On a Theorem of Daneš and the Principle of Equicontinuity.

A. R. KHAN - K. ROWLANDS

Sunto. ~ Si dimostra un teorema di Danes in ipotesi più deboli e si strutta il risultato per dare una versione del principio di equicontinuità per gruppi topologici.

In [2] Daneš has proved two theorems, stated as Theorems A and B below, from which the Banach-Steinhaus theorem on the condensation of singularities [1] (see also [3], p. 81) and other results may be derived. In this note we show that Theorem A can be proved under weaker hypothesis. Our result enables us to prove Theorem B under weaker hypothesis; it also enables us to give a version of the principle of equicontinuity for topological groups.

THEOREM A. - Let G be a commutative topological group such that, for each $x \in G$, there exists an element x/2 in G (with x/2 + x/2 = x) and the mapping $x \to x/2$ is continuous. Let $\{x_n\}$ be a sequence in G such that $\lim_{n\to\infty} x_n = 0$ and $\{p_n\}$ a sequence of real-valued $\frac{1}{2}$ -convex sub-additive functions on G (that is, p_n is sub-additive and $2p_n(x + y) < \langle p_n(2x) + p_n(2y) \text{ for } x, y \in G, n = 1, 2, ... \rangle$. Suppose that there exists a sequence $\{a_k: k = 1, 2, ...\}$, with $a_k \to +\infty$ as $k \to \infty$, such that, for all k, n = 1, 2, ..., the set $B_{k,n} = \{x \in G: p_n(x) < a_k\}$ is closed. If $\liminf_{n \to \infty} p_n(x) = +\infty$ for each neighbourhood U of 0 in G, then the set

 $Z = \left\{z \in G: \limsup_{n} p_n(x_n + z) = +\infty \text{ or } \limsup_{n} p_n(x_n - z) = +\infty\right\}$

is a residual Goset in G.

THEOREM B. – Let X be a topological vector space, $\{x_n : n = 1, 2, ...\}$ a sequence in X such that $\lim_{n \to \infty} x_n = 0$ and $\{p_n : n = 1, 2, ...\}$ a sequence