A DECOMPOSITION THEOREM FOR SUBMEASURES

by A. R. KHAN and K. ROWLANDS

(Received 11 October, 1983)

1. Introduction. In recent years versions of the Lebesgue and the Hewitt-Yosida decomposition theorems have been proved for group-valued measures. For example, Traynor [4], [6] has established Lebesgue decomposition theorems for exhaustive group-valued measures on a ring using (1) algebraic and (2) topological notions of continuity and singularity, and generalizations of the Hewitt-Yosida theorem have been given by Drewnowski [2], Traynor [5] and Khurana [3]. In this paper we consider group-valued submeasures and in particular we have established a decomposition theorem from which analogues of the Lebesgue and Hewitt-Yosida decomposition theorems for submeasures may be derived. Our methods are based on those used by Drewnowski in [2] and the main theorem established generalizes Theorem 4.1 of $\{2\}$.

2. Notation and terminology. Let G be a commutative lattice group (abbreviated to *l*-group). A quasi-norm (resp. norm) q on G is said to be an *l*-quasi-norm (*l*-norm) if $q(x) \leq q(y)$ for all x, y in G with $|x| \leq |y|$. A G-valued function μ defined on a ring \mathcal{R} of subsets of a set X is said to be a submeasure if $\mu(\emptyset) = 0$, $\mu(E \cup F) \leq \mu(E) + \mu(F)$ for all E, F in \mathcal{R} with $E \cap F = \emptyset$, and $\mu(E) \leq (F)$ for all E, F in \mathcal{R} with $E \subseteq F$. A G-valued submeasure μ on \mathcal{R} is said to be exhaustive if and only if, for any disjoint sequence $\{E_n\}$ in \mathcal{R} , $\lim_{n \to \infty} \mu(E_n) = 0$ in (G, q). An *l*-group G is said to be order complete if every bounded increasing net in G has a supremum. An *l*-quasi-norm q on G is said to be order continuous if $\emptyset \subset A \uparrow x$ in $G^+ = \{x \in G : x \ge 0\}$ implies $q(x) = \sup\{q(y) : y \in A\}$ and $B \downarrow x$ in G^+ implies $q(x) = \inf\{q(y) : y \in B\}$.

Let \mathcal{D} denote a collection of pairwise disjoint sets in \mathcal{R} and let Δ be the set of all such collections. If $\mathcal{D}_1, \mathcal{D}_2 \in \Delta$, then we write $\mathcal{D}_1 \leq \mathcal{D}_2$ if and only if \mathcal{D}_2 is a refinement of \mathcal{D}_1 . With each $E \in \mathcal{R}$ we associate members of \mathcal{D} ; the collection of all such pairs (E, \mathcal{D}) is denoted by \mathcal{G} and we let

$$\mathscr{G}(E) = \{\mathscr{D} \in \Delta : (E, \mathscr{D}) \in \mathscr{G}\} \text{ and } \Delta_{\mathscr{G}} = \bigcup_{E \in \mathscr{R}} \mathscr{G}(E)$$

In the sequel we use $\bigcup \mathcal{D}$ to mean the set theoretic union of the members of \mathcal{D} . Following Drewnowski's terminology ([2], Definition 2.1), the collection \mathcal{G} is said to be an *additivity* on \mathcal{R} if it satisfies the following conditions:

(a) $\Delta_f \subseteq \Delta_g$, where Δ_f consists of those collections \mathcal{D} which have only a finite number of members;

(b) if $E \in \mathcal{R}$ and $\mathcal{D} \in \mathcal{G}(E)$, then $\bigcup \mathcal{D} = E$;

(c) if $E \in \mathcal{R}$, \mathcal{D}_1 , $\mathcal{D}_2 \in \mathcal{G}(E)$, then $\mathcal{D}_1 \cap \mathcal{D}_2 \in \mathcal{G}(E)$, where $\mathcal{D}_1 \cap \mathcal{D}_2 = \{D_1 \cap D_2 : D_i \in \mathcal{D}_i, i = 1, 2\}$.

Glasgow Math. J. 26 (1985) 69-74