
Coincidence and Fixed Points of Nonself Contractive Maps

with Applications

A.R. Khan∗ and A.A. Domlo
Department of Mathematical Sciences

King Fahd University of Petroleum & Minerals
Dhahran 31261, Saudi Arabia

Abstract

We prove some coincidence and common fixed point theorems for nonself
maps (not necessarily continuous) satisfying different contractive conditions on
an arbitrary nonempty subset of a metric space. As applications, we demon-
strate the existence of: (i) common fixed points of the maps from the set of best
approximations, (ii) solutions to nonlinear eigenvalue problems. Our work sets
analogues, unifies and improves the earlier results of a number of authors.
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1 Introduction

In 1982, Sessa [15] introduced the concept of weakly commuting maps to generalize commu-
tativity. Jungck [9], in 1986, generalized weak commutativity to the notion of compatible
maps. In 1996, Jungck [11] further weakened compatibility to the concept of weak compatibil-
ity. Since then, many interesting fixed point theorems of compatible and weakly compatible
maps under various contractive conditions have been obtained by a number of authors (see,
for example, Aamri and El Moutawakil [1], Jachymski [7], Jungck [8-11], and Pant [13]).
Aamri and El Moutawakil [1], in 2002, defined the property (E ·A) for selfmaps on a metric
space X which always holds for any two noncompatible maps (need not be continuous) on
X and proved two common fixed point theorems for weakly compatible maps satisfying the
property (E ·A) and certain strict contractive conditions. Very recently, Ćirić [4] has estab-
lished fixed point theorems for nonself maps satisfying certain contractive conditions on a
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nonempty closed subset of a metric space of hyperbolic type (Takahashi [17] uses the term
“convex metric space”).

In [9], Jungck generalized the Banach contraction principle to the case of two commuting
selfmaps on a metric space. Baskaran and Subrahmanyam [3] noted that the commutativity
of the maps in Jungck’s theorem can be replaced by weak commutativity and then they
obtained some common fixed point theorems for two maps on the closed ball of a Banach
space. They also provided a solution to a nonlinear eigenvalue problem for operators on the
closed ball of a Banach space. The existence of fixed points of maps defined on closed balls
has been studied by several authors; for example, see Delbosco [5] and Liu [12].

In this paper, we establish new results related to coincidence and common fixed points
of weakly compatible nonself maps satisfying the property (E · A) and strict contractive
conditions on an arbitrary nonempty subset of a metric space. Applications of our results to
best approximation and eigenvalue problems will also be given.

2 Preliminaries

Let f and g be selfmaps of a metric space (X, d). The maps f and g are

(1) weakly commuting if d(fgx, gfx) ≤ d(fx, gx), for all x ∈ X,

(2) compatible if lim
n→∞

d(fgxn, gfxn) = 0 whenever {xn} is a sequence in X such that
lim

n→∞
fxn = lim

n→∞
gxn = t for some t ∈ X,

(3) weakly compatible if they commute at their coincidence points; i.e., if fu = gu for
some u in X, then fgu = gfu,

(4) satisfying the property (E · A) if there exists a sequence {xn} such that lim
n→∞

fxn =
lim

n→∞
gxn = t for some t ∈ X.

The map f is nonexpansive if d(fx, fy) ≤ d(x, y), for all x, y ∈ X. We say f is g-nonexpansive
if d(fx, fy) ≤ d(gx, gy), for all x, y ∈ X.

Note that weakly commuting maps are compatible and compatible maps are weakly com-
patible but the converse in each case does not hold (for examples and counter-examples, see
[1], [9] and [11]). It is easy to see that two noncompatible maps satisfy the property (E · A)
(see [1], Remark 1). Some fixed point results for noncompatible maps are obtained in [13].

Let M be a subset of X and u ∈ X. We denote by PM (u), the set of best approximations
to u from M ; that is,

PM (u) = {y ∈ M : d(y, u) = d(u, M)},

where d(u, M) = inf{d(u, m) : m ∈ M}. The existence of common fixed points in PM (u)
has been studied by various authors; see Al-Thagafi [2], Hussain and Khan [6] and Shahzad
[16].

3 Coincidence Point Results

Throughout this section, B denotes an arbitrary nonempty subset of a metric space X. We
obtain some coincidence and common fixed point theorems for weakly compatible nonself
maps (which need not be continuous) satisfying the property (E · A) and strict contractive

2



conditions. We begin with an extension of Theorem 1 of Aamri and El Moutawakil [1] for
nonself maps on B ⊆ X; our result is an improvement of Theorem 2.2 of Ćirić [4] in the sense
that continuity of the map is removed.

Theorem 3.1 Let f, g : B → X be such that:

(i) f and g satisfy the property (E ·A),

(ii) gB is complete or fB is complete with fB ⊆ gB,

(iii) for all x 6= y in B, the following contractive condition holds:

d(fx, fy) < max
{

d(gx, gy), rd(fx, gx) + αd(fy, gy),
1
2
[d(fx, gy) + d(fy, gx)]

}
(3.1)

where r ∈ [0,+∞) and α ∈ [0, 1).

Then f and g have a coincidence point in B. Further, if a is a coincidence point of f and g
such that fa ∈ B and f and g are weakly compatible, then f and g have a unique common
fixed point in B.

Proof. By (i), there exists a sequence {xn} in B such that lim
n→∞

fxn = lim
n→∞

gxn = t, for
some t ∈ X. If gB is complete, then lim

n→∞
gxn = t = ga, for some a ∈ B. Now, we show that

fa = ga. By (iii), we have

d(fxn, fa) < max
{

d(gxn, ga), rd(fxn, gxn) + αd(fa, ga),
1
2
[d(fxn, ga) + d(fa, gxn)]

}
.

Taking the limit as n →∞, we obtain

d(ga, fa) ≤ max
{

d(ga, ga), rd(ga, ga) + αd(fa, ga),
1
2
[d(ga, ga) + d(fa, ga)]

}
= max

{
αd(fa, ga),

1
2
d(fa, ga)

}
.

This is possible only if d(ga, fa) = 0; that is, fa = ga.
Now, if fa ∈ B and f and g are weakly compatible, then ffa = fga = gfa = gga. We

prove that fa is a common fixed point. Suppose not; then

d(fa, ffa) < max
{

d(ga, gfa), rd(fa, ga) + αd(ffa, gfa),
1
2
[d(fa, gfa) + d(ffa, ga)]

}
= d(fa, ffa)

a contradiction. Thus ffa = gfa = fa. Similarly, we can prove that the case fB is complete
and fB ⊆ gB. Finally, assume that a 6= b are two common fixed points of f and g. Then by
(iii), we get

d(a, b) = d(fa, fb) < max
{

d(ga, gb), rd(fa, ga) + αd(fb, gb),
1
2
[d(fa, gb) + d(fb, ga)]

}
= d(a, b)

a contradiction. Hence a = b.
The significance of the factor rd(fx, gx) + αd(fy, gy) in (3.1) is that it makes Theorem 1

in [1] a special case of Theorem 3.1 with r = α = 1/2.
The following example shows that our theorem works where Theorem 1 of Aamri and El

Moutawakil [1] is not applicable.
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Example 3.2 Let X be the usual space of reals. Define f(x) = x2 and g(x) = x4. It is easy

to verify that f and g satisfy the property (E ·A) for the sequence
{

1 +
1
n

}
, n = 1, 2, 3, . . .

Note that the contractive condition of Theorem 1 in [1] is not satisfied (take x = 1 and
y = 0). Now, if f, g : B → X where B = [1, 2], then for all x 6= y in B, (3.1) holds because
|f(x)− f(y)| = |x2 − y2| < |x4 − y4| = |g(x)− g(y)|. Thus all the conditions of Theorem 3.1
are satisfied and 1 is the common fixed point of f and g in [1, 2].

In the presence of a contractive condition such as (3.1), it is common to study results
with a contractive condition in terms of a suitable function; we refer the reader to Amri and
El Moutawakil ([1], Corollaries 2-5, Theorem 2), Ćirić ([4], p. 29) and Jachymski ([7], Lemma
2.2, Corollary 3.2, Theorem 3.3, Theorem 5.1).

In the following result, we replace the property (E · A) in Theorem 3.1 by a map φ
satisfying a contractive condition. The proof is similar to that of Corollary 2 in [1] and hence
is omitted.

Corollary 3.3 Let f, g : B → X be such that:

(i) there exists a map φ : B → R+ (the set of all nonnegative reals) such that d(fx, gx) <
φ(gx)− φ(fx), for all x in B,

(ii) gB is complete or fB is complete with fB ⊆ gB,

(iii) for all x 6= y in B, (3.1) holds.

Then f and g have a coincidence point in B. Further, if a is a coincidence point of f and g
such that fa ∈ B and f and g are weakly compatible, then f and g have a unique common
fixed point.

Suppose that F : R+ → R+ is nondecreasing and 0 < F (t) < t, for all t ∈ (0,∞).
The next theorem deals with four nonself maps under a contractive condition in terms of
the function F ; this theorem is a considerable improvement of Theorem 2 of Aamri and El
Moutawakil [1] for nonself maps on an arbitrary subset of a metric space (compare our result
also with Theorem 2.3 in [4]).

Theorem 3.4 Let f, g, p, q : B → X be such that:

(i) the pair (f, p) or (g, q) satisfies the property (E ·A),

(ii) the range of one of the maps f, g, p or q is complete, fB ⊆ qB and gB ⊆ pB,

(iii) for all x, y in B, the following condition holds:

d(fx, gy) ≤ F (max{d(px, qy), d(px, gy), d(qy, gy)}). (3.2)

Then:

(a) f and p have a coincidence point, and g and q have a coincidence point,

(b) if a is a coincidence point of f and p such that fa ∈ B and f and p are weakly
compatible, then they have a common fixed point,
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(c) if b is a coincidence point of g and q such that gb ∈ B and g and q are weakly compatible,
then they have a common fixed point,

(d) f, g, p and q have a unique common fixed point provided (b) and (c) hold.

Proof. (a) Assume that g and q satisfy the property (E ·A); that is, there exists a sequence
{xn} in B such that lim

n→∞
gxn = lim

n→∞
qxn = t, for some t ∈ X. Since gB ⊆ pB, there exists

a sequence {yn} in B with gxn = pyn, for all n. So, lim
n→∞

pyn = t. By (iii), we have

d(fyn, gxn) ≤ F (max{d(pyn, qxn), d(pyn, gxn), d(qxn, gxn)})
≤ F (d(gxn, qxn))
< d(gxn, qxn).

Thus lim
n→∞

d(fyn, t) = 0 and so, lim
n→∞

fyn = t. Let pB be complete. Then t = pa, for some

a ∈ B. By (iii), we get

d(fa, gxn) ≤ F (max{d(pa, qxn), d(pa, gxn), d(qxn, gxn)}).

Taking the limit as n →∞, it follows that fa = pa. Also fB ⊆ qB implies that fa = qb, for
some b ∈ B. We show that fa = gb. Suppose not; then

d(fa, gb) ≤ F (max{d(pa, qb), d(pa, gb), d(qb, gb)}) ≤ F (d(fa, gb))
< d(fa, gb)

a contradiction. Thus fa = pa = gb = qb.
(b) If fa ∈ B and f and p are weakly compatible, then ffa = fpa = pfa = ppa. Hence

fa is a common fixed point of f and p.
(c) Similar to the case (b).
(d) We show that fa is a common fixed point of f, g, p and q. If not; then

d(ffa, fa) = d(ffa, gb) ≤ F (max{d(pfa, qb), d(pfa, gb), d(qb, gb)})
≤ F (d(ffa, fa))
< d(ffa, fa)

sets a contradiction. Thus fa = ffa = pfa. Similarly, gb = ggb = qgb. Since fa = gb,
therefore fa is a common fixed point of f, g, p and q. The proof is similar if qB, fB or gB is
complete. Finally, if u 6= v are two common fixed points of f, g, p and q, then

d(u, v) = d(fu, gv) ≤ F (max{d(pu, qv), d(pu, gv), d(qv, gv)}) ≤ F (d(u, v)) < d(u, v)

gives a contradiction. Thus u = v proves the uniqueness of the common fixed point.

4 Invariant Approximation

In this section, we obtain common fixed points of best approximation. Our work provides
analogues of most of the well-known results for the class of weakly compatible maps on a
metric space.

Recently, Hussain and Khan [6] have obtained in Theorem 3.1, a generalization of The-
orem 3 by Sahab et al. [14] for a class of noncommuting selfmaps on a Hausdorff locally
convex space. An analogue of Theorem 3.1 in [6] is given below in the setup of an arbitrary
metric space.
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Theorem 4.1 Let M be a subset of a metric space X and f and g be selfmaps of X. Assume
that u is a common fixed point of f and g, and D = PM (u) is nonempty. Suppose that:

(i) f and g are weakly compatible and satisfy the property (E ·A) on D,

(ii) gD = D, f(∂M) ⊆ M (∂M denotes the boundary of M), and fD or D is complete,

(iii) f is g-nonexpansive on D ∪ {u},

(iv) for all x 6= y in D, (3.1) holds.

Then f and g have a unique common fixed point in PM (u).

Proof. Let y ∈ D. Then gy ∈ D. By the definition of PM (u), y ∈ ∂M and since
f(∂M) ⊆ M , it follows that fy ∈ M . As f is g-nonexpansive on D ∪ {u}, so

d(fy, u) = d(fy, fu) ≤ d(gy, gu) = d(gy, u).

Now, fy ∈ M and gy ∈ D imply that fy ∈ D; consequently, f and g are selfmaps of D. By
Theorem 3.1, there exists a unique b ∈ D such that b = fb = gb.

The following example illustrates our theorem.

Example 4.2 Let X = R and M = [1, 4]. Define f(x) =
1
3
(x + 2) and g(x) =

1
2
(x + 1).

The maps f and g being commuting are weakly compatible and satisfy the property (E · A)

for the sequence
{

1 +
1
n

}
, n = 1, 2, . . . . Also, |fx− fy| < |gx− gy|. All the conditions of

Theorem 4.1 are satisfied. Clearly, PM (0) = {1} and 1 is the common fixed point of f and g.

The existence of a unique common fixed point from the set of best approximations for
four weakly compatible maps is established in the next result. It is remarked that the study
of best approximations in the context of four maps is a new one in the literature.

Theorem 4.3 Let f, g, p and q be selfmaps of a metric space X and M be a subset of X.
Assume that u is a common fixed point of f, g, p and q, and D = PM (u) is nonempty. Suppose
that:

(i) the pairs (f, p) and (g, q) are weakly compatible, and the pair (f, p) or (g, q) satisfies
the property (E ·A) on D,

(ii) pD = D, qD = D, f(∂M) ⊆ M, g(∂M) ⊆ M , and D, fD, or gD is complete,

(iii) f is p-nonexpansive and g is q-nonexpansive on D ∪ {u},

(iv) for all x, y ∈ D, (3.2) holds.

Then f, g, p and q have a unique common fixed point in PM (u).

Proof. As in the proof of Theorem 4.1, we can prove that fy ∈ D and gy ∈ D. Thus f, g, p
and q are selfmaps of D. Therefore, by Theorem 3.4, there exists a unique b ∈ D such that
b is a common fixed point of f, g, p and q.

Following Al-Thagafi [2], we define for g : M → X, Cg
M (u) = {x ∈ M : gx ∈ PM (u)} and

Dg
M (u) = PM (u) ∩ Cg

M (u). Note that Dg
M (u) = PM (u) = Cg

M (u) whenever g is the identity
map on M .

We establish the analogues of Theorem 3.2 by Al-Thagafi [2] and Theorem 3.3 due to
Hussain and Khan [6] in the following result.
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Theorem 4.4 Let f and g be selfmaps of a metric space X and M be a subset of X. Assume
that u is a common fixed point of f and g, and D∗ = Dg

M (u) is nonempty. Suppose that:

(i) f and g are weakly compatible and satisfy the property (E ·A) on D∗,

(ii) g is nonexpansive on PM (u) ∪ {u} and f is g-nonexpansive on D∗ ∪ {u},

(iii) gD∗ = D∗, f(∂M) ⊆ M , and fD∗ or D∗ is complete,

(iv) for all x 6= y in D∗, (3.1) holds.

Then f and g have a unique common fixed point in D∗.

Proof. Let y ∈ D∗. Then gy ∈ D∗. By the definition of D∗, y ∈ ∂M and so fy ∈ M . As
f is g-nonexpansive on D∗ ∪ {u}, d(fy, u) = d(fy, fu) ≤ d(gy, u). Therefore, fy ∈ PM (u).
Since g is nonexpansive on PM (u) ∪ {u}, therefore

d(gfy, u) = d(gfy, gu) ≤ d(fy, u) = d(fy, fu) ≤ d(gy, gu) = d(gy, u).

Thus, gfy ∈ PM (u) and so fy ∈ Cg
M (u). Therefore, fy ∈ D∗. Hence f and g are selfmaps of

D∗. Thus, by Theorem 3.1, there exists a unique b ∈ D∗ ⊂ PM (u) such that b = fb = gb.

5 Eigenvalue Problems

The aim of this section is to seek solutions of certain nonlinear eigenvalue problems for
operators defined on a normed space and closed balls of a reflexive Banach space.

We now apply Theorem 3.1 to solve an eigenvalue problem as follows:

Theorem 5.1 Let X be a normed space and f be a selfmap of X with f(0) 6= 0. Suppose
that:

(i) there exists a sequence {xm} such that lim
m→∞

fnxm = lim
m→∞

xm = t for some t ∈ X,

where fn =
(

1− 1
n

)
f , n = 2, 3, 4, . . . ,

(ii) X or fX is complete,

(iii) for all x 6= y in X, the following condition holds:

‖fx− fy‖ ≤ max
{
‖x− y‖, r‖fnx− x‖+ α‖fny − y‖, 1

2
(‖fny − x‖+ ‖fnx− y‖)

}
(5.1)

where r ∈ [0,+∞) and α ∈ [0, 1).

Then Mn = 1/
(
1− 1

n

)
is an eigenvalue of f for each n > 1.

Proof. Clearly, fn and I (the identity map on X) are commuting and satisfy the property
(E · A). Note that ‖fnx− fny‖ < ‖fx− fy‖ for each n > 1. By this and (iii), for all x 6= y
in X and each n > 1, (3.1) is satisfied for the maps fn and I. By Theorem 3.1, there exists
xn ∈ X such that xn = fnxn for each n > 1; that is, fxn = Mnxn for each n > 1. This and
f(0) 6= 0 imply that xn 6= 0 for each n > 1. Thus, for each n > 1, xn is an eigenvector and
Mn is an eigenvalue for f .
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Example 5.2 Let X = R2 and f be defined by f(x, y) = (x−1, y+1). Clearly, f(0, 0) 6= (0, 0)
and (5.1) holds in view of |f(x1, y1)− f(x2, y2)| = |(x1, y1)− (x2, y2)|. Now, for the sequence
(xn, yn) =

(
1
n − 1, 1

n + 1
)
, n = 1, 2, . . .,

lim
n→∞

f2(xn, yn) = lim
n→∞

1
2
f(xn, yn) = (−1, 1) = lim

n→∞
(xn, yn).

Thus, by Theorem 5.1, M2 = 2 is an eigenvalue of f . The corresponding eigenvector is
(−1, 1).

In the sequel, B denotes the closed ball B = {x ∈ X : ‖x‖ ≤ r}.
For the solution of eigenvalue problems of nonself maps on closed balls, we need the

following result.

Theorem A ([5], p. 92). Let X be a reflexive Banach space and f : B → X be a weakly
continuous map. Suppose that for each x ∈ ∂B, one of the following conditions holds:

(i) ‖fx‖ ≤ max{‖fx− x‖, ‖x‖},

(ii) there exists p > 1 such that ‖fx‖p ≤ ‖fx− x‖p + ‖x‖p.

Then f has a fixed point in B.

Theorem 5.3 Let X be a reflexive Banach space and f : B → X be weakly continuous with
f(0) 6= 0. Suppose that for each x ∈ ∂B and for k ∈ (0, 1], one of the following conditions
holds:

(i) ‖fx‖ ≤ max{‖kfx− x‖, ‖x‖},

(ii) there exists p > 1 such that ‖fx‖p ≤ ‖kfx− x‖p + ‖x‖p.

Then M =
1
k

is an eigenvalue for f .

Proof. Let M =
1
k
, k ∈ (0, 1]. Define, fk = kf . Assume that (i) or (ii) is satisfied; then

we get one of the following:

(a) ‖fkx‖ ≤ ‖fx‖ ≤ max{‖fkx− x‖, ‖x‖},

(b) ‖fkx‖p ≤ ‖fx‖p ≤ {‖fkx− x‖p, ‖x‖p}.

By Theorem A, there exists u ∈ B such that fku = u. So fu = Mu. This and f(0) 6= 0
imply that u 6= 0. Thus u is an eigenvector for f and so M is an eigenvalue for f as desired.

As an application of Theorem 5.3, we obtain the following analogue of Theorem 3.2 in
[3].

Theorem 5.4 Let C be a closed and bounded subset of Rn and T : Lp(C) → Lp(C). Suppose
that:

(i) H = H(t, s) : C × R → R is weakly continuous with respect to s uniformly in t,

(ii) x(t) ∈ Lp(C) implies H(t, Tx(t)) ∈ Lp(C),
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(iii) for x(t) ∈ Lp(C) with ‖x(t)‖p = 1, ‖H(t, Tx(t))‖p ≤ max{1, ‖kH(t, Tx(t)) − x(t)‖p},
where k ∈ (0, 1],

(iv) H(t, T (0)) 6= 0.

Then the operator equation
H(t, Tx(t)) = ux(t) (5.2)

has a solution in B1, the closed unit ball of Lp(C), for each u =
1
k
, k ∈ (0, 1].

Proof. We know that Lp (1 < p < ∞) is a reflexive Banach space. The operator S defined
by Sx(t) = H(t, Tx(t)) maps Lp(C) into itself by (ii). In view of (iii), for the operator
S : B1 → Lp(C),

‖Sx(t)‖p ≤ max{‖x(t)‖p, ‖kSx(t)− x(t)‖p}

for each x(t) ∈ ∂B1 and k ∈ (0, 1]. Now all the conditions of Theorem 5.3 are satisfied and
hence for each u = 1

k , k ∈ (0, 1], we get, Sx(t) = ux(t); that is, the operator equation (5.2)
has a solution in B1 for each u = 1

k , k ∈ (0, 1].
The following example supports the above theorem.

Example 5.5 The eigenvalue problem

et − ‖x(t)‖ = ux(t)

has a nontrivial solution in the closed unit ball B1 of L2([0, 1]).

Solution Set H(t, s) = et − s, Tx(t) = ‖x(t)‖, C = [0, 1] and p = 2 in Theorem 5.4.
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