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Abstract  The standardized moments or Mahalanobis moments are easily calculated for 
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moment accounts for the coefficient of kurtosis. The proposed method works well if the 
product moments have closed forms. Ideas are illustrated with examples. 
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1. Introduction 
 

In a series of papers, Mardia (1970; 1974; 1975) defined and discussed the properties of 

measures of  kurtosis and skewness based on Mahalanobis distance. The coefficient of kurtosis 

is the second order moment of standardized distance better known as Mahalanobis distance. 

The moments can be referred to as standardized moments, Mahalanobis moments or Mardia 

moments. Interested readers may go through Kotz, Balakrishnan and Johnson (2000) for an 

excellent discussion on multivariate skewness and kurtosis. 

 

For some distributions, it is easy to derive the distribution of the Mahalanobis distance and 

calculate moments but for others these are difficult. Kotz, Balakrishnan and Johnson (2000) 

have provided the kurtosis of the Marshall-Olkin bivariate exponential distribution. In this 

paper we provide an alternative method to calculate Mahalanobis moments for bivariate 

distributions in terms of product moments of the components of a bivariate vector. Product 

moments (also called raw product moments or product moments around zero) of order a and b  

for two random variables 1X  and 2X  are defined by ( )1 2( , ) a ba b E X Xµ′ =  while the centered 

product moments (sometimes called central  product moments, corrected product moments or 

central mixed moments) are defined by   

( ) ( )1 1 2 2( , ) ( ) ( ) .a ba b E X E X X E Xµ ⎡ ⎤= − −⎣ ⎦                  (1.1) 
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Interested readers may go through Johnson, Kotz and Kemp (1993, 46) or Johnson, Kotz and 

Balakrishnan (1997, 3). Evidently  ( )1( ,0) aa E Xµ′ =  is the -tha  moment of 1X , and 

( )2(0, ) bb E Xµ′ =  is the -thb   moment of 2X . In case 1X  and 2X  are independent, then 

( )1 2( , ) ) ( ( ,0) (0, )a ba b E X E X a bµ µ µ′ ′ ′= =  and ( , ) ( ,0) (0, ).a b a bµ µ µ= The correlation 

coefficient ( 1 1)ρ ρ− < <  between  1X  and 2X  is denoted by  

1 2,
(1,1) .

(2,0) (0, 2)X X
µρ

µ µ
=          (1.2) 

Note that ( )2
1 1 1 20(2,0) ( ) ( )E X E X V Xµ σ= − = =  which is popularly denoted by 2

1σ  while 

the central product moment, ( )( )1 1 2 2(1,1) ( ) ( )E X E X X E Xµ ⎡ ⎤= − −⎣ ⎦  denoted popularly by 

12σ , is, in fact, the covariance between 1X and 2X .   

 

In this paper, we derive Mahalanobis moments in terms of centered product moments. 

Mahalanobis moments for a bivariate normal distribution and bivariate t-distribution  are 

calculated. It is observed that general formulae for Mahalanobis moments for bivariate 

elliptical distribution, which includes bivariate normal and t-distributions as special cases, are 

easily obtained. An example of bivariate chi-square distribution is considered for which the 

proposed method developed in Section 2 seems to be appropriate. In what follows we will 

rather use 1X X= and 2X Y=  to avoid all confusion of a trivial nature, and define 

( , ) ( ) ( )a ba b E X Yµ ξ θ⎡ ⎤= − −⎣ ⎦  where ( ), ( ).E X E Yξ θ= =   

 

2.  Mahalanobis Moments in Terms of Product Moments 
 

For a bivariate random vector ( , )W X Y ′= , with mean vector ( , )µ ξ θ ′=  and covariance 

matrix   

(2,0) (1,1)
( ) ( )( )  (say),

(1,1) (0,2)
Cov W E W W

µ µ
µ µ

µ µ
⎛ ⎞′= − − = = Ω⎜ ⎟
⎝ ⎠

 

the standardized distance is defined by 
1

1

( ) ( )
  (( )  ( )) (( )  ( )) .
Q W W

X Y X Y
µ µ

ξ θ ξ θ

−

−

′= − Ω −

′= − − Ω − −
                (2.1) 
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 The quantity Q  is also known to be generalized distance or Mahalanobis distance. For a 

bivariate random vector W with ( )E W µ=  and ( )Cov W = Ω , we define standardized 

moments or Mahalanobis moments by  ( ),  1, 2,i
i E Q iβ = =  where 

1 1/ 2 2( ) ( ) || ( ) ||Q W W Wµ µ µ− −′= − Ω − = Ω − . Of special interest is the the second order 

Mahalanobis moments by 2
2 ( )E Qβ =  which is the coefficient of kurtosis in the sense of 

Mardia (1979c). For a recent paper on kurtosis, see An and Ahmed (2007), and the references 

therein. 

 

Note that Kotz, Nadarajah and Mitov (2003) presented an elegant technique for product 

moments of the components of any multivariate random vectors in terms of cumulative 

distribution function or survival function. It appears that if the cumulative distribution function 

or the survival function has a closed form, the Nadarajah and Mitov (2003) technique works 

well. For Marshall-Olkin bivariate exponential distribution with survival function  
(1 )

(1 )

,0
( , )

,0

x y

y x

e x y
P X x Y y

e y x

λ

λ

− − +

− − +

⎧ ≤ ≤⎪≥ ≥ = ⎨
≤ ≤⎪⎩

 

where 0λ > , Nadarajah and Mitov (2003) calculated raw product moment of  general order 

from which it is possible to calculate Mahalanobis moments of the distribution. Kotz, 

Balakrishnan and Johnson (2000, 82) mentioned that the coefficient of kurtosis of the 

distribution is given by 3 4 3 2
2 2(1 ) (3 9 15 12 4)β ρ ρ ρ ρ ρ−= + + + + +  where the correlation 

coefficient ρ  is given by ( 2)λ ρ λ+ = . They also mentioned that in case 0ρ = , the 

components X and Y become independent, in which case 2 8β =  (which is the same as that of 

the bivariate normal distribution).  Interested readers may go through Kotz, Nadarajah and 

Mitov (2003) for a useful formula for product moments for any univariate distribution. 

 

In fact regardless of the distribution of the variable in question the first order standardized 
moment is the dimension of the random variable. Let  W be a -componentp  random vector 
with ( )E W µ=  and ( )Cov W = Ω , then 
 

1 1 1 1
1 ( ) ( ) [ ( )] ( ) ( ) .pE trW W E tr WW tr E WW tr tr I pβ − − − −′ ′ ′= Ω = Ω = Ω = Ω Ω = =   (2.2) 
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If ~ ( , )pW N µ Ω , then 1 2( ) ( ) ~ pQ W Wµ µ χ−′= − Ω −  so that ( )k

k E Qβ = , the standardized 

moment of order k follows from chi-square distribution.  In case W has a multivariate t-

distribution or multivariate elliptical distribution, standardized moments can also be calculated 

without much difficulty.  In this paper we developed general formulae for standardized 

moments for any bivariate distribution. We also provided some examples to illustrate the idea.  

We remark that in case W has a complicated distribution, say a bivariate chi-square 

distribution (Theorem 4.4), it would be much difficult to calculate the distribution of Q  and 

hence the standardized moments.  In the following theorem, we derive a set of formulae for 

standardized moments for any bivariate distribution in terms of centered product moments just 

to demonstrate the potential of an alternative way. 

 

Theorem 2.1 Let ( , )a bµ be centered product moments between X and Y . Then  

22 2

2 2

2

( ) (2,0) (0,2) (1,1) ( )

     (4,0) (0,2) (0,4) (2,0)
     4 (1,1) (2,2) 2 (2,0) (0,2) (2,2)
     4 (0,2) (1,1) (3,1) 4 (2,0) (1,1) (1,3),

i E Qµ µ µ

µ µ µ µ

µ µ µ µ µ
µ µ µ µ µ µ

⎡ ⎤−⎣ ⎦
= +

+ +
− −

 

32 3

3 3

2 2

2 2

2 2

( ) (2,0) (0, 2) (1,1) ( )

      (6,0) (0, 2) (2,0) (0,6)
      6 (0, 2) (1,1) (5,1) 6 (2,0) (1,1) (1,5)
      12 (0, 2) (1,1) (4, 2) 12 (2,0) (1,1) (2, 4)
      3 (2,0) (0, 2) (4, 2) 3 (2,

ii E Qµ µ µ

µ µ µ µ

µ µ µ µ µ µ

µ µ µ µ µ µ

µ µ µ µ

⎡ ⎤−⎣ ⎦
= +

− −

+ +

+ +
3

0) (0, 2) (2, 4) 
      8 (1,1) (3,3) 12 (2,0) (0, 2) (1,1) (3,3).

µ µ

µ µ µ µ µ µ− −

 

 

Proof.  From (2.1) we have 
1(2,0) (1,1)

(  )
(1,1) (0,2)

X
Q X Y

Y
µ µ ξ

ξ θ
µ µ θ

− −⎛ ⎞ ⎛ ⎞
= − − ⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠

, 

which can be simplified as  
2

2 2

[ (2,0) (0, 2) (1,1)]
(0, 2)( ) 2 (1,1)( )( ) (2,0)( ) .

Q
X X Y Y

µ µ µ

µ ξ µ ξ θ µ θ

−

= − − − − + −
   (2.4) 

 

By taking expected values in both sides of the above identity, we have 
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2

2

2

2

[ (2,0) (0,2) (1,1)] ( )
(2,0) (0,2) 2 (1,1) (0,2) (2,0)
(2,0) (0,2) 2 (2,0) (0,2) (0,2) (2,0)

2 (2,0) (0,2)(1 ),

E Qµ µ µ

µ µ µ µ µ

µ µ ρ µ µ µ µ

µ µ ρ

−

= − +

= − +

= −

 

i.e. ( ) 2E Q =  

which is generally true (see 2.2). By squaring both sides of (2.4) we have 
22 2

2 4 2 2 2 2 4 3

2 2 3

(2,0) (0,2) (1,1)

(0,2)( ) 4 (1,1)( ) ( ) (2,0)( ) 4 (0,2) (1,1)( ) ( )
2 (2,0) (0,2)( ) ( ) 4 (2,0) (1,1)( )( ) .

Q

X X Y Y X Y
X Y X Y

µ µ µ

µ ξ µ ξ θ µ θ µ µ ξ θ

µ µ ξ θ µ µ ξ θ

⎡ ⎤−⎣ ⎦
= − + − − + − − − −

+ − − − − −
 

Then the result in (i) follows by taking expected values in both sides of the above identity. 

 By cubing both sides of  (2.4) we have: 
32 3

3 6 3 3 3 3 6

2 5 2 4 2

2 4 2 2 2 4

2

(2,0) (0, 2) (1,1)

(0, 2)( ) 8 (1,1)( ) ( ) (2,0)( )
6 (0, 2) (1,1)( ) ( ) 12 (0, 2) (1,1)( ) ( )
3 (2,0) (0, 2)( ) ( ) 3 (2,0) (0, 2)( ) ( )
12 (2,0) (1,1)

Q

X X Y Y
X Y X Y
X Y X Y

µ µ µ

µ ξ µ ξ θ µ θ

µ µ ξ θ µ µ ξ θ

µ µ ξ θ µ µ ξ θ

µ µ

⎡ ⎤−⎣ ⎦
= − − − − + −

− − − + − −

+ − − + − −

+ 2 2 2 5

3 3

( ) ( ) 6 (2,0) (1,1)( )( )
12 (2,0) (0,2) (1,1) ) ( ) .

X Y X Y
X Y
ξ θ µ µ ξ θ

µ µ µ ξ θ

− − − − −

− − −

 

Part (ii) follows by taking expected values of the above identity. 

 

Corollary 2.1 Let ( , )a bµ be the centered product moment and 1/ 2( (2,0) (0,2)) (1,1)ρ µ µ µ−= be 

the correlation coefficient between X and Y . Then  

( )

22 2

2 2 2

1/ 2

( ) (2,0) (0,2)(1 ) ( )

    (4,0) (0,2) (0,4) (2,0) (4 2) (2,0) (0,2) (2,2)

    4 (2,0) (0,2) [ (0,2) (3,1) (2,0) (1,3)],

i E Qµ µ ρ

µ µ µ µ ρ µ µ µ

ρ µ µ µ µ µ µ

⎡ ⎤−⎣ ⎦
= + + +

− +

 

 

( )
( )

32 3

3/ 23 3 2

1/ 2 2 2

2

( ) (2,0) (0, 2)(1 ) ( )

      (6,0) (0, 2) (2,0) (0,6) (2,0) (0, 2) (3,3)4 (2 3)

      6 (2,0) (0, 2) [ (0, 2) (5,1) (2,0) (1,5)]

      3 (2,0) (0, 2)(4 +1) (0, 2) (4, 2) (2,0) (2,

ii E Qµ µ ρ

µ µ µ µ µ µ µ ρ ρ

µ µ ρ µ µ µ µ

µ µ ρ µ µ µ µ

⎡ ⎤−⎣ ⎦

= + − +

− +

+ +[ ]4) .
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Corollary 2.2 Let X and Y have a bivariate distribution with ( ) ( )a b b aE X Y E X Y=  and 
correlation coefficient ρ . Then  
 

2 2 2 2 2( ) (0, 2)(1 ) ( ) 2 (4,0) (4 2) (2,2) 8 (3,1),i E Qµ ρ µ ρ µ ρµ− = + + −
3 2 3 3 3 2( ) (0, 2)(1 ) ( ) 2 (6,0) (8 12 ) (3,3) 12 (5,1)+(24 6) (4, 2).ii E Qµ ρ µ ρ ρ µ ρµ ρ µ− = − + − +  

 
Corollary 2.3 Let X and Y have a bivariate distribution. If X and Y are independent, then   
 

2
2 2

(4,0) (0,4)( ) ( ) 2 ,
(2,0) (0,2)

i E Q µ µ
µ µ

= + +  

3
3 3 2 2

(6,0) (0,6) (4,0) (0,4)( ) ( ) 3 .
(2,0) (0,2) (2,0) (0,2)

ii E Q µ µ µ µ
µ µ µ µ

⎛ ⎞
= + + +⎜ ⎟

⎝ ⎠
 

 
Corollary 2.4 Let X and Y have a bivariate distribution. If X and Y are independently and 
identically distributed, then   
 

2
2

(4,0)( ) ( ) 2 1 ,
(2,0)

i E Q µ
µ

⎛ ⎞
= +⎜ ⎟

⎝ ⎠
 

3
3 2

(6,0) (4,0)( ) ( ) 2 3 .
(2,0) (2,0)

ii E Q µ µ
µ µ

⎛ ⎞
= +⎜ ⎟

⎝ ⎠
 

 
3.  Centered Product Moments of the Bivariate Normal 
Distribution 
 
The pdf  (probability density function) of the bivariate normal distribution is given by  
  

2 1/ 2

1
1 2

(1 ) ( , )( , )  exp ,
2 2

q x yf x y ρ
πσ σ

−− −⎛ ⎞= ⎜ ⎟
⎝ ⎠

       (3.1) 

where 
2 2

2

1 2 1 2

2 ( )( )(1 ) ( , ) .x y x yq x y ξ θ ρ ξ θρ
σ σ σ σ

⎛ ⎞ ⎛ ⎞− − − −
− = + −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
               

 
The following theorem is due to Kendal and Stuart (1969, 91). 
 
Theorem 3.1 The centered product moments ( , ) ( ) ( )a ba b E X Yµ ξ θ⎡ ⎤= − −⎣ ⎦  of the bivariate 
normal distribution with pdf in (3.1) are given by 
 

1 2( , ) ( , )a ba b a bµ σ σ λ=  where 
2( , ) ( 1) ( 1, 1) ( 1)( 1)(1 ) ( 2, 2),a b a b a b a b a bλ ρλ ρ λ= + − − − + − − − − −  
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min( , ) 2

0

(2 )!(2 )! (2 )(2 ,2 ) ,
2 ( )!( )!(2 )!

a b j

a b
j

a ba b
a j b j j

ρλ +
=

=
− −∑  

min( , ) 2

0

(2 1)!(2 1)! (2 )(2 1,2 1) ,
2 ( )!( )!(2 1)!

a b j

a b
j

a ba b
a j b j j

ρλ ρ+
=

+ +
+ + =

− − +∑  

(2 , 2 1) (2 1,2 ) 0.a b a bλ λ+ = + =  
 
The above can be rewritten as 

2 2 2
1 2 1 2( , ) ( 1) ( 1, 1) ( 1)( 1)(1 ) ( 2, 2),a b a b a b a b a bµ ρσ σ µ ρ σ σ µ= + − − − + − − − − −  

min( , ) 2
2 2
1 2

0

(2 )!(2 )! (2 )(2 ,2 ) ,
2 ( )!( )!(2 )!

a b j
a b

a b
j

a ba b
a j b j j

ρµ σ σ +
=

=
− −∑  

min( , ) 2
2 1 2 1
1 2

0

(2 1)!(2 1)! (2 )(2 1,2 1) ,
2 ( )!( )!(2 1)!

a b j
a b

a b
j

a ba b
a j b j j

ρµ σ σ ρ+ +
+

=

+ +
+ + =

− − +∑  

(2 , 2 1) (2 1,2 ) 0.a b a bµ µ+ = + =  
 
Product moments that are needed for deriving standardized moments up to order 3 are provided 
below:  
 

2
1
2
2

4
1
4
2

6
1

6
1

(2,0) ,

(0, 2) ,

(4,0) 3 ,

(0,4) 3 ,

(6,0) 15 ,

(0,6) 3 ,

µ σ

µ σ

µ σ

µ σ

µ σ

µ σ

=

=

=

=

=

=

 

 
1 2

2 2 2
1 2

3
1 2
3
1 2

(1,1) ,

(2, 2) (1 2 ) ,

(1,3) 3 ,

(3,1) 3 ,

µ ρσ σ

µ ρ σ σ

µ ρσ σ

µ ρσ σ

=

= +

=

=

 

 
2 2 4

1 2
2 3 3

1 2
2 4 2

1 2
5

1 2
5
1 2

(2, 4) 3(1 4 ) ,

(3,3) 3 (3 2 ) ,

(4, 2) 3(1 4 ) ,

(1,5) 15 ,

(5,1) 15 .

µ ρ σ σ

µ ρ ρ σ σ

µ ρ σ σ

µ ρσ σ

µ ρσ σ

= +

= +

= +

=

=

 

 
 
4.  Some Examples 
 

(i) Bivariate Normal Distribution 
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Let us represent the bivariate normal distribution with pdf in (3.1) by, 

2~ ( , )
X

W N
Y

µ
⎛ ⎞

= Σ⎜ ⎟
⎝ ⎠

, 
ξ

µ
θ
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

,
(2,0) (1,1)
(1,1) (0,2)

µ µ
µ µ

⎛ ⎞
Σ = ⎜ ⎟

⎝ ⎠
.   

It is known that for a -variatep  normal distribution, ~ ( , )pW N µ Σ , the standardized distance 

1 2( ) ( ) ~ pQ W Wµ µ χ−′= − Σ −  so that  1 ( ) ,E Q pβ = =  2
2 ( ) ( 2)E Q p pβ = = +   and 

3
3 ( ) ( 2)( 4)E Q p p pβ = = + + . That is for the univariate normal distribution, 

1 2 31, 3, 15β β β= = =  and for the bivariate normal distribution,  

 

1 2 32, 8, 48.β β β= = =                    (4.1)  

 

We derive Mahalanobis moments for bivariate normal and bivariate t-distribution by the 

method developed in Section 2. It may be mentioned that the standardized moments for 

bivariate elliptical distributions are easily obtained, but these are not easy for other distributions 

as it is difficult to derive the distribution of the standardized distance.  

 
Theorem 4.1 The second and the third order standardized moments of  bivariate normal 
distribution are given by 2 38, 48.β β= =  
 
Proof. By the use of moments from Section 3, it follows from Theorem 2.1 (i) or preferably 
Corollary 2.1(i) that  
 

22 2 2 2
1 2

4 2 2 4 2 2 2 2 2 2 2 2
1 2 2 1 1 2 1 2
2 3 2 3
2 1 2 1 2 1 1 2 1 2

2 2 2 2 2
1 2 1 2

     (1 ) ( )

     (3 )( ) (3 )( ) 4( )[ (1 2 )]

     4( )( )(3 ) 4 ( )(3 ),

     2 [ (1 2 )]

E Qσ σ ρ

σ σ σ σ ρ σ σ σ σ ρ

σ ρσ σ σ σ ρ σ ρσ σ σ σ ρ

σ σ σ σ ρ

⎡ ⎤−⎣ ⎦
= + + +

− −

+ +

 

 
so that 
 

2 2 2 2 2 2

2 4

(1 ) ( ) 3 3 4 (1 2 ) 2(1 2 ) 4 (3 ) 4 (3 )
                        8(1 2 ).

E Qρ ρ ρ ρ ρ ρ ρ ρ

ρ ρ

− = + + + + + − −

= − +
 

 
Similarly by plugging in the moments from Section 3, it follows from Theorem 2.1 (ii) or 
preferably Corollary 2.1(ii) that 
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32 2 2 3

1 2

6 2 3 2 3 6
1 2 1 2

3 3 3 3 3 2 2 2 3 3 2
1 2 1 2 1 2 1 2 1 2

4 5 4 5
2 1 2 1 2 1 1 2 1 2

2 2 2 2 4 2 2 2 2 2
2 1 2 1 2 1 1

(1 ) ( )

(15 )( ) ( ) (15 )

8( )[3 (3 2 )] 12 ( )[3 (3 2 )]

6 ( )[15 ] 6 ( )(15 )

12 ( )[3 (1 4 )] 12 (

E Qσ σ ρ

σ σ σ σ

ρ σ σ σ σ ρ ρ σ σ ρσ σ σ σ ρ ρ

σ ρσ σ σ σ ρ σ ρσ σ σ σ ρ

σ ρ σ σ σ σ ρ σ ρ σ

⎡ ⎤−⎣ ⎦
= +

− + − +

− −

+ + + 2 2 4 2
2 1 2

2 2 2 4 2 2 2 2 2 2 4 2
1 2 1 2 1 2 1 2

)[3 (1 4 )]

3 ( ) [3 (1 4 )] 3( ) ( )[3 (1 4 )] 

σ σ σ ρ

σ σ σ σ ρ σ σ σ σ ρ

+

+ + + +

 

 
so that 
 

2 3 3

3 2 2

2 2 2 2

2 2

2 4 6

(1 ) ( )
15 15 8 [3 (3 2 )] 12 [3 (3 2 )]
6 (15 ) 6 (15 ) 12 [3(1 4 )] 12 [3(1 4 )]
3[3(1 4 )] 3[3(1 4 )] 
48(1 3 3 ).

E Qρ

ρ ρ ρ ρ ρ ρ

ρ ρ ρ ρ ρ ρ ρ ρ

ρ ρ

ρ ρ ρ

−

= + − + − +

− − + + + +

+ + + +

= − + −

 

 
 
(ii) Bivariate T-Distribution 
 
Let 1 2( , )X X X′ =  be  the bivariate -t random vector with pdf 
 

( ) / 2 11 1/ 2 1
2 ( ) (2 ) | | 1 ( ) '( ) ( )f x x x

ν
π θ ν θ

− −− − −= Σ + − Σ −                             (4.1) 
 
where 1 2( , )θ θ θ′ =  is an unknown vector of location parameters and Σ  is the 2 2×  unknown 
positive definite matrix of scale parameters while the scalar ν  is assumed to be a known 
positive constant (Anderson, 2003, 289). For recent update on t-distributions see Kotz and 
Nadarajah (2005) and Kibria (2006) and the references therein. 
   
The  following theorem, due to Joarder (2006a), is needed to calculate Mahalanobis moments  
of the above bivariate t-distribution given by ( 4.1), 
 
Theorem 4.2  The centered product moments of the bivariate t-distribution with pdf in (4.1) 
are given by  
 

2 2 2
1 2 2 1 2 4( , ; ) ( 1) ( 1, 1) ( 1)( 1)(1 ) ( 2, 2) ,a b a b a b a b a bµ ν ρσ σ µ γ ρ σ σ µ γ= + − − − + − − − − −  

 
min( , ) 2

2 2
1 2 2 2

0

(2 )!(2 )! (2 )(2 , 2 ; )  ,
2 ( )!( )!(2 )!

a b j
a b

a ba b
j

a ba b
a j b j j

ρµ ν σ σ γ ++
=

=
− −∑  

 
min( , ) 2

2 1 2 1
1 2 2 2 2

0

(2 1)!(2 1)! (2 )(2 1, 2 1; )  ,
2 ( )!( )!(2 1)!

a b j
a b

a ba b
j

a ba b
a j b j j

ρµ ν σ σ ρ γ+ +
+ ++

=

+ +
+ + =

− − +∑
 

 
(2 , 2 1; ) (2 1, 2 ; ) 0a b a bµ ν µ ν+ = + =  



 10
 

where 
/ 2( / 2) ( / 2 / 2) ,   

( / 2)

a

a
a aν νγ ν

ν
Γ −

= >
Γ

 

 

By the use of the above moments in Theorem 2.1 or preferably in Corollary 2.1, we have the 

second and third order Mahalanobis moments of the bivariate t-distribution  having pdf in 

(4.1): 

 

2
28 ,  4,
4

νβ ν
ν
−

= >
−

 

2

3
( 2)48 ,  6.

( 4)( 6)
νβ ν

ν ν
−

= >
− −

 

 
(iii) Multivariate Elliptical Distribution  
 
The second and third order Mahalanobis moments are calculated for -variatep  elliptical 
distribution. With 2p = , the results boil down to bivariate elliptical distribution. Consider the 
multivariate elliptical distribution with pdf  
 

1
3( ) (( ) ( ))f x g x xµ µ−′= − Σ − ,                    (4.2) 

 
where x is a -dmensionalp  column vector with mean ( )E X µ=  and the covariance matrix 

1 2( ) ( )Cov X p E R−= Σ  where 2R Z Z′= and 1/ 2 ( )Z X µ−= Σ − . Then we have the following 
theorem (cf. Anderson, 2003, 103): 
 
Theorem 4.3 Let X have the multivariate elliptical distribution with pdf in (4.2). Then the 
second and the third order Mahalanobis moments of  the distribution are given by 
 

4
2 2

2 2 2

( )( ) ,  and
( )

E RE Q p
E R

β = =  

6
3 3

3 3 2

( )( )
( )

E RE Q p
E R

β = =  

 
respectively, where 2R Z Z′= and 1/ 2 ( )Z X µ−= Σ − . 
 
 
Proof. The covariance matrix of the elliptical distribution is given by 1 2( ) ( )Cov X p E R−= Σ  
so that the standardized distance is given by 1 2 1( ) ( ( ) ) ( )Q X p E R Xµ µ− −′= − Σ − .  Then the 
theorem is obvious by virtue of  

2 2 4 3 6
2 3

2 2 2 3 2,  ,  .
( ) ( ) ( )

pR p R p RQ Q Q
E R E R E R

= = =  



 11
 
Note that if the form of (.)g  is known, the second and the third order Mahalanobis moments of 
the distribution can be calculated by the pdf of R given by 
 

/ 2
1 22( )   ( ),  0 .

( / 2)

p
ph r r g r r

p
π −= <

Γ
 

 
It is well known that for the multivariate normal distribution 2 2~ pR χ , and for the  multivariate 
t-distribution with pdf 
 

( ) / 2 11/ 2 1
4 / 2

(( ) / 2)( ) | | 1 ( ) ( ) ( ) ,
( / 2)( )p

pf x x x
νν θ ν θ

ν νπ
− −− −Γ + ′= Σ + − Σ −

Γ
 2,ν >                              

 
we have 1 2 ~ ( , )p R F p ν− . 
 
(iv) Bivariate Chi-square Distribution 
 
The following bivariate chi-square distribution is derived by  Joarder (2007a). 
 
Theorem 4.4 The random variables U  and V  are said to have a correlated bivariate chi-
square distribution each with m  degrees of freedom,  if its pdf is given by   
 

( )
( )
( )

2
( )

/ 2 1 2(1 )

5 / 2 22 =0

( 1) / 2( )  ( , )  [1 ( 1) ]
1 ! ( ) / 22  ( / 2) 1

u v
km

k
mm k

kuv e uvf u v
k k mm

ρ ρ
ρπ ρ

− +
− − ∞ ⎛ ⎞ Γ +

= + − ⎜ ⎟⎜ ⎟− Γ +Γ − ⎝ ⎠
∑  

 
2m > , 1 1ρ− < < . 

 
Since it is difficult to derive the distribution of Mahalanobis distance of the above bivariate chi-
square distribution, Mahalanobis moments of the above bivariate chi-square distribution can be 
derived by using the results developed in Section 2. In case 0ρ = , the pdf of the joint 
probability distribution in Theorem 4.4, would be that of the product of two independent chi-
square random variables 2~ mU χ  and 2~ mV χ .  
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