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The usual formula of variance depending on the rounding off the sample mean 
lacks in precision especially when computer programs are used for the 
calculation. The well known simplification of the total sums of squares does not 
always benefit. Since the variance of two observations is easily calculated 
without the use of sample mean, and the variance of a sample of  n  
observations is the average of   variances of   observations based on 2/)1( −nn  
distinct subsets of units of size 2 from the sample, it is argued that this sense 
of pairing may result in precision. Some other forms of variance have been 
presented which provide some insight into it. Contribution of a new observation 
to variance is highlighted which is important in sequential sampling. Notions 
are illustrated with examples.  
 
 

1. Introduction 
 
The variance is a measure of variability that exists in a sample. There are two 
important reasons for measuring variability. The first reason is how well the 
average value depicts the data. A second reason is to learn the extent of 
scatter so that steps may be taken to control the existing variation. For 
example, while maintaining a long average mileage is the most important 
objective of the manufacturer of a tire, he tries to improve the uniformity  in 
the mileage of it through better inspection and other quality control 
procedures; otherwise some customers would be satisfied and some would 
remain upset. 
This is desired in many real world situations (Kolman, Anton and Averbach, 
1992, 312). 
 
The sample variance is one of the very basic notions a student learns in the 
beginning week of a statistics course. But to many it is a tongue twister, and 
most frustratingly, its meaning has nothing to do with the mathematical 
expression of the definition or the way it is calculated. Can we explain it in 
easy-to-understand terms? It is based on deviations of observations from the 
sample mean denoted by  ) ..., ,2 ,1(  , nixxi =− . These do help understand the 
variation in the sample observations. For a sample of (4,5,11,14), the sample 
mean 5.8=x so that the deviations are given by ,5.45.841 −=−=− xx  
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,5.35.852 −=−=− xx  ,5.25.8113 =−=− xx  5.55.8144 =−=− xx . Another 
sample with the same mean of 8.5 may have different variability e.g. the 
sample (7, 10, 8, 9) also has a mean of 8.5 but the deviations are ,5.15.87 −=−  

5.15.810 =− , ,5.05.88 −=−  5.05.89 =−  which do not exhibit as much variability 
as they do in the previous sample.  
 
What information do these distances or deviations ),,2 ,1(  , nixxi "=− contain? 
If they tend to be large in absolute values, the data are spread out or highly 
variable. If they are mostly small in the absolute sense, the data are clustered 
around the sample mean and therefore do not exhibit much variability. A 
deviation indicates the amount by which an observation is away from the 
sample mean. Thus the deviation ‘ 5.4− ’ indicates that there is an observation 
in the sample which is 4.5 units below the sample mean. Similarly  
the deviation ‘5.5’ indicates that there is an observation which is 5.5 units 
above the sample mean.  
 
Now the question is how to condense the information on deviations so as  to 
form a single numerical measure of variability. Note that the deviations always 
add to zero and as such we do not gain any information with the total 
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To gauge the variability of the observations in a sample all we care about is 
whether an observation is away from the sample mean, be it below or above it. 
Thus we may use the absolute deviations or the squared deviations. The 
measure of variability produced by the absolute deviations did not gain 
popularity because on the one hand it presents analytic difficulties, and, on the 
other hand, it does not bring any benefit while compared with its counterpart. 
If we square the deviation 5.4− , it would be 20.25. The latter implies there is 
an observation which is 5.425.20 =  units away from the mean. The measure 
of variability produced by squared deviations, known as variance, indicates the 
variability of the sample observations around their mean. 
 
The sum of the squared deviations is variously known as Total Sums of Squares 
(TSS), Corrected Sums of Squares (CSS) or simply as Sums of Squares (SS), and 
can be mathematically written as: 
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where the sum is over all the sample observations. This denotes the total 
variation among observations in a sample. For the sample (4, 5, 11, 14), TSS is 
given by: 
 

69)5.5()5.2()5.3()5.4(  2222 =++−+−=TSS . 
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The deviations are not always symmetric around zero though they add to zero. 
However, because of round-off error, the sum of the deviations may not be 
exactly zero. It may be remarked here that the fact that deviations add to zero 
implies that if 1−n  of them are known, the other one is automatically 
determined. This number 1−n  is called the degrees of freedom of the sample 
or of the sample mean or of TSS. 
 
The variance )( 2

ns of  the observations in a sample of size n  is just the ratio of 
the total squared deviations to the degrees of freedom as defined below: 
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Obviously ∞<≤ 20 ns . In case ,1=n  the variance is usually defined to be 0. If all 
the observations were the same, each deviation would have been zero, so 
would have been the variance. If , however, the observations are widely apart, 
so will be the deviations producing positive TSS or positive variance. Thus the 
smaller (larger) the deviations in absolute value, the smaller (larger)  is the 
variance, and vice versa.  
 
The variance of the sample  (4, 5, 11, 14) is 23)14/(692

4 =−=s . The variance of 
the second sample, producing deviations that are relatively less widely apart 
compared to that of the first sample, is approximately 1.67 which is, as 
expected, much lesser than that of the first sample.  
  
Most statisticians use a simplified form of variance given by (2.1). In this paper 
some different forms of variance have been represented with the hope of 
shedding more light into the nature of variance. Though most of them are 
scattered in different text books, neater proofs of related theorems have been 
presented. Most importantly a new direction is emphasized for calculating 
variance that avoids using the sample mean and thereby guarantees least 
rounding off error.  
 
Since the variance of two observations is easily calculated without the use of 
sample mean, and the variance of a sample of  n  observations is the average of  
variances of  observations based on 2/)1( −nn  distinct subsets of units of size 2 
from the sample, it is argued that this sense of pairing may result in precision. 
The result is implicit in many texts (see e.g. Lindgren , 1993, 206). Recurrence 
relation of variance, which is important in sequential sampling for quality 
control in industry, is also emphasized for calculation. A grouping or pairing 
technique is introduced. Notions are illustrated with hypothetical examples. 
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2. Some Representations of Sample Variance 
 
In this section we present seven different forms of variance. Though they are 
algebraically the same, they do differ in precision and time it takes to 
calculate them. Let nx and 2

ns be sample mean and variance of n observations 
respectively.  
 

2.1 A Simplified Formula 
 

TSSsn n =− 2)1(  can be represented by the following equivalent forms: 
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If sample observations are integers but not large in size, the last representation 

allows one to do the calculation mentally. Since n

n

i
i xnx =∑

=1
, it follows from 

(2.1) that 
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2.2 Recurrence Relation Depending on Sample Mean 
 
A  representation of variance due to Ross (1987, p 143) is presented below with 
an elegant proof.  
 
Theorem 2.1 For 2≥n the following recurrence relation holds: 
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Proof:  It is easy to check that : 
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where 1+nx  is the sample mean based on 1+n  observations. Since 
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The proof is immediate by plugging the above two identities back in (2.4).  
 
Thus if the first n observations are known, a value 1nx + can be obtained if a 
particular variance 2

1ns +  is desired. 

 
2.3 Distinct Pairing (Variance Without Sample Mean) 

 
Intuitively, the variability of a set of two observations say 1x  and 2x  should be 
reflected in the difference || 21 xx − . Indeed for 2=n , it follows from (1.1) 
that: 
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which is just 2/1  times the square of the range. In what follows we present a 
neater proof of a theorem implicit in many texts (see e.g. Lindgren, 1993, 206) 
that the variance of a sample of  n observations can be easily calculated by 

calculating the variances of  ⎟⎟
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 distinct pairs of observations and then 

averaging them.  
 
Theorem 2.2 For a sample of size 2≥n  the following result hold: 
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Proof. Since 
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it follows that : 
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The proof is then completed by dividing both sides of (2.8) by )1( −n . 

 
It follows from Theorem 2.2 that a table showing the differences among 
observations can be prepared whose entries are )..., ,2 ,1,(  njixxw jiij =−= . 
Then  
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where the factor nnnn −=− 2)1(  is the number of off-diagonal elements of the 

matrix with elements )..., ,2 ,1,( njiwij = . Note that V
n
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− 2)1(

 (see 2.8),  is 

the second sample moment reported by Lindgren (1993, 206). 
 
 

2.4 Variance Depending on  Distinct Pairing and Sample Mean 
 
 
The following theorem is a direct consequence of (2.3) and (2.5) .  
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2.5 Recurrence Relation of Variance Without Sample Mean 
 
The following Recurrence Relation follows from Theorem 2.2.: 
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If the above recurrence relation is used in conjunction with Distinct Pairing 
(Theorem 2.2), i.e the expression in the middle of  (2.11) is used, the sample 
variance is calculated without the sample mean. Avoidance of sample mean 
may result in precision. 
 

2.6  Variance by Grouping  
 
The variance or  TSS can be calculated by grouping the sample observations, 
calculating variance of different groups and finally combining them by the 
following theorem. However, it is usually proved by labeling the observations 
with two suffixes which can be avoided since means and variances of groups 
are all that we need. The proof is made further neater by the use of identity in 
(2.2).  
 
Theorem 2.4 Let n  observations be divided into k  groups containing 

knnn ,..., , 21  observations with means )()2()1( ,, , kxxx "  respectively. Then TSS will 
be given by: 
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Proof: Let the observations be divided into two groups )2 ..( =kei containing 1n  
and 2n observations with means )2()1(  and  xx , and variances 2

)2(
2

)1(  and ss  
respectively. Then: 
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Similarly for 3 groups we have: 
 
 

.)( 
 

)( 
 

)( 
 

        

 )1( )1( )1(        

)(    )(  

2
)3()2(

32

322
)3()1(

31

312
)2()1(

21

21

2
)3(3

2
)2(2

2
)1(2

1

2
321

1

2

1

22

1

2
1 321

21

21

1

321

xx
nn

nn
xx

nn
nn

xx
nn

nn

snsnsn

xnnnxxxxxTSS
n

i
n

nnn

nni
i

nn

ni
ii

nnn

i
ni

−
+

+−
+

+−
+

+

−+−+−=

++−++=−= ∑ ∑∑∑
=

++

++=

+

+=

++

=

 

 
The proof for k groups is thus obvious. 
 
Since group means in this context need to be rounded, we prefer to use totals 
of the groups to avoid rounding errors as much as possible. Let )()( iii xnT = , the 
total of the i th group. Then the following form may be helpful in calculating 
TSS: 
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The first k  terms in the Theorem is the contribution of the observations due to 

variation within groups (VWG), while the next ⎟⎟
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 terms can be attributed to 

the variation between groups (VBG). Groups having less variation among the 



 9

observations within the groups may be used to have smaller contribution by 
VWG and more by VBG. Groups having more variation among the observations 
within the groups may be used to have larger contribution by variation within 
the groups (VWG) and less by VBG. Samples having the modal observation with 
high frequencies may be a good example for the first case (See Section 4.5). 
The idea of attributing the variation here is much similar to what led Fisher 
(1947) to discover the analysis of variance. 
 
If variance of every group vanishes, the overall variance will be given by the 
second summand in (2.14). If , on the other hand, the sample observations are 
grouped in a way that the group means are the same, then the sample variance 
is given by : 
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2.7 Variance by Pairing 
 
If sample size is 2, the sample variance is ½ times the square of the range. This 
suggests us that the grouping technique in (2.14) can be used to calculate 
variance by choosing )1,,2 ,1( 2 −== kini " and 2=kn  or 1 depending on 
whether sample size is even or odd. Let )()(  iii xnT = , the total of the i th group, 

and 2/22
)( ii ws = ,  the variance of the i th pair. For ease of calculation by hand 

the following representation that follows from (2.14), may be better: 
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If  sample observations are paired in a way that the means of pairs are the 
same then  
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2.8 Geometric Interpretation 
 
The pair nx and 2

ns  can be derived from the Euclidean minimization problem. 
Suppose that for observations ),,2,1( nixi "= , we want to find the value of t  
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square of the Euclidean distance in n dimensions between n -dimensional point 
),,,( ttt " and the observations expressed as the point ) ,  , ,( 21 nxxx " . The 

minimization problem is amenable to calculus, but algebra is all that is needed 
here. Since ix ’s are known sample values, the expression 
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go through an stimulating paper by Farnsworth (2000). 
 
 

3. Contribution of a New Observation 
  
Let 1+nc  be the contribution of a new observation 1+nx  to any variance formula 
based on n observations so that  
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Theorem 2.2 can be calculated easily from (2.11) as follows: 
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which also satisfies the bounds given by (3.3). 
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Theorem 3.1 If the new observation is dxx nn ∓=+1 , then for any expression of 

variance 2
ns , the following recurrence relation holds: 
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4. Some  Illustrations 
 

 
4.1  Variance by Recurrence Relation Depending on Sample Mean 

 
To calculate the variance of the sample (4, 5, 11, 14) sequentially by Theorem 
2.1, we have: 
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⎜
⎝
⎛ −= ++ xxss ,  3/203 =x ,   
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1

3
43

3
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1 

3
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2
2
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2
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2
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⎠
⎞

⎜
⎝
⎛ −+=−

+
+⎟

⎠
⎞

⎜
⎝
⎛ −= ++ xxss .  

 
To see the contribution of a new observation to the variance formula in 
Theorem 2.1 let us  assume that we already have 3 observations (4, 5, 11) with 
variance 3/432

3 =s  and  a new observation say 1413 =+x . It follows from (3.2) 
that: 
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so that by (3.1) we have .233/263/4313

2
3

2
13 =+=+= ++ css   

 
 

4.2  Variance by Distinct Pairing (Variance Without Sample 
Mean) 

 
To calculate the variance of the sample (4, 5, 11, 14) sequentially by Theorem 
2.2, we have: 
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2
2 =

−
=s , 
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2
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2
)7(
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6
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2
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⎠
⎞

⎜
⎝
⎛=⎥

⎦

⎤
⎢
⎣

⎡
+++++=s . 

 
The differences can better be calculated by preparing the following difference 
table: 
 
  

x  4 5 11 14 
 4     
 5 145 =−     
11 7411 =−  6511 =−    
14 10414 =−  9514 =−  31114 =−   

 
The arrangement of  the sample observations in ascending order results in 
nonnegative entries (differences) in the table. 
 
To see the contribution of a new observation 1413 =+x  in the variance formula in 
Theorem 2.2 let us  again assume that we already have 3 observations (4, 5, 
11) with variance 3/432

3 =s  and  a new observation say 1413 =+x . It follows 
from (3.4) that: 
 

3/2612/104 
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1 2

3

222

13 ==
+

−⎥
⎦

⎤
⎢
⎣

⎡
++=+ sc   so that by (3.1) we 

have 
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13 =+=+s  
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4.3  Variance Depending on  Distinct Pairing and Sample Mean 
 
To  calculate the variance of the sample (4, 5, 11, 14) sequentially by Theorem 
2.3, we have: 
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4.4 Variance by Recurrence Relation Without Sample Mean (see 
equation 2.11) 
 
To calculate the variance of the sample (4, 5, 11, 14) sequentially by equation 
2.11, we have 
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4.5 Variance by Grouping 

 
To calculate the variance of grades of  9 students (40, 70, 95, 70, 50, 70, 90, 
70, 70) by (2.14), the sample may be grouped as (40, 50), (90, 95) and (70, 70, 
70, 70, 70) for smaller VWG.  
 

2
)(is  (=VWG) i  groups in  )(iT  VBG 

2/)4050(50 2−=  1 (40, 50) 2 90 
..77.1002

1852
902

)2)(2(9
1

2

=

 
2/)9095(5.12 2−=

 
2 (90, 95) 2 185 

...44.694
3505
902

)5)(2(9
1

2

=

 
0 3 70, 70, 

70, 70, 
70 

5 350 
5.0562

3505
1852

)5)(2(9
1

2

=  

62.5     2259.722… 
 
 
The variance is given by 2 (62.5 2259.722...) / 8 290.278s = + ≈ .  
 

4.6 Variance by Pairing 
 
To calculate the variance of   (4,5,11,14,20) by (2.15), we group them as (4, 
20), (5, 14), (11) for larger contribution by variation within groups (VWG). The 
following table is prepared to apply the formula in (2.15). 
 
 

2
)(is  (=VWG) i  pairs in  )(iT  VBG 

 
2/)204(128 2−=

 

1 (4, 
20) 

2 24 
5

192
242

)2)(2(5
1

2

=  

2/)145(5.40 2−=
 

2 (5, 
14) 

2 19 
4.0

111
242

)1)(2(5
1

2

=  

0 3 (11) 1 11 
9.0

111
192

)1)(2(5
1

2

=  

168.5     6.3 
 
 

The variance is given by 7.43)3.65.168(
4
12 =+=s .  
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5. Conclusion 
 
When calculating variance by hand some representations may prove to be much 
efficient. However if the sample size is large and the computation is performed 
on a computer, then because of  ‘round-off error” some methods will be more 
efficient than the others. It is not surprising if the last representation of 
equation (2.2) provides negative value for sample variance (Ross, 1987, 143). 
Methods that avoid using sample mean ( say equation 2.5 or 2.11)  to the 
extent possible may result in much precision. Different grouping  or pairing 
techniques along the line may also be devised for the same. It remains open to 
check the relative efficiency of various methods by computer programs. 
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