A DECOMPOSITION THEOREM FOR SUBMEASURES

by A. R. KHAN and K. ROWLANDS

(Received 11 October, 1983)

1. Introduction. In recent years versions of the Lebesgue and the Hewitt-Yosida decomposition theorems have been proved for group-valued measures. For example, Traynor [4], [6] has established Lebesgue decomposition theorems for exhaustive groupvalued measures on a ring using (1) algebraic and (2) topological notions of continuity and singularity, and generalizations of the Hewitt-Yosida theorem have been given by Drewnowski [2], Traynor [5] and Khurana [3]. In this paper we consider group-valued submeasures and in particular we have established a decomposition theorem from which analogues of the Lebesgue and Hewitt-Yosida decomposition theorems for submeasures may be derived. Our methods are based on those used by Drewnowski in [2] and the main theorem established generalizes Theorem 4.1 of [2].
2. Notation and terminology. Let G be a commutative lattice group (abbreviated to l-group). A quasi-norm (resp. norm) q on G is said to be an l-quasi-norm (l-norm) if $q(x) \leqslant q(y)$ for all x, y in G with $|x| \leqslant|y|$. A G-valued function μ defined on a ring \mathscr{R} of subsets of a set X is said to be a submeasure if $\mu(\varnothing)=0, \mu(E \cup F) \leqslant \mu(E)+\mu(F)$ for all E, F in \mathscr{R} with $E \cap F=\varnothing$, and $\mu(E) \leqslant(F)$ for all E, F in \mathscr{R} with $E \subseteq F$. A G-valued submeasure μ on \mathscr{R} is said to be exhaustive if and only if, for any disioint sequence $\left\{E_{\mathrm{n}}\right\}$ in $\mathscr{R}, \lim _{n \rightarrow \infty} \mu\left(E_{n}\right)=0$ in (G, q). An l-group G is said to be order complete if every bounded increasing net in G has a supremum. An l-quasi-nom q on G is said to be order continuous if $\varnothing \subset A \uparrow x$ in $G^{+}=\{x \in G: x \geqslant 0\}$ implies $q(x)=\sup \{q(y): y \in A\}$ and $B \downarrow x$ in G^{+}implies $q(x)=\inf \{q(y): y \in B\}$.

Let \mathscr{D} denote a collection of pairwise disjoint sets in \mathscr{R} and let Δ be the set of all such collections. If $\mathscr{D}_{1}, \mathscr{D}_{2} \in \Delta$, then we write $\mathscr{D}_{1} \leqslant \mathscr{\mathscr { D }}_{2}$ if and only if \mathscr{D}_{2} is a refinement of \mathscr{D}_{1}. With each $E \in \mathscr{R}$ we associate members of \mathscr{D}; the collection of all such pairs (E, \mathscr{D}) is denoted by \mathscr{G} and we let

$$
\mathscr{G}(E)=\{\mathscr{D} \in \Delta:(E, \mathscr{D}) \in \mathscr{G}\} \quad \text { and } \quad \Delta \mathscr{G}=\bigcup_{E \in \mathscr{R}} \mathscr{G}(E)
$$

In the sequel we use $\bigcup \mathscr{D}$ to mean the set theoretic union of the members of \mathscr{D}. Following Drewnowski's teminology ([2], Definition 2.1), the collection \mathscr{G} is said to be an additivity on \mathscr{R} if it satisfies the following conditions:
(a) $\Delta_{f} \subseteq \Delta_{g}$, where Δ_{f} consists of those collections \mathscr{W} which have only a finite number of members;
(b) if $E \in \mathscr{R}$ and $\mathscr{D} \in \mathscr{G}(E)$, then $\cup \mathscr{D}=E$;
(c) if $E \in \mathscr{R}, \mathscr{D}_{1}, \mathscr{D}_{2} \in \mathscr{G}(E)$, then $\mathscr{D}_{1} \cap \mathscr{D}_{2}=\mathscr{G}(E)$, where $\mathscr{D}_{1} \cap \mathscr{D}_{2}=\left\{D_{1} \cap D_{2}: D_{i} \in \mathscr{D}_{\text {i }}\right.$, $i=1,2\}$.

