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 The distribution of the product moment correlation coefficient based on the 
bivariate normal distribution is well known. Recently in many business and 
economic data, fat tailed distributions especially some elliptical distributions 
have been considered as parent populations. The normal and t-distributions 
are well known special cases of elliptical distribution.  In this paper we 
derive some theorems involving double integrals and apply them to derive 
the probability distribution of the correlation coefficient for some elliptical 
populations. The general nature of the theorems indicates their potential use 
in probability distribution theory. 
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1.  Introduction 
 
The distribution of the product moment correlation coefficient based on the 
bivariate normal distribution was derived by Fisher (1915). A recent interest 
among the applied scientists is the use of fat tailed distribution for modeling 
business data especially stock returns. Since the bivariate t-distribution has 
fatter tails, it has been increasingly applied for modeling business data 
especially stock returns.   
 
The distribution is said to be robust if it remains the same under violation of 
normality. The robustness of the distribution of the correlation for elliptical 
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population was proved by Fang and Anderson (1990, 10) by stochastic 
representation. Fang (1990) derived the null distribution whereas Ali and 
Joarder (1991) derived the nonnull distribution of the correlation coefficient 
for bivariate elliptical distribution. It should be pointed out that in the case of 
bivariate elliptical distribution, the observations in the sample are not 
necessarily independent.  
 
In this paper we derive some theorems containing bivariate integrals that help 
derive the distribution of the correlation for different populations.  The 
general nature of the theorems indicate their potential use for many other 
applications in the distribution theory of  bivariate elliptical distribution. The 
objective is to provide insight to those experts in business, science and 
engineering who use elliptical models as models for samples. See e.g. 
Sutradhar and Ali (1986), Lange, Little and Taylor (1989), Sutradhar and Ali 
(1989), Fang (1990), Fang and Anderson (1990), Fang, Kotz and Ng (1990), 
Joarder and Ahmed (1998), Kibria and Haq (1999), Billah and Saleh (2000), 
Kibria (2003), Kibria(2004), Kibria and Saleh (2004), and Kotz and 
Nadarajah (2004).  
 
2. The Bivariate Normal, T and Elliptical Distributions 
 
The bivariate elliptical distribution which includes bivariate normal 
distribution as t-distribution is outlined in this section. 
 
(i) The Bivariate Normal Distribution 

 
Let 1 2( , )X X X ′=  be  bivariate normal random vector with probability 
density function (pdf) 

( )1 1/ 2 1
1

1( ) (2 ) | | exp ( ) ( )
2

f x x xπ θ θ− − −−⎡ ⎤′= Σ − Σ −⎢ ⎥⎣ ⎦
             (2.1) 

where 1 2( , )θ θ θ ′=  is unknown vector of location parameters and Σ  is the 
2 2×  unknown positive definite matrix of  population variances and 
covariance.  The probability density function of the bivariate normal  
distribution will be denoted by 2 ( , )N θ Σ . Now consider a sample 

1 2, , ( 2)NX X X N >  having the joint probability density function 
/ 2

1
2 1 2

1

| | 1( , , , ) exp ( ) ( ) .
(2 ) 2

N N

N j jN
j

f x x x x xθ θ
π

−
−

−
=

⎛ ⎞Σ − ′= − Σ −⎜ ⎟
⎝ ⎠

∑          (2.2) 
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The mean vector is 1 2( , )X X X ′=  so that the sums of squares and cross 

products matrix is given by 
1
( )( )

N

j j
j

X X X X A
=

′− − =∑ . The symmetric 

bivariate matrix A  can be written as ( ) , 1, 2; 1, 2ikA a i k= = =  where 

2 2

1
( ) ,

N

ii i ij i
j

a mS X X
=

= = −∑   1, ( 1,2)m N i= − =  and 

12 1 1 2 2 1 2
1

( )( )
N

j j
j

a X X X X mRS S
=

= − − =∑ . Fisher (1915) derived the 

distribution of A  for 2p =  in order to study the distribution of correlation 
coefficient from a normal sample. Wishart (1928) obtained the joint 
distribution of sample variances and covariances from the multivariate 
normal population.  
 
The distribution of the bivariate Wishart matrix based on the bivariate normal 
distribution is given by  

/ 2
( 3) / 2 1

3
2 | | 1( ) | | exp

2( / 2) (( 1) / 2)

m m
mf A A tr A

m mπ

− −
− −Σ ⎛ ⎞= − Σ⎜ ⎟Γ Γ − ⎝ ⎠

,         (2.3) 

0,A m p> >  (See e.g. Anderson, 2003, 252).   
 
 (ii)  The Bivariate T-Distribution 
 
Let 1 2( , )X X X ′=  be a bivariate -t random vector with probability density 
function 

( ) / 2 11 1/ 2 1
4 ( ) (2 ) | | 1 ( ) '( ) ( )f x x x

ν
π θ ν θ

− −− − −= Σ + − Σ −             (2.4) 

where 1 2( , )θ θ θ ′=  is unknown vector of location parameters and Σ  is the 
2 2×  unknown positive definite matrix of scale parameters while the scalar 
ν  is assumed to be a known positive constant (Muirhead, 1982, 48).  Notice 
that though the components 1X  and 2X  are uncorrelated, they are not 
independent unless ν →∞ . 
 
Now consider a sample 1 2, , ( 2)NX X X N >  having the joint probability 
density function 

5 1 2
/ 2 1/ 2

1

1

( , , , )

( / 2 ) | | 1 ( ) ( ) ( ) .
( ) ( / 2)

N

N N

j jN
j

f x x x

N x x
ν

ν θ ν θ
νπ ν

− −−
−

=

⎛ ⎞Γ + Σ ′= + − Σ −⎜ ⎟Γ ⎝ ⎠
∑

         (2.5) 
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which is the bivariate t-model for the sample.  Note that the observations in 
the sample are uncorrelated and not independent unless ν →∞ . The random 
symmetric positive definite matrix A  is said to have a Wishart distribution 
based on the bivariate -populationt  with 1 2m N= − >  and (2 2) 0Σ × > , 
written as ~ ( , ; )A W m νΣ  if its probability density function is given by 
 

/ 2 ( 3) / 2 1 / 2
6 ( ) ( , 2) | |  | | (1 ( ) )m m mf A C m A tr A ν

ν ν− − − − −= Σ + Σ ,               (2.6) 
 0, 2A m> >  where   

( )
 ( / 2 )( , 2)

 ( / 2) ( / 2) ( 1) / 2

m mC m
m mν

ν ν
π ν

− Γ +
=

Γ Γ Γ −
  

(See Sutradhar and Ali, 1989, 160). 
 
By the use of the duplication formula for gamma function given by  
 

1/ 2 1( )  2  (( 1) / 2) ( / 2)zz z zπ − −Γ = Γ + Γ                (2.7) 
(Anderson, 2003, 125) with 1z m= −  we have  

22   ( / 2)( , 2)
 ( 1) ( / 2)

m m mC m
mν

ν ν
π ν

− − Γ +
=

Γ − Γ
.               (2.8) 

 
(iii) The Bivariate Elliptical Distribution 
 
The probability density function for the bivariate elliptical distribution is 
given by  

1/ 2 1
7 ,2( ) ( , 2) | | (( ) ( ))Nf x K N g x xθ θ− −′= Σ − Σ −              (2.9) 

where 1 2( , )θ θ θ ′=  is unknown vector of location parameters and Σ  is the 
2 2×  unknown positive definite matrix of scale parameters while the 
normalizing constant ( , 2)K N  is determined by the form of g  (cf. 
Sutradhar and Ali, 1989). 
 
Now consider a sample 1 2, , ( 2)NX X X N >  having the joint probability 
density function 

1
8 1 2 ,2/ 2

1

( , 2)( , , , ) ( ) ( )
| |

N

N N j jN
j

K Nf x x x g x xθ θ−

=

⎛ ⎞
′= − Σ −⎜ ⎟Σ ⎝ ⎠

∑          (2.10) 

which is the bivariate elliptical model. 
Theorem 2.1 (Sutradhar and Ali, 1989, 158) Consider the pdf of the 
bivariate Wishart matrix based on the bivariate elliptical model given by 
(2.10). Then the pdf of the Wishart matrix is given by 
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/ 2 ( 3) / 2 1
9 ,2( ) ( , 2) | | | | ( ),m m

mf A C m A g tr A− − −= Σ Σ
2 1( , 2) 2  ( , 2) / ( 1),   2m mC m K m m mπ− −= Γ − >   .                        (2.11) 

 
3. Main Results  
 
Lemma 3.1 Let 1 2V U U=  be the geometric mean of  two independent 

chisquare random variables 2~  ( 1,2)i mU iχ = . Then the moment 
generating function of  V  at ρ  is given by  

2

2
0

(2 ) (( ) / 2)( ) ,    1 1.
! ( / 2)

                 

k

V
k

m kM
k m
ρρ ρ

∞

=

Γ +
= − < <

Γ∑   

Proof.  By definition, the moment generating function of  1 2V U U=  at ρ  
is given by 

( ) ( )
/ 2 1

1 2 1 2 1 2( ) / 2
1 2 1 22

0 0

1
2 ( / 2)

mU U u u u u
mE e e u u e du du

m
ρ ρ −

∞ ∞
− +=

Γ∫ ∫ .  

 
Then the lemma is obvious by virtue of  

1 2 / 2
1 2

0
 ( )

!

k
u u k

k
e u u

k
ρ ρ∞

=

= ∑  and ( )/ 2 2  ( / 2) ,  ( 1, 2)
( / 2)

k
k
i

m kE U i
m

Γ +
= =

Γ
. 

 

Lemma 3.2  Let 1

0
( , ) (sin ) (1 sin ) ,   1 1m mI m d

π
ρ θ ρ θ θ ρ− −= − − < <∫ . 

Then 

( )
1

2

0

1 2

2 (2 )( ) ( , )   ( ) / 2 ,
( ) !

2  ( / 2)( ) ( , )  ( ).
( )

m k

k

m

V

i I m m k
m k

mii I m M
m

ρρ

ρ ρ

− ∞

=

−

= Γ +
Γ

Γ
=

Γ

∑
 

 
Proof.  Since | sin | 1ρ θ < , we have 

0

( )(1 sin )  (sin )
! ( )

k
m k

k

m k
k m
ρρ θ θ

∞
−

=

Γ +
− =

Γ∑ so that 
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1

0 0

0

( )( , )  (sin )
! ( )

( )  (( ) / 2)           
! ( ) (( 1) / 2)

k
m k

k

k

k

m kI m d
k m

m k m k
k m m k

πρρ θ θ

ρ π

∞
+ −

=

∞

=

Γ +
=

Γ

Γ + Γ +
=

Γ Γ + +

∑ ∫

∑
 

 
by virtue of   

0

(( 1) / 2)(sin )
( / 2 1)

m md
m

π πθ θ Γ +
=

Γ +∫ .    

 
Next, replacing ( )m kΓ +  by the duplication formula of gamma function, 
given by (2.7),  with  z m k= + , we have (i), which can also be written as 
(ii) by virtue of Lemma 3.1. 
 
Theorem 3.1  For 1 1ρ− < <  and 0ν > , let 

( )/ 2 1
1 2 1 2 1 2 1 2

0 0

( , , ) ( ) 1 2
mmJ m u u u u u u du du

ν
ρ ν ρ

∞ ∞ − −
−= + + −∫ ∫ . Then  

2

0

2

( ) (2 )( ) ( , , ) ,
( ) ! 2
( ) ( / 2)( ) ( , , )  ( ).

( )

k

k

V

m ki J m
m k

mii J m M
m

ν ρρ ν
ν

νρ ν ρ
ν

∞

=

Γ +⎛ ⎞= Γ ⎜ ⎟Γ + ⎝ ⎠
Γ Γ

=
Γ +

∑
 

Proof.  The integral in the theorem can be written as  

( )1 2 2
1 2 1 2 1 2 1 2

0 0

( , , ) 4 ( ) 1 2 .
mmJ m y y y y y y dy dy

ν
ρ ν ρ

∞ ∞
− −−= + + −∫ ∫        (3.1) 

The transformation 1 2cos ,  siny w y wθ θ= =  with Jacobian 

1 2( , , )J y y w wθ→ =  yields 

( ) ( )
/ 2

13 2 1 2 2

0 0

( , , ) 2 sin 2 1 sin 2  .
mmm m

w

J m w w w dwd
π

ν

θ

ρ ν θ ρ θ θ
∞

− −−− + −

= =

= + −∫ ∫
Next, the transformations 2 ,  2w u θ α= =  yield 
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[ ]
1

1

0 0

1( , , ) sin 1 (1 sin ) .
2

m
mm

u

J m u u dud
π

ν

α

ρ ν α ρ α α
− ∞

− −−

= =

⎛ ⎞= + −⎜ ⎟
⎝ ⎠∫ ∫    (3.2) 

Then by virtue of  

 
1

0

( ) ( )
( ) ( )

m

m n n m

x m ndx
a bx a b m n

∞ −

+

Γ Γ
=

+ Γ +∫  , 

 the last integral of (3.2) becomes  

( ) ( / 2)  (1 sin )
( / 2)

mm
m

ν ρ θ
ν

−Γ Γ
−

Γ +
 

 so that 1
1

0

1 ( ) ( )( , , ) (sin )  (1 sin ) .
2 ( )

m m
m

mJ m d
m

π

α

νρ ν α ρ α α
ν

− −
−

=

Γ Γ
= −

Γ + ∫  

Then the theorem follows by Lemma 3.2. 
 
Lemma 3.3  For a bivariate elliptical probability model given by (2.10), we 

have 1 1
,2

0

( )  ( )  ( ) ( , 2)N N
NN w g w dw N K Nξ π

∞
− − −= = Γ∫   

(cf. Fang, Kotz and Ng, 1990, 66). 
 
Proof. Make the transformation 1/ 2 ( )   ( 1, 2, , )j jx z j Nθ−Σ − = = . 

Then the probability density function of  1 2, , , NZ Z Z  is given by 

10 1 2 ,2
1

( , , , ) ( , 2) .
N

N N j j
j

f z z z K N g z z
=

⎛ ⎞
′= ⎜ ⎟

⎝ ⎠
∑              (3.3) 

The pdf of 11 1 12 2 1 2 1 1 2, , , ,  N N N Nz u z u z u z u−= = = =  is given by 

2
10 1 2 2 ,2

1
( , , , ) ( , 2) 

N

N N j
j

f u u u K N g u
=

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
∑   

and  hence 
2

2
,2 1 2

10 0

( , 2) 1.
N

N j N
j

K N g u du du
∞ ∞

=

⎛ ⎞
=⎜ ⎟

⎝ ⎠
∑∫ ∫  

 
Make the polar transformation 
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1

1

2 1

2
1

sin cos  ,  ( 1, 2, , 2 1)

sin

j

j k j
k

N

N k
k

u w j N

u w

θ θ

θ

−

=

−

=

⎛ ⎞
= = −⎜ ⎟

⎝ ⎠

=

∏

∏
 

where 2 1[0, ),  [0, ) for 1, 2, , 2 2;  [0, 2 )k Nw k nθ π θ π−∈ ∞ ∈ = − ∈  with 
Jacobian 

2 2
2 1 2 1

1 2 2 1 2 1
1

( , , , , , )  (sin )
N

N N k
N N k

k

J u u u w wθ θ θ
−

− − −
−

=

→ = ∏ .  

Then 

( )
2 2 2 1

2 2 2
2 1 2 1

10 0 0 0

2
,2 1 2 2 2 1

( , 2)  (sin )  

  1
N N

N
N N k

k
kw

N N N

K N w

g w d d d dw

π π π

θ θ

θ

θ θ θ
− −

∞ −
− − −

== = =

− −× =

∏∫ ∫ ∫ ∫
 

or, 1
,2

0

( , 2)  ( )  ( ).N N
NK N w g w dw Nπ

∞
− −= Γ∫  

 
Theorem 3.2 Let  

( )/ 2 1
1 2 ,2 1 2 1 2 1 2

0 0

( , ) ( ) 2m
g mJ m u u g u u u u du duρ ρ

∞ ∞
−= + −∫ ∫ . Then  

( )2

0

2

( ) (2 )( ) ( , ) ( ) / 2 ,
 ( ) !

( ) ( / 2)( ) ( , )  ( )
 ( )

k

g
k

g V

mi J m m k
m k
m mii J m M

m

ξ ρρ

ξρ ρ

∞

=

= Γ +
Γ

Γ
=

Γ

∑
 

where 1 2 1( ) ( ) ( , 2) 2 ( 1) ( , 2) /m mm m K m m C mξ π π− − − −= Γ = − . 

Proof.  The integral in the theorem can be written as  

( )/ 2 1 2 2
1 2 ,2 1 2 1 2 1 2

0 0

( , ) 4 ( ) 2 .m
g mJ m y y g y y y y dy dyρ ρ

∞ ∞
−= + −∫ ∫         (3.4) 

The transformation 1 2cos ,  siny w y wθ θ= =  with Jacobian 

1 2( , , )J y y w wθ→ =  yields 
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( ) ( )
/ 2

13 2 1 2 2
,2

0 0

( , )

2 sin 2   sin 2  .

g

mmm m
m

w

J m

w g w w dwd
π

ν

θ

ρ

θ ρ θ θ
∞

− −−− + −

= =

= −∫ ∫
 

Next, letting 1
,2

0

 ( ) ( )m
m

w

w g w dv mξ
∞

−

=

=∫ , the independent transformations 

2 ,  2w u θ α= =  yield 

[ ]1 1 1
,2

0 0

1
1 1

,2
0 0

1 2
1

( , ) 2 (sin ) (1 sin )

(sin )             2  ( )
(1 sin )

2  ( / 2)              2 ( )  ( ).
( )

m m m
g m

u

m
m m

mm
w

m
m

V

J m u g u dud

d w g w dw

m M m
m

π

α

π

α

ρ α ρ α α

α α
ρ α

ρ ξ

∞
− + − −

= =

∞−
− + −

= =

−
− +

= −

⎡ ⎤ ⎡ ⎤
= ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦

⎡ ⎤Γ
= ⎢ ⎥Γ⎣ ⎦

∫ ∫

∫ ∫   

                   

That is 
2( ) ( / 2)( , ) ( ).

( )g V
m mJ m M

m
ξρ ρΓ

=
Γ

  Then the theorem follows by 

(2.11) and Lemma 3.3 in the following way:  

1
,2

0
1

2 1

( )  ( )

         ( ) ( , 2)
         2 ( 1) ( , 2) / .

m
m

m

m

m u g u du

m K m
m C m

ξ

π

π

∞
−

− −

− −

=

= Γ

= −

∫
 

 
4.  Applications in Correlation Analysis 
  
The long proof of the distribution of correlation coefficient by Fisher (1915) 
has been made shorter and elegant in this section. Further the distribution of 
correlation coefficient has been derived, along Fisher (1915), for bivariate t-
distribution as well as bivariate elliptical distribution.  

Theorem 4.1 The probability density function of the correlation coefficient 
R  based on a bivariate normal population, t-population or elliptical 
population is given by 
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2 2 2 / 2
2 ( 3) / 2

2 2 / 2
2 ( 3) / 2 2

0

2  ( / 2)(1 )( )   (1 ) ( )
 ( 1)

2 (1 ) (2 )        (1 )  ,  1 1
 ( 1) ! 2

                 

m m
m

V

m m k
m

k

mh r r M r
m

r m kr r
m k

ρ ρ
π
ρ ρ

π

−
−

− ∞
−

=

Γ −
= −

Γ −

− +⎛ ⎞= − Γ − < <⎜ ⎟Γ − ⎝ ⎠
∑

where 2, 1 1m ρ> − < <  and ( )VM ρ  is defined in Lemma 3.1 (cf. 
Johnson, Kotz and Balakrishanan, 1995, 548). 
 
Proof.   (i) Bivariate Normal Distribution Case  
 
The probability density function of the elements of A  given by (2.3) can be 
written as 

2 / 2
2 ( 3) / 21 2

3 11 22 12 11 22 12

11 22 12
2 2 2

1 2 1 2

(1 ) ( )( , , )  ( )
2 ( / 2) (( 1) / 2)

21                       exp
2(1 )

m m
m

m
f a a a a a a

m m

a a a

ρ σ σ
π

ρ σ σ σ σ

− −
−−

= −
Γ Γ −

⎛ ⎞⎛ ⎞
× − + −⎜ ⎟⎜ ⎟⎜ ⎟− ⎝ ⎠⎝ ⎠

     (4.1) 

where 11 22 120, 0, , 1 1a a a ρ> > −∞ < < ∞ − < < , 1 22, 0, 0m σ σ> > > .  

Under the transformation 2 2
11 1 22 2 12 1 2, ,a ms a ms a mrs s= = =  with Jacobian 

3
1 2m s s ,  followed by the transformation 2 2 2 2

1 1 1 2 2 2,  ,  ms u ms uσ σ= =  

with Jacobian 2 2 2
1 2 1 2 1 2( , ) ( / )J s s u u mσ σ→ =  and  the integration over 1u  

and 2u , the probability density function of R  will be 

( )
/ 2 1

2 ( 3) / 2

2 / 2

1 2 1 2
1 2 1 22

0 0

(1 )( )
4  ( 1)(1 )

2
          ( ) exp .

2 1

                 

m

m

m

rh r
m

u u r u u
u u du du

π ρ

ρ
ρ

−

−

∞ ∞

−
=

Γ − −

⎡ ⎤+ −
⎢ ⎥× −

−⎢ ⎥⎣ ⎦
∫ ∫             (4.2) 

Then the transformation 2 2
1 1 2 2(1 ) ,  (1 )u y u yρ ρ= − = −  with Jacobian 
2 2

1 2 1 2( , , ) (1 )J u u y y ρ→ = −  yields 



 11 

/ 2 1
1 2 1 2

2 / 2
2 ( 3) / 2

( ) / 2
1 2 1 2

0 0

(1 )( )   (1 )
4  ( 1)

        ( )

                 

m

m
m

r y y y y

h r r
m

e y y e dy d yρ

ρ
π

−

−

∞ ∞
− +

−
= −

Γ −

× ∫ ∫                                   (4.3) 

The theorem is thus complete by Lemma 3.1. 
 
Corollary 4.1  For 1 , 1rρ− < < , we have 
 

/ 2 1
1 2 1 2( ) / 2 2 ( 3) / 2

1 2 1 2 2 / 2
0 0

4  ( 1)( ) (1 ) .
(1 )

                 

mr y y y y m
m

me y y e dy d y rρ π
ρ

−
∞ ∞

− + − −Γ −
= −

−∫ ∫  

 
(ii) Bivariate T-Distribution Case  
 
Proof. The pdf of the elements of A  given by (2.6) can be written as 

2 ( 3) / 2
6 11 22 12 11 22 122 / 2

1 2
/ 2

11 22 12
2 2 2

1 2 1 2

( , 2)( , , )  ( )
(1 ) ( )

21                       1
(1 )

m
m m

m

C mf a a a a a a

a a a

ν

ν

ρ σ σ

ρ
ν ρ σ σ σ σ

−

− −

= −
−

⎛ ⎞⎛ ⎞
× + + −⎜ ⎟⎜ ⎟⎜ ⎟− ⎝ ⎠⎝ ⎠

             (4.4) 

where 11 22 120, 0, , 1 1a a a ρ> > −∞ < < ∞ − < < , 1 22, 0, 0m σ σ> > > . 

Under the transformation 2 2
11 1 22 2 12 1 2, ,a ms a ms a mrs s= = =  with Jacobian 

2 2 3
11 22 12 1 2 1 2( , , , , )J a a a r s s m s s→ = , followed by the transformation 
2 2
1 1 1,ms uσ=  2 2

2 2 2ms uσ= with Jacobian ( )22 2
1 2 1 2 1 2( , , ) /J s s u u mσ σ→ =  

and then integrating out 1u  and 2u  we have the probability density function 
of R  as follows: 

2 ( 3) / 2

2 / 2

/ 2

1 2 1 2/ 2 1
1 2 1 22

0 0

( , 2)(1 )( )  
(1 )

2
         ( ) 1 .

(1 )

m

m

m

m

C m rh r

u u r u u
u u du du

ν

ν

ρ

ρ
ν ρ

−

− −
∞ ∞

−

−
=

−

⎡ ⎤+ −
× +⎢ ⎥

−⎢ ⎥⎣ ⎦
∫ ∫

            (4.5) 

Then  the transformation 2 2
1 1 2 2(1 ) ,  (1 )u y u yρ ρ= − = −  with Jacobian 
2 2

1 2 1 2( , , ) (1 )J u u y y ρ→ = − yields 

 2 / 2 2 ( 3) / 2( )   ( , ) (1 ) (1 ) ( , , / 2)m m mh r C m r J r mν ν ρ ρ ν−= − −      (4.6) 
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where ( , , )J mρ ν  is defined in Theorem 3.1 and the Theorem 4.1 follows. 
 
Corollary 4.1  For 1 , 1rρ− < < , we have 

/ 2

1 2 1 2/ 2 1
1 2 1 22

0 0

1
2 ( 3) / 2

2 / 2

2
( ) 1

(1 )

( , 2)  (1 ) .
(1 )

m

m

m
m

u u r u u
u u du du

C m r

ν

ν

ρ
ν ρ

ρ

− −
∞ ∞

−

−
− −

⎡ ⎤+ −
+⎢ ⎥

−⎢ ⎥⎣ ⎦

= −
−

∫ ∫
 

 
(iii) Bivariate Elliptical Distribution Case 
 
We now demonstrate how Theorem 3.2  eases the derivation of  the 
distribution of the correlation coefficient (Ali and Joarder, 1991). The 
general nature of  Theorem 3.2 indicates its potential application in the 
sampling distribution theory of elliptical population.  
 
Proof. The pdf of the elements of A  given by Theorem 2.1 can be written as 

2 ( 3) / 2
11 22 12

9 11 22 12 2 / 2
1 2

11 22 12
,2 2 2 2

1 2 1 2

( , 2)( )( , , )  
(1 ) ( )

21                       
1

m

m m

m

C m a a af a a a

a a ag

ρ σ σ

ρ
ρ σ σ σ σ

−−
=

−

⎡ ⎤⎛ ⎞
× + −⎢ ⎥⎜ ⎟− ⎝ ⎠⎣ ⎦

            (4.7) 

where 11 22 120, 0, , 1 1a a a ρ> > −∞ < < ∞ − < < , 1 22, 0, 0m σ σ> > > . 

Under the transformation 2 2
11 1 22 2 12 1 2, ,a ms a ms a mrs s= = =  with Jacobian 

2 2 3
11 22 12 1 2 1 2( , , , , )J a a a r s s m s s→ = , followed by the transformation 
2 2 2 2
1 1 1 2 2 2,  ms u ms uσ σ= =  with Jacobian 2 2 2

1 2 1 2 1 2( , , ) ( / )J s s u u mσ σ→ =   
and the integrating out 1u  and 2u , we have the probability density function 
of R  given by  

2 / 2 2 ( 3) / 2

1 2 1 2/ 2 1
1 2 ,2 1 22

0 0

( ) ( , 2) (1 ) (1 )

2
        ( )  .

1

m m

m
m

h r C m r

u u r u u
u u g du du

ρ

ρ
ρ

− −

∞ ∞
−

= − −

⎛ ⎞+ −
× ⎜ ⎟⎜ ⎟−⎝ ⎠
∫ ∫

             (4.8) 

Then the transformation 2 2
1 1 2 2(1 ) ,  (1 )u y u yρ ρ= − = −  with Jacobian 
2 2

1 2 1 2( , , ) (1 )J u u y y ρ→ = − yields 

 2 / 2 2 ( 3) / 2( )  ( , 2) (1 ) (1 ) ( , )m m
gh r C m r J r mρ ρ−= − −             (4.9) 
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where ( , )gJ mρ  is defined in Theorem 3.2 and then the Theorem 4.1 
follows. 
 
Corollary 4.1 For 1 , 1rρ− < < , we have  

2 ( 3) / 2
/ 2 1

1 2 ,2 1 2 1 2 1 2 2 / 2
0 0

(1 )( )  ( 2 )  
( , 2)(1 )

m
m

m m

ru u g u u r u u du du
C m

ρ
ρ

∞ ∞ − −
− −

+ − =
−∫ ∫  

where ,2 (.)mg  is defined in Theorem 2.1. 
 
5.  Robustness of  Some Tests on Correlation Coefficient 
 
The results in Section 4 indicate robustness of the correlation coefficient in 
the bivariate elliptical population only. Thus the assumption of bivariate 
normality under which tests on correlation coefficient are developed can be 
relaxed to a broader class of bivariate elliptical distribution. The likelihood 
ratio test of the hypothesis 0 : 0H ρ =  against all alternatives 1 : 0H ρ ≠  is 

performed by 2 1/ 21 (1 )T m R R −= − −  which has a Student t-distribution 
with ( 1) 0m − >  degrees of freedom (d.f.). One significant lesson of the 
paper is that the acceptance of the null hypothesis does not mean 
independence unless the sample is from the bivariate normal distribution. 
The most popular test is based on  1tanh  ln (1 ) /(1 )Z R R R−= = + −  

has an approximate normal distribution with mean ln (1 ) /(1 )ρ ρ+ −  and 
variance 1/( 2)m − .  
 
Muddapur (1988) proved that the statistic T  has an exact  t-distribution with 

1m −  degrees of freedom where  

( )
*

2 2

* 2 2 2 2 2
11 22 1 22 2 11 22 11 1 2

2 2 2 2 2 2
1 2 1 2 1 2 1 2

( ) 1 ,   
(1 ) 1

( ) 1 ,

2 ( ) (1 ), 2 1 ( ) .

R S mT
R

S a a a a a a

υ ρ

ζ ρ

σ σ σ σ ρ

υ σ σ σ σ ρ ζ σ σ ρ σ σ

− −
=

− −

= + + + −

= + + − = − + +

     (5.1) 

        
 In particular, if the population variances are same 2 2

1 2σ σ= , then the t 
statistic defined as 
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*
* 11 22

2 2
11 22

( ) 1 ,    
2(1 )(1 )
a aR S mT S

a aR
ρ
ρ

+− −
= =

− −
              (5.2) 

has an exact t distribution with 1m −  d.f.  If the population variances are the 
same 2 2

1 2σ σ=  and sample variances are the same i.e. 2 2
1 2s s= , the above 

statistic simplifies to  

2 2

( ) 1
(1 )(1 )
R mT

R
ρ
ρ
− −

=
− −

                (5.3)   

which has an exact t –distribution with  1m −  d.f.  The above statistic was 
shown to have an approximate t distribution without the assumptions of 

2 2
1 2σ σ=  or of  2 2

1 2s s=   by Samiuddin (1970).  Muddapur (1988) also 
noted that the  quantity     

(1 )(1 )
(1 )(1 )

rf
r

ρ
ρ

+ −
=

− +
                   (5.4) 

has an approximate F distribution with ( 1, 1)m m− − ) degrees of 
freedom for any ρ ,  and  an exact F -distribution for  0ρ = . 
 
6. Concluding Remarks 
 
We warn that the distribution of R  is not necessarily robust for independent 
observations from elliptical population. The models for samples considered 
in Section 2 imply that the observations   ( 1, 2, , )jX j N=  are 
uncorrelated but not necessarily independent. The asymptotic distribution of  
R  for independent observations from bivariate elliptical population was 
obtained by Muirhead (1982, 157). For the distributions of R in nonelliptical 
populations, the reader is referred to Johnson, Kotz and Balakrishnan (1995) 
and the references therein. 
 
It is conjectured that the distribution of correlation coefficient may have a 
nicer form if the following representation is used in the derivation:  

1 1 2
1

( 1) ( )( )
N

j j
j

N R T T T T
=

− = − −∑                (6.1) 

where   ( ) / ,   ( 1, 2; 1,2, , )ij ij i iT X S i j Nµ= − = = . The conditional 

expectation can also be employed on 1 jT  and 2 jT  to have possibly better 
forms for the moments of  R . 
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