 : C → C be nonexpansive maps with F 6= φ. For an arbitrary x1 ∈ C,

define {xn} by (1.1), where αn, βn ∈ [δ, 1 − δ] for some δ ∈ (0,
1
2
). Then {xn}

converges weakly to some p ∈ F.
Corollary 4.3 [17, Theorem 1]. Let E be a uniformly convex Banach space sat-
isfying the Opial property. Let C be a nonempty closed convex subset of E and
T1, T2 : C → C be nonexpansive maps with F 6= φ. For an arbitrary x1 ∈ C, define

{xn} by (1.4), where β(1)
n , β(2)

n ∈ [δ, 1−δ] for some δ ∈ (0,
1
2
). Then {xn} converges

weakly to some p ∈ F.

To prove our strong convergence theorem, we need the following:
Definition 4.1. A family {Ti : i = 1, 2, 3, ..., n} of maps is said to satisfy
condition(A) if there exists a nondecreasing function f : [0,∞) → [0,∞) with
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f(0) = 0, f(r) > 0 for all r ∈ (0,∞) such that 1
n (

∑n
i=1 ‖x− Tix‖) ≥ f(d(x, F´)) for

all x ∈ C, where d(x, F´) = inf{‖x− p‖ : p ∈ F´= ∩n
i=1F (Ti)}.

It is remarked that the condition(A) reduces to the condition(I) in ( [24], p.375)
when Ti = T for i = 1, 2, 3, ..., n.

By using the condition(A), we obtain a strong convergence theorem; a general-
ization of Theorem 2.4 in [6].
Theorem 4.2. Let C be a nonempty closed convex subset of a uniformly convex
Banach space E and Ti : C → C(i = 1, 2, 3) be nonexpansive maps. Let {xn} be
the sequence in (1.2) with F 6= φ and for each j = 1, 2, 3; β(j)

n ∈ [δ, 1− δ] for some

δ ∈ (0,
1
2
) and

∑∞
n=1 γ

(j)
n < ∞. Assume that T1, T2, T3 satisfy the condition (A).

Then {xn} converges strongly to some p ∈ F.
Proof. As in Lemma 3.1, we have

‖xn+1 − p‖ ≤ ‖xn − p‖+ (γ(1)
n + γ(2)

n + γ(3)
n )M. (4.1)

This gives that

inf
p∈F

‖xn+1 − p‖ ≤ inf
p∈F

‖xn − p‖+ (γ(1)
n + γ(2)

n + γ(3)
n )M.

That is,

d(xn+1, F ) ≤ d(xn, F ) + (γ(1)
n + γ(2)

n + γ(3)
n )M. (4.2)

Comparing Lemma 2.1 and the inequality (4.2), we deduce that limn→∞ d(xn, F )
exists. From Lemma 3.4, we have

lim
n→∞

‖Tixn − xn‖ = 0 for each i = 1, 2, 3.

Hence, by the condition(A), limn→∞ f(d(xn, F )) = 0. Since f is nondecreasing and
f(0) = 0, therefore, we get limn→∞ d(xn, F ) = 0.

Next, we prove that {xn} is a Cauchy sequence. Let hn = (γ(1)
n + γ

(2)
n + γ

(3)
n )M.

Let ε > 0. Since limn→∞ d(xn, F ) = 0 and
∑∞

n=1 hn < ∞ , there exists an integer
n0 such that for all n ≥ n0,

d(xn, F ) <
ε

4
and

∞∑

j=n0

hj <
ε

6
.

In particular,

d(xn0 , F ) <
ε

4
.

That is,

inf
p∈F

‖xn0 − p‖ <
ε

4
.

Thus there must exist p∗ ∈ F such that

‖xn0 − p∗‖ <
ε

3
.
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Now, for n ≥ n0, we have from the inequality (4.1) that

‖xn+m − xn‖ ≤ ‖xn+m − p∗‖+ ‖xn − p∗‖
≤ 2

[
‖xn0 − p∗‖+

∑n0+m−1

j=n0
hj

]

< 2
( ε

3
+

ε

6

)
= ε.

Hence, {xn} is a Cauchy sequence in C and it must converge to a point of C. Let
limn→∞ xn = q (say). Since limn→∞ d(xn, F ) = 0 and F is closed, therefore q ∈ F.
This completes the proof of the theorem.
Corollary 4.4 [17, Theorem 2]. Let C be a nonempty bounded closed convex sub-
set of a uniformly convex Banach space E and let T1, T2 : C → C be nonexpansive
maps satisfying the condition(A). Let {xn} given by (1.4) be such that for each
j = 1, 2, {u(j)

n } is a sequence in C and {α(j)
n }, {β(j)

n } and {γ(j)
n } are sequences in

[0, 1] with 0 < δ ≤ β(1)
n , β(2)

n ≤ 1 − δ < 1, α
(j)
n + β(j)

n + γ
(j)
n = 1 for all n ≥ 1 and∑∞

n=1 γ
(j)
n < ∞. If F 6= φ, then {xn} converges strongly to some p ∈ F.

Corollary 4.5 [24, Theorem 1]. Let C be a nonempty bounded closed convex sub-
set of a uniformly convex Banach space E and T : C → C a nonexpansive map
satisfying the condition(I). Generate the sequence {xn} by:

{
x1 ∈ C,

xn+1 = αnTxn + (1− αn)xn, for all n ≥ 1,

where {αn} is a sequence in [0, 1] with 0 < δ ≤ αn ≤ 1 − δ < 1. Then {xn}
converges strongly to some p ∈ F (T ).
Definition 4.2. We say a family {Ti : i = 1, 2, 3, ..., n} of maps satisfies condition(B)
if there exists a nondecreasing function f : [0,∞) → [0,∞) with f(0) = 0, f(r) > 0
for all r ∈ (0,∞) such that max1≤i≤n ‖x− Tix‖ ≥ f(d(x, F´)) for all x ∈ C.
Remark 4.1. From the procedures of proof of the above results, it is obvious that:
(i) Condition(A) in Theorem 4.2 and Corollary 4.4 can be replaced by the condi-
tion(B).
(ii) Weak and strong convergence results for the scheme (1.3), similar to Theorems
4.1- 4.2, with the help of Lemma 3.5 can be established. These new restricted results
will still generalize all the above corollaries (Corollaries 4.1-4.4).
(iii) By modifying the schemes (1.2) and (1.3), we can prove all the above theorems
and corollaries for asymptotically nonexpansive maps with suitable changes. We
leave the details to the reader.
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