COMMON FIXED POINTS FROM BEST SIMULTANEOUS APPROXIMATIONS

A. R. Khan and F. Akbar

Abstract

We obtain some results on common fixed points from the set of best simultaneous approximations for a map T which is asymptotically (f, g)-nonexpansive where (T, f) and (T, g) are not necessarily commuting pairs. Our results extend and generalize recent results of Chen and Li [1], Jungck and Sessa [8], Sahab et al. [13], Sahney and Singh [14], Singh [15, 16] and Vijayaraju [17] and many others.

1. Introduction and Preliminaries

We first review needed definitions. Let M be a subset of a normed space ($X,\|\cdot\|$). The set $P_{M}(u)=\{x \in M:\|x-u\|=\operatorname{dist}(u, M)\}$ is called the set of best approximants to $u \in X$ out of M, where $\operatorname{dist}(u, M)=\inf \{\|y-u\|: y \in M\}$. Suppose that A and G are bounded subsets of X. Then we write

$$
\begin{gathered}
r_{G}(A)=\inf _{g \in G} \sup _{a \in A}\|a-g\| \\
\operatorname{cent}_{G}(A)=\left\{g_{0} \in G: \sup _{a \in A}\left\|a-g_{0}\right\|=r_{G}(A)\right\} .
\end{gathered}
$$

The number $r_{G}(A)$ is called the Chebyshev radius of A w.r.t. G and an element $y_{0} \in \operatorname{cent}_{G}(A)$ is called a best simultaneous approximation of A w.r.t. G. If $A=\{u\}$, then $r_{G}(A)=\operatorname{dist}(u, G)$ and $\operatorname{cent}_{G}(A)$ is the set of all best approximations, $P_{G}(u)$, of u out of G. We also refer the reader to Milman [12] and Vijayaraju [17] for further details. We shall use \mathbb{N} to denote the set of positive integers, $\operatorname{cl}(M)$ to denote the closure of a set M and $w c l(M)$ to denote the weak closure of a set M. Let $I: M \rightarrow M$ be a mapping. A mapping $T: M \rightarrow M$ is called an (f, g)-contraction if there exists $0 \leq k<1$ such that $\|T x-T y\| \leq k\|f x-g y\|$ for any $x, y \in M$. If $k=1$, then T is called $(f, g)-$ nonexpansive. The map T is called asymptotically (f, g)-nonexpansive if there exists a sequence $\left\{k_{n}\right\}$ of real numbers with $k_{n} \geq 1$ and $\lim _{n} k_{n}=1$ such that $\left\|T^{n} x-T^{n} y\right\| \leq k_{n}\|f x-g y\|$ for all $x, y \in M$ and $n=1,2,3, \ldots$; if $g=f$, then T is called asymptotically f-nonexpansive [17]. The map T is called uniformly asymptotically regular [17] on M, if for each $\eta>0$, there exists $N(\eta)=N$ such that $\left\|T^{n} x-T^{n+1} x\right\|<\eta$ for all $n \geq N$ and all $x \in M$. The set of fixed points of T is denoted by $F(T)$. A point $x \in M$ is a coincidence point (common fixed point) of f and T if $f x=T x(x=f x=T x)$. The set of coincidence points of f and T is denoted by $C(f, T)$. The pair $\{f, T\}$ is called: (1) commuting if $T f x=f T x$ for all $x \in M$, (2) compatible (see [7]) if $\lim _{n}\left\|T f x_{n}-f T x_{n}\right\|=0$ whenever $\left\{x_{n}\right\}$ is a sequence such that $\lim _{n} T x_{n}=\lim _{n} f x_{n}=t$ for some t in M; (3) weakly compatible if they commute at their coincidence points, i.e.,if $f T x=T f x$ whenever $f x=T x$. The set M is called q-starshaped with $q \in M$, if the segment $[q, x]=\{(1-k) q+k x: 0 \leq k \leq 1\}$ joining q to x is contained in M for all $x \in M$. The map f defined on a q-starshaped set M is called affine if

$$
f((1-k) q+k x)=(1-k) f q+k f x, \quad \text { for all } x \in M .
$$

[^0]
[^0]: ${ }^{1}$ Key Words: Banach operator pair; Asymptotically (f, g)-nonexpansive maps; Best simultaneous approximation. 2000 Mathematics subject classification: 41A65, 47H10, 54 H 25.

