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ABSTRACT 
 
 Inequalities involving some sample means and order statistics are established. An upper 
bound of the absolute difference between the sample mean and median is also derived.  
Interesting inequalities among the sample mean and the median are obtained for cases 
when all the observations have the same sign. Some other algebraic  inequalities are 
derived by taking expected values of the sample results and then applying them to some 
continuous distributions. It is also proved that the mean of a nonnegative continuous 
random variable is at least as large as p times 100(1 )p− th  percentile. 
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1. INTRODUCTION 
 
Inequalities involving measures of location namely, sample means, median and extreme 
observations do not appear to be generally known. This note is inspired by Shiffler and 
Harsha (1980) and Macleod and Henderson (1984) who worked on the bounds of sample 
standard deviation. Some inequalities involving sample means and linear combinations of 
order statistics namely, median and extremes are established.  
 
We believe that the inequalities will, in particular, provide additional information to 
students in statistics, and, in general, open a new direction of further research to refine 
inequalities on other sample statistics along the line of  Shiffler and Harsha (1980), 
Macleod and Henderson (1984) and Eisenhauer (1993). Another motivation for the 
current research is the improved inference in situations when the parameter is known to 
have a restricted sample space (Ahmed, 1991). For a number of applications in 
econometrics and design of experiments, see Silvapulle and Sen (2004). In Section 3, it is 
shown how we can have restricted parameter space. 
 
Let )()2()1( nxxx ≤≤≤  be order statistics corresponding to the sample 

1 2( ,  , , )nx x x x=  with median x  given by  ([ / 2 1/ 2]) ([ / 2 1])2 n nx x x+ += +  where ][m  is the 
bracket function denoting the largest integer  not exceeding m . Also let the arithmetic, 
geometric and harmonic means of a sample x  be denoted by ( ) ,  a x x= ( )g x and ( )h x  
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respectively.  In this paper we establish interesting inequalities involving some of the 
sample characteristics, namely, , x  ( )g x , ( )h x  x~ , )1(x  and )(nx . An upper bound of the 
absolute difference between the sample mean and median is derived.  Interesting 
inequalities among sample mean and median are obtained for cases when all the 
observations have the same sign. Some other inequalities are derived by taking expected 
values of the sample results and then applying them to some continuous distributions. It is 
also proved that the mean of a nonnegative continuous random variable is at least as large 
as p times 100(1 )p− th  percentile. 
 
2. INEQUALITIES AMONG SOME MEASURES OF LOCATION AND EXTREME 

OBSERVATIONS 
 
The following lemma is obvious. 
 
Lemma 2.1 Let )1(  niyx ii ≤≤≤ . Then  
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Consider the three sequences },,,,{ 221 naaaA =  },,,{ 221 nbbbB = and 

},,,{ 221 ncccC = each having n2  terms defined by  
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These sequences are then   

{ } ,~,,~,~,,,, )1()1()1( xxxxxxA =   
{ })()()2()2()1()1( ,,,,,, nn xxxxxxB =     and  
{ })()()( ,,,,~,,~,~C nnn xxxxxx=   

where A  and C  contain n medians )~(x . For nk ≤≤1 , 

( ) knnkkk cxxxbxxa ==+≤=≤= +++
~

2
1

])12/([])2/12/([])2/12/([)1(  and for nkn 21 ≤≤+ , 

( ) knkknnk cxbxxxxa =≤=≤+≤= +++ )(])2/12/([])12/([])2/12/([2
1~ . Since the elements of the 

three sets satisfy the conditions of Lemma 2.1, we have the following theorem . 
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Theorem 2.1 For any sample  nxxx ,, , 21  of 2n ≥  observations with 

)()2()1( nxxx ≤≤≤ , the following inequalities hold: 

)(i  
2

~

2

~
)()1( nxx

x
xx +

≤≤
+

 

)(ii (1) ( )  ( )   nx x g x x x≤ ≤  if 0)1( ≥x  and  

)(iii
(1) ( )

2 2 ( )
1/ 1/ 1/ 1/ n

h x
x x x x

≤ ≤
+ +

 if 0)1( >x  and  

where ( )g x  and ( )h x are the geometric and harmonic means of a sample of n  
observations. 
 
Proof.  Applying  Lemma 2.1 (i) to the sets A  and B , and then to B and C  we have 

xnxnnx 2~
)1( ≤+  and xnnxxn n

~2 )( +≤  which imply Theorem 2.1 (i). The other two parts 
of the theorem are deduced from Lemma 2.1 (ii) and Lemma 2.1 (iii) respectively in a 
similar manner. 
 
Since in many real world situations observations are nonnegative, the following corollary 
may be useful. 
 

Corollary 2.1  If ,0)1( >x  then 1 ( ) 2 .
2

h x x x≤ ≤  

Proof. It follows from Theorem 2.1 (iii) that (1)
( )

1 1 1 ( )
2 1/ 1/ 1/n

h x x x x
x x x

≤ ≤ = ≤ +
+

  

which, by virtue of  Theorem 2.1(i), cannot exceed x2 . 
 
Theorem 2.2 For any sample nxxx ,, , 21  of 3n ≥  observations with 

)()2()1( nxxx ≤≤≤ , the following inequalities hold: 

( ) ( ) ( ) ( )
(1) ( ) ( 1)

(1) ( )

(1) ( )

( )  ( 1) ( ) ,   for   1 1,

( )  1  1  2 1  1  ,

1( )  | |       max  ( , ).
1
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niii x x x x x x
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Proof.  (i) For 11 −≤≤ ni , we have 

 
( ) ( )(1) (2) ( 1) ( ) ( 1) ( )

(1) ( ) ( 1)      ( 1) ( ) .

          

i i i n

i i

nx x x x x x x

i x x n i x
− +

+

= + + + + + + +

≥ − + + −         (2.1) 

(ii) For odd n  and 2/)1( += ni , we have (1)
1 1  

2 2
n nnx x x x− −

≥ + +  from (2.1), so 

that by virtue of )2/)3(()2/)1((   ~
++ ≤= nn xxx we have 

(1)2 ( 1) ( 1)nx n x n x≥ − + + .            (2.2) 
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When n is even, letting 2/ni =  and 12/ += ni  in (2.1), we obtain 

(1) ( / 2) ( / 2 1)1   
2 2n n
n nnx x x x +

⎛ ⎞≥ − + +⎜ ⎟
⎝ ⎠

 and (1) ( / 2 1) ( / 2 2)1   
2 2n n
n nnx x x x+ +

⎛ ⎞≥ + + −⎜ ⎟
⎝ ⎠

. 

 
By adding the above two inequalities and using the fact that )22/()12/(

~
++ ≤≤ nn xxx  for 

even n , we have   

(1)2 ( 1) 2   1   
2 2
n nnx n x x x x⎛ ⎞≥ − + + + −⎜ ⎟

⎝ ⎠
                     (2.3) 

so that (1)2 ( 1) ( 1)nx n x n x≥ − + + . Hence for any sample of  size 2≥n , we have  
xnxnxn 2~)1()1( )1( ≤++− .            (2.4)  

 
Next from )1()1()( xxx nn −≤≤−≤− − , similarly we obtain  

( )( 1)( ) ( 1)( ) 2 ( )nn x n x n x− − + + − ≤ −   
or, xnxnxn n 2)1(~)1( )( ≥−++  
which completes the proof.        
 
 (iii) By writing ( ) ( )2 1 1nx n x n x= − + + ,  it follows from (ii) that  

( ) ( ) ( ) ( ) ( ) ( )(1) ( )1  1  1 1 1  1  ,nn x n x n x n x n x n x− + + ≤ − + + ≤ + + −  

or, ( ) ( ) ( )( ) (1)1  ( ) 1  ( ) 1 ( ).nn x x n x x n x x− − ≤ + − ≤ − −   
  
It is worth noting that the inequalities (1) ( )2 nx x x x x+ ≤ ≤ +  in Theorem 2.1 (i) can be 
deduced from Theorem 2.2 (ii) in the following way: 
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

(1) (1) (1) (1)

( ) ( ) ( ) ( )

1 1 2

1  1  .n n n n

n x x n x x x x n x n x nx

n x n x n x x x x n x x

+ ≤ + + − = − + + ≤

≤ + + − = + − − ≤ +
           (2.5) 

 
Corollary 2.2 The following inequalities hold for any sample nxxx ,, , 21  of 2≥n  
observations: 
 
( ) 2 | |    | |i x x≥ ,  if  the observations have the same sign.        (2.6) 

(1) ( )( ) ( 1) 2 ( 1) ( 1) .nii n x nx n x n x− ≤ − + ≤ −           (2.7) 
 
Proof.  (i) If 0)1( ≥x , then  both x and x~  are nonnegative, and  ( ) 2/~2/~

)1( xxx +≤  which 
cannot exceed x  by Theorem 2.1(i). If 0)( ≤nx  then both x and x~  are nonpositive, and 
by Theorem 2.1(i) we also have ( ) 2/~

)(nxxx +≤  which cannot exceed 2/~x . Taking 
absolute values we have the inequality in (i). 
 
(ii) The inequalities follow directly from Theorem 2.2 (ii). 
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Remarks  
 
(i) If the observations )()2()1( nxxx ≤≤≤  have the same sign then |~|   ||2 xx =  occurs 
exactly when all x ’s are equal to 0. If  0)1( ≥x , then |~|   ||2 xx =  implies xx ~2 =  so that 

we have ( ) ( )(1)0 1 1n x n x nx≤ − + + ≤   by the left hand inequality in Theorem 2.2 (ii). 

Hence, in this case, ( ) (1)1 0n x x− + =  which happens only if 0~ =x   i.e. if  02 =x  i.e. if  
all observations are 0’s. A similar argument applies when 0)( ≤nx . 
 
(ii) If  0)1( >x , then 2 ( 1) nx n x nx≥ + >  by the left hand inequality in Theorem 2.2 (ii). 
Similarly, xx ~2 <  if 0)( <nx . 
 
(iii) In case not all the observations have the same sign, an example of a sample showing 

xx ~2 =  may be: 15  ,10  ,10  ,3 )3()2()1( ==−== xxxn  which could be average 
temperatures of three days in a city. 
 
(iv) If skewness is judged by the third central moment, a positively skewed distribution 
may produce a median exceeding mean and a negatively skewed distribution may 
produce mean exceeding median. For a brief but insightful discussion of measures of 
skewness, see Eisenhauer (2002). 
 
Corollary 2.3 If 2≥n  observations in the sample nxxx ,, , 21 have the same sign, then 
( / ) 1 1x x − ≤ . 

 
Proof.  Since the x ’s have the same sign, it follows from (2.6) that ( / ) / 2x x x x= ≤ .  

If  ( / ) 1x x ≥ , then ( / ) 1 ( / ) 1 1x x x x− = − ≤ , and if  ( / ) 1x x ≤ , then 

( / ) 1 1 ( / ) 1x x x x− = − < . Hence the proof.  
 
3. INEQUALITIES INVOLVING EXPECTED VALUES 
 
The following theorem follows from Corollary 2.2. 
 
Theorem 3.1 For any nonnegative random variable X , the inequality ( ) ( ) / 2E X E X≥  
holds whenever the expected values exist. 
 
Evidently, the above holds for any symmetric distribution e.g. the uniform or the normal 
distribution. An example is given below for exponential distribution. 
 
Example 3.1 Let the random variable X have the exponential probability density 
function (pdf) 

1 /( )   where 0 ,  0 .xf x e xββ β− −= < <        
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It is known that the mean and the median of the distribution areβ  and ln 2β  
respectively. An alternative but more direct proof  of the inequality in Theorem 3.1 for  
the exponential distribution is as follows: 
 
Since 1 2, , , nX X X are identically distributed, it follows that ( )E X β=  and hence we 
have to prove that  ( ) / 2E Xβ ≥ . For 2 1n m= + , it is easy to check that  

2

(2 1)!( ) ( )
( !)
mE X I m
m

β+
= , ( 1)

0

( ) (1 ) .m u u mI m ue e du
∞

− + −= −∫    

Thus we have to prove that 

2

(2 1)! ( ) 2 .
( !)
m I m
m

β β+
≤                                 (3.1) 

Since ( ) ( , 1) /I m B m m e≤ + , it follows from (3.1) that   2

(2 1)! ( ) 2
( !)
m I m
m

β β+
≤  

for all 2m ≥ .  Note that (1) 5 / 36I =  . Hence for all 1m ≥  and 2 1n m= + , we obtain 
( ) ( )E X E Xβ≤ = . Similarly this can be proved for 2n m=  (Laradji and Joarder, 

2002). Alternatively, it can be quickly verified by Harter and Balakrishnan (1996, 42). 
 
We now apply Theorem 3.1 to some continuous distributions and obtain interesting 
inequalities: 
 
(i) For the above exponential distribution, the expected value of the ith order statistic 

( )iX  is given by ( ) 1
( )

1
( 1)

i

i
j

E X n jβ −

=

= − +∑  (see Harter and Balakrishnan, 1996, 42), 

and ( ) ( )E X E X β= =  so that for 2 1n m= + , it follows from Theorem 3.1 that 
1

1
(2 ) 2

m

j
m j −

=

− ≤∑  while for  2n m= , we have ( )1 1

1
( 1 ) ( 2 ) 3.

m

j
m j m j− −

=

+ − + + − ≤∑  

            
(ii) For the gamma distribution with p.d.f. 

1 /1( )   ,   0 ,  0 ,  0 ,
 ( )

xf x x e xα β
α β α

β α
− −= ≤ < <

Γ
 

the expected value of the ith order statistic ( )iX  is given by 

( )
1 -

( )
0

1 ( ; ) ( ; ) 1  
1( ) ( ) ( )

i n i
x

i

nn x xE X x e dx
i

αβ α α
α α α

−∞
−−⎛ ⎞ ⎛ ⎞ ⎛ ⎞Γ Γ

= −⎜ ⎟ ⎜ ⎟ ⎜ ⎟−Γ Γ Γ⎝ ⎠ ⎝ ⎠ ⎝ ⎠
∫   

where 1

0

( ; )
x

tx t e dtαα − −Γ = ∫ (see Harter and Balakrishnan, 1996, 45), and 

( ) ( )E X E X αβ= =  so that for 2 1n m= + ,  it follows from Theorem 3.1 that 
2

2
0

( ; ) ( ; ) 2 ( 1) ( 2, ),
( ) ( )

m
xx x x e dx B m mαα α α

α α

∞
−⎛ ⎞Γ Γ

− ≤ Γ + +⎜ ⎟Γ Γ⎝ ⎠
∫     (3.2) 

and for 2n m= , we have 
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12

2
0

( ; ) ( ; ) 2 ( 1) ( , ).
( ) ( )

m
xx x x e dx B m mαα α α

α α

−∞
−⎛ ⎞Γ Γ

− ≤ Γ +⎜ ⎟Γ Γ⎝ ⎠
∫     (3.3) 

which is a slightly better bound than (3.2). 
 
(iii) For the Weibull distribution with p.d.f. 

1 ( / )( )   ,  0 ,  0 ,  0 ,
 

xf x x e x
αα β

α

α β α
β

− −= ≤ < <  

the expected value of the ith order statistic ( )iX  is given by 

( )
i-1

1 1 1/
( )

j=0

1 1
 (1 1/ ) ( 1)  ( )

1
i j k

i

n i
E X n k n j

i j
β − + − −− −⎛ ⎞ ⎛ ⎞

= Γ + − −⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠
∑   

(Harter and Balakrishnan, 1996, 44), and ( ) ( )  (1 1/ )E X E X kβ= = Γ +  so that for 
2 1n m= + , it follows from Theorem 3.1 that 

1 1/

=0
( 1)  (2 1 ) 2 ( 1, 1),

m
m j

j

m
m j B m m

j
α+ − −⎛ ⎞

− + − ≤ + +⎜ ⎟
⎝ ⎠

∑                                       (3.4) 

and for 2n m= , we have  
1 1 1/

2 1/
=0

1 ( , ) 2 1( 1)  (2 ) .
1

m
m j

k
j

m B m mm j
j m m m

α− + − −
+

−⎛ ⎞ ⎛ ⎞− − ≤ +⎜ ⎟ ⎜ ⎟+⎝ ⎠⎝ ⎠
∑  

 
(iv) For the Pareto distribution with p.d.f. 

1( )   ,  0 ,   0 ,f x x x
α ααθ θ α− −= < ≤ <  

the expected value of the ith order statistic ( )iX  is given by 

( )( )
( 1) ( 1 1/ )
( 1) ( 1 1/ )i
n n iE X
n i n

α θ
α

Γ + Γ − + −
=
Γ − + Γ + −

  

(see Harter and Balakrishnan, 1996, 71), and 1( ) ( ) ( 1)  , 1E X E X αθ α α−= = − <  
(Johnson, Kotz and Balakrishnan, 1994, 577) so that for 2 1n m= + ,  it follows from 
Theorem 3.1 that 

(2 2) ( 2 1/ ) 2 ,
( 2) (2 2 1/ ) 1

m m
m m

α α
α α

Γ + Γ + −
≤

Γ + Γ + − −
                                          

 and for 2n m=  we have  
(2 1) ( 1 1/ ) ( 1/ ) 2 .

(2 1 1/ ) ( 1) ( ) 1
m m m

m m m
α α α

α α
⎛ ⎞Γ + Γ + − Γ −

+ ≤⎜ ⎟Γ + − Γ + Γ −⎝ ⎠
  

 
 
4. THE MEAN AND QUANTILE INEQUALITY 
 
The following lemma is well known . 
 
Lemma 4.1 If  X  is a nonnegative random variable, then 

0

( ) (1 ( ))E X F x dx
∞

= −∫  
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where ( )F x  is the cumulative distribution function (cdf) of X . 
 
Lemma 4.2 Let G  be a nonnegative decreasing function on [0, )∞ . Then 

0

( ) ( ) .
x

xG x G t dt≤ ∫  

Proof. Since ( ) ( )G x G t≤  for all 0 t x≤ ≤ , ( )G x  is (Riemann) integrable on each 
interval [0, ]x  for 0x >  and then it follows that  

0 0

( ) ( ) ( )
x x

G t dt G x dt xG x≥ =∫ ∫  for all 0x ≥ . 

 
Theorem 4.1 Let ( )F x  be the cdf of a nonnegative continuous random variable X . 
Then /px pµ≤  for each  (0 1)p p< <  such that ( ) 1 .pF x p= −  
 
Proof. Since the function ( ) 1 ( )G x F x= −  is decreasing on [0, )∞  and nonnegative, by 
Lemma 4.1 and Lemma 4.2, we have the following for all 0x ≥ : 

0

( ) ( ).G t dt xG xµ
∞

= ≥∫  

Hence for each (0,1)p ∈ , if we denote by px , the real number x  such that 
( ) 1 ,F x p= −  we have ( )pG x p=  and hence .ppxµ ≥  

 
It is worth noting that in case 1/ 2p = , it follows from Theorem 4.1 that 2µ µ≤  where 

0.5xµ = , the median of  X . 
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