COMMON FIXED POINTS FROM BEST SIMULTANEOUS APPROXIMATIONS

A. R. Khan and F. Akbar

Abstract

We obtain some results on common fixed points from the set of best simultaneous approximations for a map T which is asymptotically (f, g)-nonexpansive where (T, f) and (T, g) are not necessarily commuting pairs. Our results extend and generalize recent results of Chen and Li [1], Jungck and Sessa [8], Sahab et al. [13], Sahney and Singh [14], Singh [15, 16] and Vijayaraju [17] and many others.

1. Introduction and Preliminaries

We first review needed definitions. Let M be a subset of a normed space $(X, \|.\|)$. The set $P_M(u) = \{x \in M : \|x - u\| = dist(u, M)\}$ is called the set of best approximants to $u \in X$ out of M, where $dist(u, M) = inf\{\|y - u\| : y \in M\}$. Suppose that A and G are bounded subsets of X. Then we write

$$r_G(A) = inf_{g \in G} sup_{a \in A} \parallel a - g \parallel$$
$$cent_G(A) = \{g_0 \in G : sup_{a \in A} \parallel a - g_0 \parallel = r_G(A)\}.$$

The number $r_G(A)$ is called the *Chebyshev radius* of A w.r.t. G and an element $y_0 \in cent_G(A)$ is called a best simultaneous approximation of A w.r.t. G. If $A = \{u\}$, then $r_G(A) = dist(u, G)$ and $cent_G(A)$ is the set of all best approximations, $P_G(u)$, of u out of G. We also refer the reader to Milman [12] and Vijayaraju [17] for further details. We shall use \mathbb{N} to denote the set of positive integers, cl(M) to denote the closure of a set M and wcl(M) to denote the weak closure of a set M. Let $I: M \to M$ be a mapping. A mapping $T: M \to M$ is called an (f, g)-contraction if there exists $0 \le k < 1$ such that $||Tx - Ty|| \le k ||fx - gy||$ for any $x, y \in M$. If k = 1, then T is called (f, g)nonexpansive. The map T is called asymptotically (f, g)-nonexpansive if there exists a sequence $\{k_n\}$ of real numbers with $k_n \ge 1$ and $\lim_n k_n = 1$ such that $||T^n x - T^n y|| \le k_n ||fx - gy||$ for all $x, y \in M$ and n = 1, 2, 3, ...; if g = f, then T is called *asymptotically f-nonexpansive* [17]. The map T is called uniformly asymptotically regular [17] on M, if for each $\eta > 0$, there exists $N(\eta) = N$ such that $||T^n x - T^{n+1} x|| < \eta$ for all $n \ge N$ and all $x \in M$. The set of fixed points of T is denoted by F(T). A point $x \in M$ is a coincidence point (common fixed point) of f and T if fx = Tx (x = fx = Tx). The set of coincidence points of f and T is denoted by C(f,T). The pair $\{f,T\}$ is called: (1) commuting if Tfx = fTx for all $x \in M$, (2) compatible (see [7]) if $\lim_n ||Tfx_n - fTx_n|| = 0$ whenever $\{x_n\}$ is a sequence such that $\lim_n Tx_n = \lim_n fx_n = t$ for some t in M; (3) weakly *compatible* if they commute at their coincidence points, i.e., if fTx = Tfx whenever fx = Tx. The set M is called q-starshaped with $q \in M$, if the segment $[q, x] = \{(1-k)q + kx : 0 \le k \le 1\}$ joining q to x is contained in M for all $x \in M$. The map f defined on a q-starshaped set M is called affine if

$$f((1-k)q + kx) = (1-k)fq + kfx, \text{ for all } x \in M.$$

¹Key Words: Banach operator pair; Asymptotically (f, g)-nonexpansive maps; Best simultaneous approximation. 2000 Mathematics subject classification: 41A65, 47H10, 54H25.