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1. Introduction

Probabilistic functional analysis is an important mathematical discipline because

of its applications to probabilistic models in applied problems. Random operator

theory is needed for the study of various classes of random equations. The study

of random fixed point theorems was initiated by the Prague school of probabilists

in the 1950s. The interest in this subject enhanced after publication of the survey

paper by Bharucha-Reid [4]. Random fixed point theory has received much attention

in recent years (see for example, Beg and Shahzad [2], Khan and Hussain [8, 9,10],

Lin [12], Sehgal and Singh [16], Shahzad and Khan [17], Tan and Yaun [19] and

Xu [21]). Recently, Shahzad and Latif [18] established a random coincidence point

theorem for a pair of commuting random operators defined on a separable weakly

compact star-shaped subset M of a Banach space. In this paper, we extend Shahzad

and Latif’s result to Fréchet spaces. We apply new result to prove random fixed

point and best approximation theorems for a noncontinuous multivalued map namely
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*-nonexpansive map defined on the subset M of a Fréchet space. Our work extends

results of Beg and Shahzad [1], Khan and Hussain [8, 10] and Tan and Yaun [19] and

provides stochastic version of the corresponding results of Carbone [5], Husain and

Latif [6], Khan and Hussain [7], Sahney et. al [14] and Xu [20].

2. Preliminaries

Let X be a complete metric space and (Ω,
∑

) a measurable space. Let CB(X) and

K(X) denote the families of all nonempty bounded closed subsets and all nonempty

compact subsets of X respectively. A mapping T : Ω → CB(X) is called measurable

if for any open subset C of X,

T−1(C) = {ω ∈ Ω : T (ω) ∩ C 6= φ} ∈ ∑
.

A mapping ξ : Ω → X is said to be a measurable selector of a measurable mapping

T : Ω → CB(X) if ξ is measurable and for any ω ∈ Ω, ξ(ω) ∈ T (ω). A mapping

T : Ω ×X → CB(X)( resp. f : Ω ×X → X) is called a random operator if for any

x ∈ X,T (., x)( resp. f(., x)) is measurable. A measurable mapping ξ : Ω → X is

called a random fixed point of a random operator T : Ω × X → CB(X)( resp. f :

Ω × X → X) if for every ω ∈ Ω, ξ(ω) ∈ T (ω, ξ(ω))( resp. f(ω, ξ(ω)) = ξ(ω)). A

measurable mapping ξ : Ω → X is a random coincidence point of random operators

T : Ω×X → CB(X) and f : Ω×X → X if for every ω ∈ Ω, f(ω, ξ(ω)) ∈ T (ω, ξ(ω)).

A Fréchet space X satisfies Opial’s condition if for every sequence {xn} in X weakly

convergent to x ∈ X, the inequality

lim inf
n→∞ d(xn, x) < lim inf

n→∞ d(xn, y)

holds for all y 6= x. Every Hilbert space and the space lp(1 ≤ p < ∞) satisfy Opial’s

condition. A subset M of X is said to be star-shaped with respect to q ∈ M if {(1−
t)x + tq : 0 ≤ t ≤ 1} ⊂ M for each x ∈ M. The star-shaped subsets include the

convex subsets as a proper subclass. A multivalued map T : X → CB(X) is said to

be demiclosed if for every sequence (net) {xn} in X and yn ∈ T (xn), n = 1, 2, . . . , such

that {xn} converges weakly to x and {yn} converges strongly to y, we have x ∈ X

and y ∈ T (x). A mapping f : X → X is called weakly continuous if {xn} converges

weakly to x implies {f(xn)} converges weakly to f(x). Also, a mapping f on a convex

set M is called affine if f(tx + (1 − t)y) = tf(x) + (1 − t)f(y) for all x, y ∈ M and

0 ≤ t ≤ 1.
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A mapping T : M → 2X is said to be (i) nonexpansive if for all x, y ∈ M,

H(T (x), T (y)) ≤ d(x, y)

where H is the Hausdorff metric on CB(X) induced by the metric d.

(ii) *-nonexpansive (cf. [6, 20]) if for all x, y ∈ M and ux ∈ Tx with d(x, ux) =

d(x, Tx) = inf {d(x, z) : z ∈ Tx}, there exists uy ∈ Ty with d(y, uy) = d(y, Ty) such

that

d (ux, uy) ≤ d(x, y)

(iii) upper semicontinuous (lower semicontinuous) if for any closed (open) subset

B of X, T−1(B) = {x ∈ M : T (x) ∩B 6= φ} is closed (open).

(iv) continuous if it is both upper semicontinuous and lower semicontinuous.

For each x ∈ M, we follow Xu [20] to define the set (possibly empty)

PT (x) = {ux ∈ Tx : d(x, ux) = d(x, Tx)}

Recall that the metric projection P : X → 2M is defined by

PM(x) = {m ∈ M : d(x, m) = d(x,M)}.
The concept of a *-nonexpansive multivalued mapping is different from continuity

of the map as is clear from the following:

Example 1.1. Let T : [0, 1] → 2[0,1] be a multivalued map defined by

Tx =




{1

2
}, x ∈ [0, 1

2
) ∪ (1

2
, 1]

[
1
4
, 3

4

]
, x = 1

2

Then PT (x) =
{

1
2

}
for every x ∈ [0, 1]. This implies that T is a *-nonexpansive

map.

H(T (
1

3
), T (

1

2
)) = H({1

2
}, [1

4
,
3

4
]) = max{0, 1

4
} =

1

4
>

1

6
= |1

3
− 1

2
|.

If V 1
4

is any small open neighbourhood of 1
4
, then the set

T−1(V 1
4
) = {x ∈ [0, 1] : Tx ∩ V 1

4
6= φ} = {1

2
}

is not open. Thus T is neither nonexpansive nor lower semicontinuous. Note that 1
2

is a fixed point of T.

Example 1.2. Let X = R2 be equipped with Euclidean norm and M =
{
(a, 0) : 1√

2
≤ a ≤ 1

}
∪

{(0, 0)}. Define T : M → 2X by

T (a, 0) =

{
(0, 1) if a 6= 0
L = the line segment [(0, 1), (1, 0)] if a = 0
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Then PT (a, 0) = {(0, 1)} for all (a, 0) ∈ M with a 6= 0 and PT (0, 0) =
(

1
2
, 1

2

)
.

Clearly T is *-nonexpansive but not a nonexpansive multifunction (cf. [16], p. 537).

A random operator T : Ω×M → 2X(resp.f : Ω×X → X) is said to be continuous

(weakly continuous, *-nonexpansive etc.) if for each ω ∈ Ω, T (ω, .) (resp. f(ω, .)) is

continuous (weakly continuous, *-nonexpansive etc.).

It is well known that a Hausdorff locally convex topological vector space X is

metrizable if and only if X has a countable base of absolutely convex neighbourhoods

of zero or, equivalently, X has a countable family of seminorms {pn} that generates

the locally convex topology on X. We can always assume that pn ≤ pn+1, n ≥ 1. A

function d : X ×X →R+ ∪ {0} given by

d(x, y) =
∞∑

n=1

cnpn(x− y)

1 + pn(x− y)

for x, y ∈ X with cn > 0 and
∞∑

n=1

cn < ∞, defines a metric on X.

A subspace M of X is said to be quasi-Chebyshev if PM(x) is a nonempty and

compact set in X for each x in X (cf. [10]).

Let f : M → X be a map. Then T : M → K(X) is called an f -nonexansive

mapping if H(T (x), T (y)) ≤ d(f(x), f(y)).

3. Results

Sahney et. al. [14] proved approximation results of very general nature in locally

convex spaces. Recently random fixed point results in the context of a Fréchet space

X have been studied by Shahzad and Khan in [17]. We establish random coincidence

point, random fixed point and random best approximation results for multivalued

maps defined on suitable subsets of a Fréchet space. Our results are improvements,

generalizations or stochastic versions of several known results.

We shall need the following variant of Nadler’s result.

Lemma 3.1. ([15], Lemma) Let X be a Fréchet space. If A,B ∈ K(X), then for

each a ∈ A, there is a b ∈ B such that d(a, b) ≤ H(A,B).

Applying the above lemma, analogue of Lemma 3.1 due to Latif and Tweddle [11]

is established in the following.
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Lemma 3.2. Let M be a nonempty weakly compact subset of a Fréchet X satisfying

Opial’s condition. Let f : M → X be a weakly continuous map and T : M → K(X)

an f -nonexpansive multivalued map. Then f − T is demiclosed.

Proof. Let {xa} be a net in M and yα ∈ (f − T ) (xα) be such that xα −→ x

weakly and yα −→ y. Obviously x ∈ M and f (xα) −→ f(x)weakly. Since yα ∈
f (xα)− T (xα) ; therefore we have yα = f (xα)− uα, for some uα ∈ T (xα) . As T (x)

is compact, by Lemma 3.1, there is a uα ∈ T (x) such that

d (uα, vα) ≤ H (T (xα) , T (x)) .

The f -nonexpansiveness of T gives that

H (T (xα) , T (x)) ≤ d (f (xα) , f(x)) .

Thus

d (uα, vα) ≤ d (f (xα) , f(x)) .

Passing to the limit with respect to α, we obtain

lim inf d (f (xα) , f(x)) ≥ lim inf d (uα, vα)
= lim inf d (f (xα) , yα + vα) .

(1)

By compactness of T (x), for a convenient subnet still denoted by {vα} , we have

vα −→ v ∈ T (x). Consequently (1) yields

lim inf d (f (xα) , f(x)) ≥ lim inf d (f (xα) , y + v) .

Since X satisfies Opial’s condition and f (xα) → f(x) weakly, f(x) = y + v. Thus

y = f(x)− v ∈ f(x)− T (x), which proves that f − T is demiclosed.

Theorem 3.3. ([2], Theorem 5.1). Let (X, d) be a separable complete metric space,

T : Ω×X → CB(X) a multivalued random operator, and f : Ω×X → X a continuous

random operator such that T (ω, X) ⊂ f(ω, X) for each ω ∈ Ω. If f and T commute

and for all x, y ∈ X and all ω ∈ Ω, we have

H(T (ω, x), T (ω, y)) ≤ kd(f(w, x), f(ω, y)),

k ∈ (0, 1), then T and f have a random coincidence point.

We shall follow the argument used by Shahzad and Latif [18] to prove the following

random coincidence point theorem in the context of Fréchet spaces.
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Theorem 3.4. Let M be a separable weakly compact subset of a Fréchet space X

which is star-shaped with respect to q ∈ M, and let f : Ω×M → M be a continuous

affine random operator such that f(ω, M) = M and f(ω, q) = q for each ω ∈ Ω. Let

T : Ω ×M → K(M) be a multivalued random operator which commutes with f and

for all x, y ∈ M and all ω ∈ Ω, we have

H(T (ω, x), T (ω, y)) ≤ d(f(ω, x), f(ω, y)).

If one of the following conditions hold: either (a) (f − T )(ω, .) is demiclosed at zero

for each ω ∈ Ω or (b)f is weakly continuous and X satisfies Opial’s condition, then

T and f have a random coincidence point.

Proof. Choose a sequence {kn} of real numbers with 0 < kn < 1 and kn → 0 as

n →∞. For each n, consider the random operator Tn : Ω×M → K(M) defined by

Tn(ω, x) = knq + (1− kn) T (ω, x).

Then,

H (Tn(ω, x), Tn(ω, y)) = (1− kn) H(T (ω, x), T (ω, y))

≤ (1− kn) d(f(ω, x), f(ω, y))

for each x, y ∈ M and each ω ∈ Ω. Since T (ω, M) ⊂ M = f(ω,M), we have

Tn(ω,M) ⊂ f(ω,M)

for each ω ∈ Ω. Further, each Tn commutes with f, since for any x ∈ M and ω ∈ Ω,

we have

Tn(ω, f(ω, x)) = knq + (1− kn) T (ω, f(ω, x))

= knf(ω, q) + (1− kn) f(ω, T (ω, x))

= f (ω, {knq + (1− kn) T (ω, x)})
= f (ω, Tn(ω, x)) .

Since M is separable and weakly compact, the weak topology on M is a metric

topology (cf. Rudin [13], p. 86). It follows that M is a complete metric space. Thus,

by Theorem 3.3, there is a measurable map ξn : Ω → M such that

f (ω, ξn(ω)) ∈ Tn (ω, ξn(ω))
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for each ω ∈ Ω. For each n, define Fn : Ω → WK(M) by

Fn(ω) = w − cl {ξi(ω) : i ≥ n} ,

where WK(M) is the family of all nonempty weakly compact subsets of M and w−cl

denotes the weak closure. Define F : Ω → WK(M) by F (ω) =
∞⋂

n=1

Fn(ω). As before,

the weak topology on M is a metric topology. Then as in [9, proof of Theorem 2.3

or 17, Theorem 3.3] F is w-measurable and has a measurable selector ξ. This ξ is the

desired random coincidence point of f and T. Indeed, fix ω ∈ Ω arbitrarily. Then

some subsequence {ξm(ω)} of {ξn(ω)} converges weakly to ξ(ω). Also there is some

um ∈ T (ω, ξm(ω)) such that

f(ω, ξm(ω))− um = km {q − um} .

The set M is bounded and km → 0, it follows that f(ω, ξm(ω)) − um → 0. Now

ym = f(ω, ξm(ω))− um ∈ (f − T )(ω, ξm(ω)) and ym → 0. If (a) holds, then it follows

that f(ω, ξ(ω)) ∈ T (ω, ξ(ω)). If (b) holds, then, by Lemma 3.2, (f − T )(ω, .) is

demiclosed, and therefore, f and T have a random coincidence point ξ.

Theorem 3.4 yields a common fixed point theorem as follows.

Theorem 3.5. Suppose that M, f, T, and q satisfy all the hypotheses of Theorem 3.4.

If for each ω ∈ Ω

f(ω, x) ∈ T (ω, x) implies the existence of lim
n

fn(ω, x),

then T and f have a common random fixed point.

Proof: Verbatim repetition of the proof of Theorem 3.3 [18] and is omitted.

The following result concerning measurability of the map PT will be needed.

Proposition 3.6. Let C be a separable closed subset of a complete metric space

and T : Ω × C → 2C is a compact valued measurable function. Then PT is also a

measurable function.

Proof: By Proposition 2.2 [3], the map T : Ω × C → 2C is measurable if and

only if for each x in C, the function d(x, T (ω, x)) is measurable. Note that PT :

Ω × C → 2C is a well-defined compact valued map such that d(x, PT (ω, x)) ≤
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d(x, ux) = d(x, T (ω, x)) ≤ d(x, PT (ω, x)) for all x in C and ω ∈ Ω. Thus for each

x in C, d(x, PT (ω, x)) is measurable and hence PT is measurable.

As an other applicaton of Theorem 3.4, we obtain the follwing random fixed point

result for *-nonexpansive maps.

Theorem 3.7. Let M be a separable weakly compact star-shaped subset of a Fréchet

space X and T : Ω×M → K(M) a *-nonexpansive random operator. Then T has a

random fixed point if one of the following conditions holds:

(a) I − T (ω, .) is demiclosed at 0 for each ω ∈ Ω(I denotes the identity map).

(b) X satisfies Opial’s condition.

Proof: Each set T (ω, x) being compact is proximinal and so PT : Ω×M → 2M is well

defined. It follows from the definition of T is *-nonexpansive that PT is nonexpansive

(see proof of Theorem 2 [20]). The map PT is compact valued as T is so. Therefore,

for each ω ∈ Ω and x ∈ M, we have by definition of PT ,

d (x, PT (ω, x)) ≤ d (x, ux) = d(x, T (ω, x))
≤ d (x, PT (ω, x))

(2)

Moreover PT is a random operator by Proposition 3.6.

(a) Suppose xn −→ x0 weakly and yn ∈ I − PT (ω, xn) such that yn −→ 0 strongly.

Note that yn ∈ I−PT (ω, xn) ⊆ I−T (ω, xn) and I−T (ω, .) is demiclosed at 0 so

0 ∈ I−T (ω, x0). This implies that x0 ∈ T (ω, x0) and hence d (x0, T (ω, x0)) = 0.

By (2), d (x0, PT (ω, x0)) = d(x0, T (ω, x0)). Thus x0 ∈ PT (ω, x0) implies that

I − PT (ω, .) is demiclosed at 0 for each ω ∈ Ω. By Theorem 3.4 (a), PT has a

random fixed point which is also a random fixed point of T.

(b) In this case I−PT (ω, .) is demiclosed at 0 for each ω ∈ Ω and the result follows

from (a).

The above theorem leads to the existence of random best approximation in the pair

of corollaries to follow.

Corollary 3.8. Let M be a separable weakly compact star-shaped subset of a Fréchet

space X and F : Ω×M → K(X) an upper semicontinuous random map. Suppose that

T : Ω×M → 2M defined by T (ω, x) =
⋃{P (y) : y ∈ F (ω, x), d(Fω, x), M) = d(y,M)}

is a compact valued *-nonexpansive random operator. Then there exists a measurable
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map ξ : Ω → M such that d(ξ(ω), F (ω, ξ(ω)) = d(F (ω, ξ(ω)),M) for each ω ∈ Ω

provided either (a) or (b) of Theorem 3.7 holds.

Proof.Under each of the conditions (a) and (b), by Theorem 3.7, there exists a mea-

surable map ξ : Ω → M such that ξ(ω) ∈ T (ω, ξ(ω)) for each ω ∈ Ω. Fix ω ∈ Ω arbi-

trarily. Then for some y in F (ω, ξ(ω)) with d(F (ω, ξ(ω)),M) = d(y,M), ξ(ω) ∈ P (y).

Now d(ξ(ω), F (ω, ξ(ω)) ≤ d(ξ(ω), y) = d(y, M) = d(F (ω, ξ(ω)),M) ≤ d(ξ(ω), F (ω, ξ(ω))

implies that d(ξ(ω), F (ω, ξ(ω))) = d(F (ω, ξ(ω)),M) for each ω ∈ Ω.

Corollary 3.9. Let M be a separable weakly compact star-shaped subset of a Fréchet

space X. Suppose that F : Ω × M → X is a continuous random operator and

PoF : Ω × M → M is a nonexpansive random operator. Then the conclusion of

Corollary 3.8 holds provided either (a) I-PoF (ω, .) is demiclosed at 0 for each ω ∈ Ω

or (b) X satisfies Opial’s condition.

An other consequence of Theorem 3.4 provides the following result on invariant

random best approximation (cf. Theorems 4 and 5 [1]).

Theorem 3.10. Let X be a Fréchet space and T : Ω × X → K(X) be a nonex-

pansive random operator such that for each ω ∈ Ω, T (ω, .)(u) = {u} for some u ∈ X.

Let M be a nonempty T (ω, .)− invariant subset of X for each ω ∈ Ω. Assme that

D = PM(u) is nonempty separable weakly compact and starshaped. Then u has a

random best approximation ξ : Ω → M which is also a random fixed point of T

provided either (a) I − T (ω, .) is demiclosed at zero for each ω ∈ Ω or (b) X satisfies

Opial’s condition.

Proof. Let y ∈ D. Then, y ∈ M and d(u, y) = d(u,M). Fix ω arbitrarily in Ω and let

x ∈ T (ω, y) ⊆ M. Then

d(x, u) ≤ H(T (ω, y), T (ω, u))

≤ d(y, u) = d(u,M).

So we have x ∈ D. Thus T (ω, y) ⊆ D. Hence T (ω, .) maps D into K(D) for each

ω ∈ Ω. Therefore, by Theorem 3.4, T has a random fixed point in PM(u).

Corollary 3.11. Let X be a Banach space, CK(X) denote the family of all nonempty

convex compact subsets of X and T : Ω ×X → CK(X) be a nonexpansive random

operator such that for each ω ∈ Ω, T (ω, .)(u) = {u} for some u ∈ X. Assume that

for each ω ∈ Ω, T (ω, .) leaves a quasi-Chebyshev subspace M invariant. Then u has
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a random best approximation ξ : Ω → M which is also a random fixed point of T.

Proof. The set PM(u) is nonempty and compact and hence separable. Moreover,

PM(u) is convex. As in the proof of Theorem 3.10, PM(u) is T (ω, .)-invariant for each

ω ∈ Ω. Thus T has a random fixed point in PM(u) by Corollary 3.3 [3].

Remarks 3.12.

(i) Theorem 3.4 extends [3, Corollaries 3.1 and 3.2, 18, Theorem 3.2, 21, Theorem

1 (ii)].

(ii) Theorem 3.5 extends [8, Corollary 3.9, 9, Corollaries 2.4 and 2.12, 18, Theorem

3.3].

(iii) Theorem 3.7(a) generalizes Theorem 3.4 [19] to multivalued *-nonexpansive

maps.

(iv) Theorem 3.7 (b) sets stochastic analogues of [6, Theorem 3.2, 20, Theorem 2] in

Fréchet spaces. Further, it extends Corollary 3.5 [19] to *-nonexpansive maps.

(v) Theorem 3.7 (b) provides conclusions of Corollary 3.9 [8] and Theorem 2.11 [9]

without the measurability of PT in the framework of a Fréchet space and an

arbitrary measure space.

(vi) Corollary 3.8 establishes a generalized stochastic version of Theorem 1 [7].

(vii) Corollary 3.9 generalizes Theorem 3 [12] and provides a stochastic version of

Theorem 3 [5].

(viii) Theorem 3.10 gives multivalued random analogue of Corollaries 3.1, 3.4 and 3.6

(i) [14] (see also Corollary 3.9 [10]) while Corollary 3.11 extends Theorem 4[1],

Corollary 3.3 [10] and corollary 3.3 [14].
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