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Abstract
In this paper, the problem of estimating the precision matrix of a multivariate Pearson
type II-model is considered. A new class of estimators is proposed. Moreover, the risk
functions of the usual and the proposed estimators are explicitly derived. It is shown
that the proposed estimator dominates the MLE and the unbiased estimator, under the
quadratic loss function. A simulation study is carried out and confirms these results.
Improved estimator of tr(Σ−1) is also obtained.
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1 Introduction

There has been considerable research on the problem of estimating the precision ma-
trix, namely the inverse of the scale matrix Σ, in a multivariate normal model using
the decision-theoretic approach. Works along this direction can be found in Efron and
Morris (1976), Haff (1979), Krishnamoorthy and Gupta (1989), Pal (1993) among others.
Several kinds of estimators of Σ−1 have been proposed in the literature, and the most
of them can be found in the recent paper of Kubokawa (2005). In order to extend the
above quoted results, much attention has been paid to the problem of estimating the pre-
cision matrix, under multivariate elliptical models. Indeed, Joarder and Ahmed (1998)
obtained improved estimators of Σ−1 under the quadratic loss function, and for a specific
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multivariate elliptical model. More recently, Tsukuma (2005) established similar results
for an elliptically contoured distribution, under the Stein’s loss function. In this paper,
the problem of estimating the precision matrix of a multivariate Pearson type II-model
with respect to the quadratic loss function is investigated. First, we give some definitions
and results that are taken from Fang et al (1990).

Definition 1.1. The p-dimensional random vector x is said to have a symmetric multi-
variate Pearson type II distribution with parameters q > −1, µ ∈ Rp, Σ : p × p with
Σ > O if its probability density function (p.d.f.) is given by

f(x) =
Γ

(
p
2

+ q + 1
)

π
p
2 Γ(q + 1) | Σ | 12

[
1− (x− µ)′Σ−1(x− µ)

]q
, (1)

where 0 ≤ (x− µ)′Σ−1(x− µ) ≤ 1.

This distribution was introduced by Kotz (1975) and will be denoted by MPIIp(µ,Σ).
Note that the first detailed discussion of this subclass of elliptically contoured distribu-
tions was presented in the book by Johnson (1987). As a member of the elliptical family,
this distribution admits the stochastic representation which is illustrated by the following

relation x
d
= µ + rΣ

1
2u(p), where u(p) is uniformly distributed on the unit sphere surface

in Rp, and r is independent of u(p). Further, it is shown (see Fang et al (1990), p.89)
that r2 has a Beta type I distribution, say r2 ∼ BI(

p
2
, q + 1). Note that a closed form of

the characteristic function (c.f.) of the multivariate Pearson type II distribution has been
obtained by Joarder (1997). Now, we define the multivariate Pearson type II-model.
Let x1,x2, . . . ,xn be p-dimensional random vectors, such that n > p and xi ∼ MPIIp(µ,Σ),
i = 1, . . . , n. Moreover, assume that xi, i = 1, . . . , n are uncorrelated,(but not necessarily
independent), and their joint p.d.f. is given by

f(x1, . . . ,xn) =
Γ(pn

2
+ q + 1)

π
pn
2 Γ(q + 1) | Σ |n2

(
1−

n∑
i=1

(xi − µ)′Σ−1(xi − µ)

)q

. (2)

Here the parameter q is assumed to be known, and each p-dimentional random vector
xi, i = 1, . . . , n is distributed with mean vector µ and covariance matrix 1

2q+p+2
Σ. So the

relation (2) represents the multivariate Pearson type II-model. Our interest is to estimate
Σ−1 and its trace, under a decision-theoretic viewpoint.

Remark 1.1.
Let X = (x1,x2, . . . ,xn) be the p×n matrix of the observations vectors, then the expression
given by (2) is the p.d.f. of X. That leads us to some preliminaries related to the matrix
variate elliptically contoured distributions (ECD).

2 Some Preliminaries

The following definitions and results presented in this section, and that will be required
in the sequel, are taken from Gupta and Varga (1993).
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Definition 2.1. Let X be a p × n random matrix. Then, X is said to have a matrix
variate elliptically contoured distribution if its characteristic function has the form

φX(L) = etr(iL′M)ψ(tr(L′ΣLΦ)) with L ∈ Rp×n, M ∈ Rp×n, Σ ∈ Rp×p, Φ ∈ Rn×n,

Σ ≥ O, Φ ≥ O and ψ : [ 0, ∞[ → R. (3)

The matrices M, Σ and Φ are the parameters of the distribution.

This distribution is denoted by X ∼ Ep,n(M,Σ⊗Φ, ψ).
The function ψ is called the characteristic generator (c.g.). As a special case, when ψ(·)
is specified by ψ(z) = exp(− z

2
), then X has a matrix variate normal distribution. If

n = 1, then x ∼ Ep(m,Σ, ψ) is said to have a vector variate elliptical distribution. The
relationship, in term of the distributions, of the matrix and the vector is illustrated as
follows:

X ∼ Ep,n(M,Σ⊗Φ, ψ) if and only if x = vec(X′) ∼ Epn(vec(M′),Σ⊗Φ, ψ), (4)

Here, vec(A) is defined by:

vec(A) =




a1

a2
...
an


 ,

where a1,. . . ,an denote the columns of the p×n matrix A. Anderson and Fang (1982), (see
[4] pp.1-23), derived the stochastic representation of matrix variate ECD in the theorem
below.

Theorem 2.1. Let X be a p×n random matrix. Further let M be p×n, Σ be p× p and
Φ be n × n constant matrices, with Σ ≥ O, Φ ≥ O, rank(Σ) = p1, and rank(Φ) = n1.
Then

X ∼ Ep,n(M,Σ⊗Φ, ψ)

if and only if

X
d
= M + RDUB′, (5)

where U is p1 × n1 and vec(U′) is uniformly distributed on the unit sphere Sp1n1, R is
a nonnegative random variable, R and U are independent, Σ = DD′ and Φ = BB′ are
rank factorizations of Σ and Φ.

Note that an immediate consequence of relation (4) is the fact that the moments of the
random variable R (generating variate matrix) can be obtained from that of r (generating
variate vector) by writing pn instead of n.
Assume that the matrix X has a p.d.f., with Σ > O, Φ > O. In that case, its p.d.f. takes
the form (see Gupta and Varga(1993), p.26)

f(X) = | Σ |−n
2 | Φ |− p

2 h(tr((X−M)′Σ−1(X−M)Φ−1)). (6)
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Here, h(·) is called the density generator of the distribution. In the particular case where
Φ = In and M = µe′n, with e′n = (1, 1, . . . , 1), the p.d.f.(6) simplifies to

f(X) =
1

| Σ |n2 h

(
n∑

i=1

(xi − µ)′Σ−1(xi − µ)

)
. (7)

Now, with the above notations and results, we remark that the multivariate Pearson type
II-model (2) can be expressed as

X ∼ Ep,n(µe′n,Σ⊗ In, ψ).

Indeed, for such a model, Anderson et al. (1986) showed that the maximum likelihood
estimator (MLE) of the scale matrix Σ has the form c0A, where
A =

∑n
i=1(xi − x)(xi − x)′ is the sample sum of product matrix, x = 1

n

∑n
i=1 xi is

the sample mean, and c0 is a positive constant that depends on the specific multivariate
elliptical-model. Consequently a natural (or usual) estimator of the precision matrix Σ−1

has the form α0A
−1. For example, for the multivariate Pearson type II-model, we can

easily show that α0 =
n

2q + pn
, under the restriction q > 0. However, this estimator of

Σ−1 is generally not optimal from a decision-theoretic viewpoint. The aim of this paper
is to propose new estimators of Σ−1 and tr(Σ−1) which dominate the usual ones, under
the quadratic loss and the squared error loss functions. Note that our motivation arises
from the paper of Joarder and Ahmed (1998), who established dominance results in the
subclass of scale mixture of normal distributions. Here, it is important to mention that
Pearson type II distribution cannot be expressed as mixture of normal distribution (see
Kano (1994)). Following Joarder and Ahmed, we will make use of the loss functions given
as

L(T̂,T) = tr
[
(T̂−T)2

]
, (8)

L(δ̂, δ) = (δ̂ − δ)2 , (9)

for the estimation of Σ−1 and tr(Σ−1) respectively. Their corresponding risk functions are
obtained by taking the expectations of the loss functions. The usual estimator of T = Σ−1

will be denoted by T̂u = α0A
−1. Now we propose a class of improved estimator of Σ−1

denoted by T̂, and defined as

T̂ = α0A
−1 − α | A |− 1

p Ip, (10)

where α is chosen such that T̂ is positive definite and Ip is the p× p dimensional identity

matrix. The form of the improved estimator T̂ is motivated by Dey’s result (1988),
who developed simultaneous estimators of the eigenvalues of the covariance matrix of the
multivariate normal distribution by shrinking sample eigenvalues towards their geometric
mean. Before giving the main results, we need some auxiliary lemmas. These will be
proved later with the help of the following Gupta and Varga’s (1993) result.
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Theorem 2.2. Let X ∼ Ep,n(O,Σ⊗Φ, ψ). Let l = rank(Σ), m = rank(Φ), and RDUB′

be the stochastic representation of X. Assume that Y ∼ Np,n(O,Σ⊗Φ). Let K(Z) be a
function defined on Rp×n such that if Z ∈ Rp×n and a ≥ 0 then K(aZ) = akK(Z) where
k > −lm. Assume E(K(X)) and E(K(Y)) exist. Then,

E(K(X)) = E(K(Y))
E(Rk)Γ

(
lm
2

)

2
k
2 Γ

(
lm+k

2

) . (11)

The full version and the proof of this theorem can be found in Gupta and Varga (1993),
p.100.

Remark 2.1. Let X ∼ Ep,n(µe′n,Σ ⊗ In, ψ), Σ > O, then the sample sum of product
matrix A can be expressed as a function of X, say

A = X

(
In − 1

n
ene

′
n

)
X′.

Now, by setting

K(X) =

[
X

(
In − 1

n
ene

′
n

)
X′

]−1

,

and using the relation (11), we get the unbiased estimator of Σ−1 given below, provided
that 0 < E(R−2) < ∞ and n > p + 2,

Σ̂−1 =
n− p− 2

(pn− 2)E(R−2)
A−1. (12)

The following lemmas provide some moments of the sample sum of product matrix of
the multivariate Pearson type II-model. In sequel, we assume n > p + 2 except for some
cases where we need n > p + 4.

Lemma 2.1. The following relations hold.

E(A−1) =
np + 2q

n− p− 2
Σ−1. (13)

E(A−2) = (np + 2q)(np + 2q − 2)E
(
W−2

)
, (14)

where n > p + 4, W
d
= Wp(Σ, n − 1) and E (W−2) is given by (see Gupta and Nagar

(2000), p.99)

E
(
W−2

)
= [(n− p− 1)(n− p− 4)]−1 Σ−2

+ [(n− p− 1)(n− p− 2)(n− p− 4)]−1 Σ−1tr(Σ−1). (15)
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Proof: Since R2 is distributed according to a Beta type I distribution with parameters
np

2
and q + 1, we have

E
(
R−2t

)
=

Γ
(

np
2
− t

)
Γ

(
np
2

+ q + 1
)

Γ
(

np
2

)
Γ

(
np
2

+ q − t + 1
) . (16)

Now, using (16) with t = 1 and (12), we obtain (13).
To prove (14), we consider the function K(·) defined on Rp×n by

K(X) =

[
X

(
In − 1

n
ene

′
n

)
X′

]−2

.

Hence, from relation (11), we have

E(A−2) =
4E(R−4)Γ

(
np
2

)

Γ
(

np−4
2

) E(W−2).

On the other hand, E(R−4) is obtained from (16), with t = 2

E(R−4) =
(np + 2q)(np + 2q − 2)

(np− 2)(np− 4)
,

and the desired result follows directly.¤

Lemma 2.2. For any t such that n− p− 2t− 2 > 0 we have

E
(| A |−t

)
=

Γ
(

np
2

+ q + 1
)
Γp

(
n−1

2
− t

)

Γ
(

np
2

+ q − tp + 1
)
Γp

(
n−1

2

) | Σ |−t (17)

E
(| A |−t A−1

)
=

2Γ
(

np
2

+ q + 1
)
Γp

(
n−1

2
− t

)

(n− p− 2t− 2)Γ
(

np
2

+ q − tp
)
Γp

(
n−1

2

) | Σ |−t Σ−1. (18)

Proof: From relation (11) with the function K(·) defined on Rp×n by

K(X) = | X(In − 1

n
ene

′
n)X′ |−t ,

we have

E
(| A |−t

)
=

E(R−2tp)Γ
(

np
2

)

2−tpΓ
(

np−2tp
2

) E(| W |−t), (19)

where E(| W |−t) is given by the following well-known relation (see Gupta and Nagar
(2000), p.105)

E
(| W |−t

)
=

2−tpΓp

(
n−1

2
− t

)

Γp

(
n−1

2

) | Σ |−t, (20)
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and E(R−2tp) is given by (see 16)

E(R−2tp) =
Γ

(
np
2
− tp

)
Γ

(
np
2

+ q + 1
)

Γ
(

np
2

)
Γ

(
np
2

+ q − tp + 1
) . (21)

Consequently, we obtain (17) by substituting (21) and (20) in equation (19).
In the same way, by using (11) and the function K(·) defined on Rp×n by

K(X) = | X(In − 1

n
ene

′
n)X′ |−t

[
X(In − 1

n
ene

′
n)X′

]−1

= | A |−t A−1,

we have

E
(| A |−t A−1

)
=

E(R−2(tp+1))Γ
(

np
2

)

2−(tp+1)Γ
(

np
2
− tp− 1

)E(| W |−t W−1). (22)

Here, E(R−2(tp+1)) is given by

E(R−2(tp+1)) =
Γ

(
np
2
− tp− 1

)
Γ

(
np
2

+ q + 1
)

Γ
(

np
2

)
Γ

(
np
2

+ q − tp
) . (23)

Since E (| W |−t W−1) is given (see Dey (1988)) by

E
(| W |−t W−1

)
=

2−tpΓp

(
n−1

2
− t

)

(n− p− 2t− 2)Γp

(
n−1

2

) | Σ |−t Σ−1, (24)

then relation (18) follows from (24) and (23).¤
As special cases, when t =

1

p
and t =

2

p
in the relation (17), we obtain respectively

E
(
| A |− 1

p

)
=

np + 2q

2

Γp

(
n−1

2
− 1

p

)

Γp

(
n−1

2

) | Σ |− 1
p , (25)

E
(
| A |− 2

p

)
=

(np + 2q)(np + 2q − 2)

4

Γp

(
n−1

2
− 2

p

)

Γp

(
n−1

2

) | Σ |− 2
p . (26)

When t =
1

p
in the relation (18), we obtain

E
(
| A |− 1

p A−1
)

=
(np + 2q)(np + 2q − 2)Γp

(
n−1

2
− 1

p

)

2(n− p− 2
p
− 2)Γp

(
n−1

2

) | Σ |− 1
p Σ−1 . (27)

These last three expressions will allow us to prove the main results of this paper.
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3 Main Results

The main results are presented in this section in the form of three theorems.

Theorem 3.1. Consider the multivariate Pearson type II-model (2). Then, under the

loss function given by (8), the improved estimator T̂ = α0A
−1 − α | A |− 1

p Ip dominates

the usual estimator T̂u = α0A
−1 for any α satisfying the conditions:

dp < α < 0, with α0 <
n− p− 2

p
− 2

np + 2q − 2
, (28)

or 0 < α < dp, with α0 >
n− p− 2

p
− 2

np + 2q − 2
, (29)

where dp is given by

dp =

[
α0

n− p− 2
p
− 2

− 1

np + 2q − 2

]
4Γp

(
n−1

2
− 1

p

)

Γp

(
n−1

2
− 2

p

) . (30)

Proof: Consider the risk difference D(T, α) = R(T̂,T; α)−R(T̂u,T). We thus have

D(T, α) = − 2α0αtr
[
E

(
| A |− 1

p A−1
)]

+ α2pE
[
| A |− 2

p

]
+ 2αE

[
| A |− 1

p

]
tr(Σ−1),

and from relations (25), (26) and (27), it can be written as

D(T, α) =
−α0αp(np + 2q)(np + 2q − 2)Γp

(
n−1

2
− 1

p

)

(n− p− 2
p
− 2)Γp

(
n−1

2

) | Σ |− 2
p

tr(Σ−1/p)

| Σ |− 1
p

+
α2p(np + 2q)(np + 2q − 2)Γp

(
n−1

2
− 2

p

)

4Γp

(
n−1

2

) | Σ |− 2
p

+
αp(np + 2q)Γp

(
n−1

2
− 1

p

)

Γp

(
n−1

2

) | Σ |− 2
p

tr(Σ−1/p)

| Σ |− 1
p

=
p(np + 2q) | Σ |− 2

p

Γp

(
n−1

2

) α

×
[(

1− α0(np + 2q − 2)

(n− p− 2
p
− 2)

)
Γp

(
n− 1

2
− 1

p

)
tr(Σ−1/p)

| Σ |− 1
p

+
(np + 2q − 2)Γp

(
n−1

2
− 2

p

)

4
α


 .
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Consequently, we have

D(T, α) =
p(np + 2q)(np + 2q − 2)Γp

(
n−1

2
− 2

p

)
| Σ |− 2

p

4Γp

(
n−1

2

) α

×

α +

(
1

np + 2q − 2
− α0

n− p− 2
p
− 2

)
4Γp

(
n−1

2
− 1

p

)

Γp

(
n−1

2
− 2

p

) tr(Σ−1/p)

| Σ |− 1
p


 .

Now, note that D(T, α) can be written as

D(T, α) = Cα

(
α− dp

tr(Σ−1/p)

| Σ |− 1
p

)
, (31)

where dp is given by (30) and C is the positive constant defined by

C =
p(np + 2q)(np + 2q − 2)Γp

(
n−1

2
− 2

p

)
| Σ |− 2

p

4Γp

(
n−1

2

) .

Now, T̂ dominates T̂u if and only if D(T, α) < 0. First, we consider the case when dp > 0.
From (30) we deduce

dp > 0 if and only if α0 >
n− p− 2

p
− 2

np + 2q − 2
.

In this case, D(T, α) < 0 if and only if 0 < α < dp
tr(Σ−1/p)

|Σ|−
1
p

. Now, using the following

relation
tr(Σ−1/p)

| Σ |− 1
p

≥ 1, (32)

(inequality between the arithmetic and geometric means) we remark that if 0 < α < dp

then 0 < α < dp
tr(Σ−1/p)

|Σ|−
1
p

(i.e. D(T, α) < 0). So the first case is thus proved.

The proof of the case when dp < 0 is easily obtained. Indeed,

dp < 0 if and only if α0 <
n− p− 2

p
− 2

np + 2q − 2
.

In the same way, we remark that if dp < α < 0 then dp
tr(Σ−1/p)

|Σ|−
1
p

< α < 0,

(i.e. D(T, α) < 0).¤
The explicit expressions of the risk functions of the estimators T̂ and T̂u are derived in
the following theorem.
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Theorem 3.2. The risk functions of the usual estimator T̂u = α0A
−1 and the improved

estimator T̂ = α0A
−1 − α | A |− 1

p Ip are respectively given by

R(T̂u,T) = γ1tr(Σ
−2) + γ2[tr(Σ

−1)]2 , (33)

where γ1 and γ2 are defined as follows

γ1 =
α2

0(np + 2q)(np + 2q − 2)

(n− p− 1)(n− p− 4)
− 2α0(np + 2q)

n− p− 2
+ 1 , (34)

γ2 =
α2

0(np + 2q)(np + 2q − 2)

(n− p− 1)(n− p− 2)(n− p− 4)
, (35)

and

R(T̂,T; α) =
p(np + 2q)(np + 2q − 2)Γp

(
n−1

2
− 2

p

)
| Σ |− 2

p

4Γp

(
n−1

2

) α

(
α− dp

tr(Σ−1/p)

| Σ |− 1
p

)

+ γ1tr(Σ
−2) + γ2[tr(Σ

−1)]2 , (36)

where dp is given by (30).

Proof: Indeed, by direct calculations, we get

R(T̂u,T) = α2
0tr

[
E(A−2)

]− 2α0tr[E(A−1)Σ−1] + tr(Σ−2).

Since E(A−1) and E(A−2) are given by, (see (13) and (14)), E(A−1) = m1Σ
−1 and

E(A−2) = m2E(W−2), where m1 =
np + 2q

n− p− 2
, m2 = (np + 2q)(np + 2q − 2) and

E(W−2) is given by (15), we find

R(T̂u,T) =
α2

0m2tr(Σ
−2)

(n− p− 1)(n− p− 4)
+

α2
0m2

(n− p− 1)(n− p− 2)(n− p− 4)
[tr(Σ−1)]2

−2α0m1tr(Σ
−2) + tr(Σ−2)

= [
α2

0m2

(n− p− 1)(n− p− 4)
− 2α0m1 + 1]tr(Σ−2)

+
α2

0m2

(n− p− 1)(n− p− 2)(n− p− 4)
[tr(Σ−1)]2 .

Now, we easily verify that
{

α2
0m2

(n−p−1)(n−p−4)
− 2α0m1 + 1 = γ1

α2
0m2

(n−p−1)(n−p−2)(n−p−4)
= γ2.

On the other hand, the proof of (36) follows directly from (33) and (31). The theorem is
thus proved. ¤
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3.0.1 Estimation of tr(Σ−1)

Let δ̂u = α0tr(A
−1) and δ̂i = α0tr(A

−1) − αp | A |− 1
p be the usual and the proposed

estimator of δ = tr(Σ−1) respectively. Then the dominance result between δ̂i and δ̂u is
given in the following theorem.

Theorem 3.3. Consider the multivariate Pearson type II-model (2). Then δ̂i dominates
δ̂u under the squared error loss function given by (9), if one of the following conditions
holds:

dp < α < 0, with α0 <
n− p− 2

p
− 2

np + 2q − 2
, (37)

or 0 < α < dp, with α0 >
n− p− 2

p
− 2

np + 2q − 2
, (38)

where dp is given by (30).

Proof: Let D(δ, α) be the risk difference between the proposed and the usual esti-
mators of δ. Then simple calculations show that D(δ, α) = pD(T, α), where D(T, α) is

the difference between the risks of T̂ and T̂u. Consequently, the rest of the proof follows
directly from that of theorem 3.1. ¤

Remark 3.1. The risk difference D(T, α) = Cα

(
α− dp

tr(Σ−1/p)

|Σ|−
1
p

)
is a convex parabolic

function of α, and the optimal value of α (denoted by αop) that minimize the risk difference
is given by

αop =
dp

2

tr(Σ−1/p)

| Σ |− 1
p

, (39)

which depends on the unkown scale matrix Σ and therefore this is not usable in practice.
However, from (32), we have the following inequality

D(T, α) ≤ Cα(α− dp) where 0 < α < dp or dp < α < 0,

and α′op =
dp

2
, where dp is given by (30), minimize the expression Cα(α − dp). So this

value for α will be used in a simulation study.

4 Simulation Study and Conclusion

In this section, a Monte Carlo simulation study is carried out to evaluate the risk perfor-
mance of the proposed estimator T̂ (corresponding to the choice α = dp

2
), over the usual

ones (i.e. the unbiased and MLE).
First, n p-dimensional random vectors x1, . . . ,xn are generated from the multivariate
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Pearson type II distribution with three different Σ and various q, by using the following
stochastic representation

xi
d
= rΣ

1
2u(p), i = 1, . . . , n, (40)

where r2 d
= Beta

(
p
2
, q + 1

)
, and u(p) is uniformly distributed on the unit sphere Sp. A

method to generate u(p) can be found in Fang and Wang (1994).
Let X = (x1, . . . ,xn) be the p × n sample matrix. Define the sample covariance matrix

A as A = XX′. Here the condition n > p + 4 is required. Then the estimators T̂ and
T̂u, and their corresponding losses are computed.
In our simulation, p = 3 and we choose n = 8, 20, 30. This procedure is repeated 2000
times and the average loss is used to estimate the risk of the corresponding estimators.
Finally, the percentage reductions in average loss (PRIAL) for T̂ compared with the MLE
and the unbiased estimator, is computed. Which is an estimate of

E
[
L(T, T̂u)− L(T, T̂)

]

E
[
L(T, T̂u)

] × 100

Table 1 contains the PRIAL of T̂ over the MLE T̂u = α0A
−1, with α0 =

n

2q + np
. While

diag(1,1,1) diag(4,2,1) diag(25,1,1)
n = 8 q = 5 23.96 65.08 45.26
n = 8 q = 200 57.62 59.31 48.68
n = 8 q = 1000 12.49 56.07 49.15

n = 20 q = 11 31.90 49.59 25.85
n = 20 q = 100 60.44 43.99 24.68
n = 20 q = 1000 59.07 42.82 28.64

n = 30 q = 19 39.43 28.11 15.68
n = 30 q = 150 40.07 24.89 18.42
n = 30 q = 1000 47.97 42.34 23.81

Table 1: PRIAL of T̂ over the MLE

Table 2 gives the PRIAL of T̂ over the unbiased estimator, with α0 =
n− p− 2

2q + np
.

The results indicate that for the choices of the matrix Σ, our proposed estimator T̂ pro-
vides a substantial improvement over the MLE and the unbiased estimator, especially
when the sample size n is small. On the other hand, the improvement over the unbiased
estimator seems to be a decreasing function on n.

12



diag(1,1,1) diag(4,2,1) diag(25,1,1)
n = 8 q = 5 39.31 34.55 21.64
n = 8 q = 200 46.29 38.69 22.47
n = 8 q = 1000 46.97 40.00 23.89

n = 20 q = 11 6.05 4.68 2.46
n = 20 q = 100 8.37 4.15 3.21
n = 20 q = 1000 9.97 7.30 3.84

n = 30 q = 19 3.29 2.44 2.50
n = 30 q = 150 7.71 6.06 2.76
n = 30 q = 1000 10.33 8.91 2.75

Table 2: PRIAL of T̂ over the unbiased estimator
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