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Summary 
 
This paper makes an attempt to justify a multivariate t -model and provides a modest review of 
most important results of this model developed in recent years. Essential properties and applications 
of the model in various fields are discussed. Special attention is given to pre-test and shrinkage 
estimation for regression parameters under certain restrictions. The predictive distributions under 
the multivariate t -distribution are also discussed. It is observed that the multivariate t -distribition is 
more realistic to model multivariate data than multivariate normal distribution because of its fat tail.  

 
 

 AMS 1991 Subject Classification: Primary 62J02, Secondary 62H12 and 62J07 
 
 Keywords and Phrases: Multivariate -model; scale mixture of multivariate normal 

distribution; robustness of correlation; estimation of parameters; pretest and shrinkage estimation; 
ridge regression; predictive distribution; tests of hypotheses. 

t

 
1. Introduction 

 
The classical theory of statistical analysis is primarily based on the assumption that errors are 

normally distributed. Recently many authors have investigated as to how inferences are affected if 
the population model departs from normality. Most of economic and business data e.g. stock return 
data exhibit fat tailed distributions. The suitability of independent -distributions for stock return 
data was assessed by Blattberg and Gonedes (1974). Soon after that Zellner (1976) considered 
analyzing stock return data by a simple regression model under the assumption that errors have a 
multivariate -distribution. However, errors in this model are uncorrelated but not independent. 
Prucha and Kelejian (1984) discussed the inadequacy of normal distribution and suggested an 
uncorrelated -model for many real world problems as a better alternative distribution. After a 
thorough investigation, Kelejian and Prucha (1985) proved that uncorrelated -distributions are 
better able to capture heavy-tailed behavior than independent t -distributions. 
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The multivariate -distribution is a viable alternative to the usual multivariate normal 
distribution and on the other hand results obtained under normality can be checked for robustness. 
For example, the distribution of product moment correlation coefficient obtained by Ali and Joarder 
(1991) is the same as that obtained by Fisher (1915) showing distribution robustness. Thus the -
test for testing significance of correlation is also robust (Joarder 2006). For more explanation of the 
background of this area of research interested readers may go through Cornish (1954),  Kelker 
(1970), Cambanis, Huang and Hsu (1981), Fang and Anderson (1990), Kotz and Nadarajah (2004) , 
Nadarajah and Kotz (2006) and the references therein. In this paper we justify an uncorrelated 
multivariate -model as the model for sample and present a modest review of the most important 
theories developed recently for statistical analysis with this model. This paper is expected to attract 
young researchers to develop an organized and solid foundation for the statistical analysis with an 
uncorrelated -model. 
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2. The Multivariate T-Distribution 
 
 
Different forms of multivariate -distribution exist in literature. We will discuss some of them 

in this section. The probability density function (p.d.f.) of a -variate t  -distribution is given by  
t
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 where x  is the realized value of a  random vector 1×p X , μ  is a 1×p  unknown mean vector and 
 is a Σ pp×  positive definite matrix of scale parameters while the normalizing constant ),( pC ν  is 

given by  
   (2) /2).(=),()/2)(( /2 νννν Γ+Γ ppCp
 
 The p -variate random variable X  has a mean vector μ  and a covariance matrix , 

where  and can well be represented by  where the shape parameter 
ΣΣ ** =ν

2)/(=* −ννν ),( *ΣνμpT 2)(>ν  
is assumed to be known. If , 1=p 1=0,= Σμ , then the p.d.f. in (1) defines the univariate -
distribution. When , 

t
2=p 2=0,= IΣμ , then the p.d.f. in (1) is a slight modification of the 

bivariate surface of Pearson distribution (Pearson, 1923). It is well-known that the multivariate -
distribution can be written as  
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which is the mixture of the multivariate normal distribution  and ),( 2ΣωμpN ω  has the inverted 
gamma distribution with p.d.f.  
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where ν  is the degrees of freedom of inverted gamma distribution. Equivalently,  has a chi-
square distribution with 

2−νω
ν  degrees of freedom. Thus for given ω , the random vector X  has a 

multivariate normal distribution i.e.  
 

  2( | = ) ~ ( , )pX Nω μ ω .Ω Σ  (5) 
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As ∞→ν , the random variable Ω  becomes a degenerate random variable with all the non-zero 
mass at the point unity and, consequently, the pdf of the multivariate  in (1) converges 
to that of the multivariate normal distribution 

-distributiont
),( ΣμpN . This also follows from the fact that as 

∞→ν , we have  and . It is also worth mentioning that the 
uncorrelatedness of the components  does not imply their independence unless 

/22),( ppC →ν ueu −− →+ νν )/(1

NXXX ,,, 21 …
∞→ν . In the following section, we will discuss some properties of the multivariate  -distribution.t
 

3. Some Properties of the Multivariate T- Distribution 
 
3.1 Moments and Characteristic Function 

 
By the use of the mixture representation in (5), it can be easily proved that  

 
  μω =))|((=)( XEEXE  
and  
  2 *( ) = [ ( | )] [ ( | )] = ( ) = ,Cov X E Cov X Cov E X Eω ω ν+ Ω Σ Σ  
 

where  The characteristic functions of the univariate and the multivariate t-
distributions have been considered by many authors. The characteristic function of 

2)./(=* −ννν
X  following a 

multivariate -distribution with p.d.f in (1) is given by  t
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(Joarder and Ali, 1996), where  is the Macdonald function with order )||)(||( 1/2

/2 tK Σνν /2ν  and 
argument . ||)(|| 1/2 tΣν
 

 The Macdonald function  with order )(tKα α  and argument t  admits by the following 
integral representation (see e.g. Watson, 1958, p. 172):  
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A series representation of the Macdonald function  where  and )(rKα 0>r α  a nonnegative integer 
is well known (cf. Joarder and Ali, 1996). The quantity  has a spherical t  -
distribution  whose product moment is given by  

)(= 1/2 μ−Σ− XZ
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 where . The product moment can also be derived by using the stochastic representation 

, where  has an 
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 (See Theorem 2.8 of Fang, Kotz and Ng (1990) for details). 
 
It follows from (6) that the characteristic function of the univariate Student t -distribution with 

p.d.f.  
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where ( , )C pν  is defined in (2) and is defined in (7). Based on this characteristic function 
Rahman and Saleh (1975) derived the exact distribution of the Behrens-Fisher statistic. 

( )K tα

 
It may be remarked that the characteristic function of X  in (6) can also be written as 
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The covariance matrix and the kurtosis parameter can then be written as 
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 respectively (Seo and Toyama, 1996). 
 
 

3.2 Marginal and Conditional Distributions 
 
It is well-known that marginal and conditional distributions of the components of X  follow 

the multivariate t -distribution (see e.g. Sutradhar, 1984). Let tX ,,μ  and Σ  be partitioned as  
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where  and  is a )<(,, 222 pqtX qℜεμ 2Σ qq×  positive definite matrix. By the use of the 
characteristic function of X  given by (6), it may be easily checked that  where 

. The conditional distribution of  given  is 
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with  The derivation of conditional covariance matrix discussed among 
others by Cambanis et. al. (1981) is detailed in the next section.   
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3.3 Determination of Covariance Matrix by Stochastic Representation 
 
A -dimensional random variable p Z  is said to have a spherical distribution if its probability 

density function ( ) can be written as  pdf
   (12) )(=)( zzgzf '

 Muirhead (1982) is the first to discuss spherical and elliptical distributions in a text book of 
multivariate analysis. Much of the theoretical development are available in Fang and Anderson 
(1990) and Fang, Kotz and Ng (1990). For applications of such distributions we refer to Lange, 
Little and Taylor (1989), Kotz and Nadarajah (2004) and the references therein.   Let Z  have the 
multivariate -distribution with p.d.f. t
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Consider the elliptical random variable 1/ 2X Zμ= + Σ , where Z  has the p.d.f. given by (12). It is 
well known (Cambanis, Hunag and Simons, 1981) that the covariance matrix of X  is given by 

, where ( ) = 2 (0)'
XCov X ψ− Σ ( ) = ( ) = ( )
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X

Xt E e e t tμφ ψ Σ  is the characteristic function of X. 
 
Since most elliptical distributions do not have closed form for characteristic functions, an easy 

way out to determine covariance matrix is to exploit stochastic decomposition 
 where  is independent of  U  and the random variable U  is 

uniformly distributed on the surface of unit sphere is  
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For any elliptical random variable X , where 1/ 2X Zμ= + Σ  with Z having the p.d.f. (12), it 

is well known that 1 2( ) = ( )Cov X p E R− Σ  (Cambanis, Huang and Hsu, 1981, or Joarder, 1992).  It 
follows from (15) that  
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where X 1/2= Zμ +Σ  with Z having the p.d.f. given by (13). 
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3.4  Distribution of a Linear Function 
 
Suppose the random variable X  has a multivariate t -distribution with degrees of freedom ν , 

mean vector  μ  and covariance matrix  Σ  . Assume that A  is a non-singular matrix and b  is a 
constant vector, then bAX +  has the p -variate t  distribution with mean vector bA +μ , degrees of 
freedom ν  and covariance matrix . The degrees of freedom for the distribution of the linear 
combination remain same. This result is similar to that for the multivariate normal distribution.  

'ARA

 
3.5 Distribution of Quadratic Forms 

 
 Suppose the random variable  X has a multivariate t -distribution with mean vector  μ , 

covariance matrix   and degrees of freedom Σ ν , then  has the  distribution with pX/X ' 1−Σ F ν  and 
p  degrees of freedoms and non-centrality parameter  For details we refer Mathai and 

Provost (1992). 
./1 p' μμ −Σ

 
4 Uncorrelated T- Model for Sample 
 

The joint p.d.f. of  independent observations each having a -variate -distribution is 
given by  

N p t

   (16) )()()(=),,,( 21211 NN xfxfxfxxxf ……
 

which may be referred to as the  independent t -model. However, recent interest is noticed in 
uncorrelated -distributions. The joint p.d.f. of  uncorrelated random variables each having a 
multivariate -distribution is given by  

t N
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. The p.d.f. in (17) will hereinafter be called the  uncorrelated -model. 
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Kelejian and Prucha (1985) proved that the tails of the uncorrelated t  -model is relatively 
thicker than those of the independent -model given by (16). It may be remarked that observations 
in (17) are independent if and only 

t
∞→ν , in which case the p.d.f. in (17) will be the product of 

that of  independent N p -dimensional random variables each having normal distribution 
),( ΣμpN . 

 
A more general case would be to consider -samples, say,   
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4.1 Distribution of the Sum of Products Matrix Based on the Uncorrelated T-
Model 

 
The sum of product matrix based on the uncorrelated - model (17) is given by  t
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(cf. Sutradhar and Ali, 1989). 
 
By the use of the mixture representation in (19), it is easy to derive the expected values of 

 etc. which are important in developing estimation strategies 
for functions based on the covariance matrix. See e.g. Joarder and Ali (1992a) and Joarder (1995a, 
1995b). 
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4.2 Robustness of Correlation for Uncorrelated T -Model 
 
Fisher (1915) derived the exact sampling distribution of Pearsonian correlation coefficient R  

for a random sample drawn from a bivariate normal population ),(2 ΣμN . Since then many 
statisticians have tried to investigate the behavior of R  for non-normal situations. Ali and Joarder 
(1991) proved that both null and non-null distribution of R  remain robust in a class of elliptical 
distributions which accommodates the uncorrelated t -model as a special case. The result has been 
generalized for the multivariate uncorrelated elliptical model by Joarder and Ali (1992b) for the 
correlation matrix R . The p.d.f. of R  is given by  
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Kotz, Balakrishnan and Johnson (2000) and Joarder (2006) among others. 
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5. Estimation of Parameters 
 

5.1 Estimation of Parameters for One population 
 
The maximum likelihood estimators of the parameters μ  and Σ  of the uncorrelated -model 

in (17) are given by 
t

X=μ  and  respectively (see Fang and Anderson, 1990, pp. 201--
216). But maximum likelihood estimators in this case are not appealing because most important 
properties of maximum likelihood estimators, follow from the independence of the observations 
which is not the case for the model in (17) for finite value of the shape parameter 

NA/=Σ

ν . The sample 
mean X  is obviously an unbiased and consistent estimator of μ . The unbiased estimator of Σ  is 
given by , where  and )/(= *mA νΣ 2)/(=* −ννν 1= −Nm  (see Fang and Anderson 1990, pp. 208). 

 
Joarder (1995a) considered the estimation of the scale matrix Σ  of the uncorrelated -model 

under a squared error loss function. It may be remarked that the scale matrix  determines the 
covariance matrix up to a known constant . Joarder and Ahmed (1996) developed estimation 
strategy for eigenvalues of  of the uncorrelated t -model given by (17). The estimation of the trace 
of the scale matrix Σ  under a squared error loss was considered by Joarder and Beg (1999). The 
estimation of  under a entropy loss function was considered by Joarder and Ali (1997). 

t
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5.2 Estimation of Parameters for Two Populations 
 
Consider a two-sample problem i.e. the case of  in the situation discussed in (18). The 

equality of mean vectors 
2=k

1μ  and 2μ  can then be tested by  
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where  with 221121 =)( SmSmSmm p ++ 1= 11 −Nm  and 1= 22 −Nm  . The above result was derived 

by Sutradhar (1988a) for a scaled uncorrelated t -model obtained by reparametrizing  by Σ*ν Σ  in 
(7). The following derivation of 2T -statistic is based on the mixture representation of multivariate 
uncorrelated -model (see e.g. Khan 1997). t

 
By virtue of the mixture representation of (5 ), it follows that conditional on ω , 
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( ) )()(= 21
12

21 μμωμμδω −Σ− −' . The unconditional distribution of 2T
p
m  can be obtained by 

completing the following integral  

   ,)()(,0
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where )(, ωδmpu  is the p.d.f. of )(, ωδmpF  . It follows from (22) that under 210 =: μμH   
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m
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The power function of the test 210 =: μμH  against 211 : μμ ≠H  was discussed by Sutradhar 

(1988a) and Sutradhar (1990). 
 
  Khan (1997) considered the estimation of the mean vector of the multivariate t -distribution 

in the presence of uncertain prior information. The usual MLE, restricted estimator and preliminary 
test estimators were considered; he compared their performances under the unbiasedness and 
minimum risk criterion. Several recommendations were made based on the condition on the 
departure parameter Δ . Khan (2004) also investigated the effect of shape parameters for the 
shrinkage estimators of the mean vector of multivariate t -distribution. Some properties of shrinkage 
and the positive-rule shrinkage estimators were discussed by changing the value of the shape 
parameter. He also studied the relative performance of these estimators under different conditions.   

  
6. Linear Regression Models 

  
Zellner (1976) considered univariate linear regression model to analyze stock return data with 

errors having a univariate uncorrelated -model. It is King (1980) who laid the rigorous 
mathematical foundation of linear regression analysis under broader distributional assumptions of 
spherical symmetry which includes uncorrelated -model as a special case. Prompted by the works 
of Zellner (1976) and King (1980), many authors used uncorrelated t -model for modeling real 
world data. Sutradhar and Ali (1986) generalized Zellner's model with errors having uncorrelated t -
model given by (17). Lange, Little and Taylor  (1989) applied uncorrelated -model to a variety of 
situations. 

t

t

t

 
 The null distribution of the usual -statistic in a linear regression model under uncorrelated 

-model in (17) is robust but the power function depends on the form of (17); see e.g. Sutradhar 
(1988a) and Sutradhar (1990) for a detailed proof. For the linear regression model with errors 
having an uncorrelated t -model, it is known (Singh, 1987) that the usual least square estimator of 
the vector of regression coefficients is not only the maximum likelihood estimator but also the 
unique minimum variance estimator. Singh (1988) also developed methods of estimation of error 
variance in linear regression models with errors having an uncorrelated -model with unknown 
degrees of freedom.  

F
t

t

 
6.1 Pretest and Shrinkage Estimation under Multivariate t -Error 
 

 Consider the following linear regression model  
 
  ,= eXy +β  (23) 
 

where 1 2= ( , , , )Ny y y y ′…  is an  vector of observations on the dependent variable, 1N × X  is an 
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N p×  matrix of full rank , p ),,,(= 21 ′pββββ …  is an 1×p  vector of parameters and 
 is an  vector of errors, which are distributed according to the laws 

belonging to the class of spherical compound normal distributions (or equivalently scale mixture of 
normal distributions) with  and 

1 2= ( , , , )Ne e e e ′… 1N ×

0=)(eE 2( ) = e NE ee Iσ′ , where NI  is the -dimensional identity 
matrix and  the common variance of . This class is a subclass of the family of 
spherically symmetric distributions (SSD) and can be expressed as  

N
2
eσ ( = 1, 2, , )je j N…

 

  
0

( ) = ( | ) ( ) ,f e f e g dω ω ω
∞

∫  (24) 

 
where  is the p.d.f. of , )(ef e ( | )f e ω  is the p.d.f. of normal with mean vector  and variance-
covariance matrix 

0
2

NIω  and ( )g ω  is the p.d.f. of ω  with support . In this case, )[0,∞
2( ) = eE 2σΩ .  The well-known members of  the pdf in (24) are spherical normal distribution, 

spherical -distribution and spherical Cauchy distribution. Interested readers may go through 
Joarder (2006) for an introduction to the bivariate  t-distribution. 

t

 
In most applied as well as theoretical research works, the error terms in linear models are assumed 
to be normally and independently distributed. However, such assumptions may not be appropriate 
in many practical situation (for example, see Gnanadesikan, 1977 and Zellner 1976). It happens 
particularly if the error distribution has heavier tails. One can tackle such situation by using the well 
known t -distribution as it has heavier tail than the normal distribution, specially for smaller degrees 
of freedom (e.g. Fama (1965), Blattberg and Gonedes (1974)). Because of the above reasons we are 
motivated to use the multivariate t -distribution as the error distribution.   The multivariate Student's 

-distribution can be obtained if t ( )g ω  is assumed to have an inverted gamma 
density with scale parameter , degrees of freedom ),( 2σνIG 2σ ν  and is given by  

  .<,,<0,2
2/2)(

2=)(
2

2

1)(
/22

∞⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
Γ

−
+− ωσνωωνσ

ν
ω

νσ

ν
ν

eg  (25) 

 
Then, the multivariate t -distribution obtained from ( ) is given by,  24

 

  ( ) ( ) / 2

/2 2

( ) / 2
( ) = 1 , 0 < , , < , < < .

( ) ( /2)

N

jN N

N e ef e e
νν

ν σ
πν ν σ νσ

− +Γ + ′⎛ ⎞+ ∞ −∞ ∞⎜ ⎟Γ ⎝ ⎠
 (26) 

 
 The mean vector and variance-covariance matrix of  are respectively,  e

 

  2 2( ) = 0, ( ) = = , > 2.
2 N e NE e and E ee I Iν σ σ ν

ν
′

−
 

 
The marginal distributions are univariate student t -distributions. For 1=ν , the p.d.f. in (26) 

becomes that of Cauchy and as ∞→ν , the  approaches normal.   For the full model the  
Unrestricted Estimator (UE ) of 

pdf
β  is given by  

   (27) ,=ˆ 1 yXCUE ′−β
 

where  is the information matrix. The corresponding unbiased estimator of  is given by  XXC ′= 2
eσ
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  2
ˆ ˆ( ) ( )= .

UE UE

e
y X y X

N p
β βσ

′− −
−

 

 
Our primary interest is to estimate the regression coefficients β  when it is  apriori suspected but 
not certain that β  may be restricted to the subspace,  
 

  ,=:0 hHH β  (28) 
 

where H  is an  known matrix of full rank  and  is an  vector of known 
constants.   The  Restricted Estimator (

pq× )(< pq h 1×q
RE ) of β  is given by  

 
   (29) andhHHHCHC UEUERE )ˆ()(ˆ=ˆ 111 −′′− −−− βββ
 

and the corresponding estimator of  is given by  2
eσ

 

  2
ˆ ˆ( ) ( )ˆ = ;

RE RE

e
y X y X

N p q
β βσ

′− −
− +

 

 
 which is unbiased under the null hypothesis. Note that the restricted least squares estimator 
satisfies the condition .   The estimator of hH =β̂ β  in (27) is usually used in the case when there 
is no hypothesis information available on the vector of parameter of interest β . On the other hand, 
the estimator of β  in (29) is useful in the presence of hypothesis (28). Furthermore, it is well 
known that the RE  performs better than the UE , when the restrictions hold but as the parameters 
β  moves away from the subspace hH =β , the RE  becomes biased and inefficient while the 
performance of the UE  remains stable. As a result, one may combine the UE  and RE  to obtain a 
better performance of the estimators in presence of the Uncertain Prior Information (UPI ) hH =β , 
which leads to the  Preliminary Test  ( PT ) estimator and is defined as    
 

   (30) ),>(ˆ)(ˆ=ˆ
,, αα βββ NN

UE
NN

REPT LLILLI +≤
 

 where,  
 

  2

11

~
)ˆ)()()ˆ(=

e

UEUE

N q
hHHHChHL

σ
ββ −′′− −−

 

 
is the test-statistic for testing the null-hypothesis in (28), and  is the upper α,NL α -level critical 
value of and  is the indicator function of the set NL )(AI A . Under the null hypothesis and normal 
theory,  follows a central -distribution with NL F ( , )q N p−  degrees of freedom while under the 
alternative it follows the non-central -distribution with ( ,F )q N p−  degrees of freedom and non-
centrality parameter , where  / 2Δ

  2

11 )()()(=
e

hHHHChH
σ

ββ −′′−
Δ

−−

 (31) 

 
is the departure parameter from the null hypothesis. It is important to remark that  is bounded PTβ̂

 11



and performs better than  in some part of the parameter space.  For details see Judge and Bock 
(1978), Han and Bancroft (1968), Saleh and Sen (1978), Kibria and Saleh (1993) and Saleh (2006) 
among others.  Note that, the Preliminary Test (PT) estimator has two characteristics: (i) it produces 
only two values, the unrestricted estimator and the restricted estimator, (ii) it depends heavily on the 
level of significance of the Preliminary Test (PT). What about the intermediate value between  
and ? To overcome this shortcoming, we consider the Stein-type estimator. The Stein-type 
Shrinkage estimator (SE) of 

REβ̂

UEβ̂
REβ̂

β  is defined as  
 
   (32) ),ˆˆ(ˆ=ˆ 1 REUE

N
UESE dL ββββ −− −

 
where  

  ( 2)( )= , and
( 2)

q N pd q
q N p

3.− −
≥

− +
 

 
The SE in (32) exhibits uniform improvement over , however it is not a convex combination of 

 and . Both (30) and (32) involve the statistic  which adjusts the estimator for departure 
from . For large value of  both (30) and (32) yield , while for small value of  their 
performance is different. The SE has the disadvantage that the shrinkage factor  becomes 
negative for . This encourages one to find an alternative estimator. Hence, we define a 
better estimator, namely, the positive-rule shrinkage estimator (PR) of 

UEβ̂
UEβ̂ REβ̂ NL

0H nL UEβ̂ nL
)(1 1−− NdL

dLN <
β  as follows:  

 
   (33) ).ˆˆ)(()(1ˆ=ˆ 1 REUE

NN
SEPR dLIdL ββββ −≤−− −

 
The PR estimator in (33) provides uniform improvement over  and it is a convex combination 
of  and . The properties of stein-type estimators have been analyzed under normality 
assumption by various researchers.    

UEβ̂
UEβ̂ REβ̂

 
Tabatabaey et al. (2004a) considered aforementioned five well known estimators, namely, 
unrestricted estimator (UE), restricted estimator (RE), preliminary test (PT) estimator, shrinkage 
estimator (SE) and positive rule (PR) shrinkage estimator under the multivariate -error assumption. 
The bias and risk functions of the proposed estimators are analyzed under both null and alternative 
hypotheses. Under the null hypothesis, the restricted estimator (RE) has the smallest risk followed 
by the pre-test or shrinkage estimators. However, the pre-test or shrinkage estimators perform the 
best followed by the unrestricted estimator (UE) and restricted estimator (RE) when the parameter 
moves away from the subspace of the restrictions. The conditions of superiority of the proposed 
estimator for departure parameter are provided in Tabatabaey et al. (2004a). It is demonstrated that 
the positive rule shrinkage estimator utilizes both sample and non-sample information and performs 
uniformly better than UE and ordinary shrinkage estimators.    

t

 
Giles (1991) considered the pre-test estimator for the restricted linear model with spherically 
symmetric error disturbances. He has investigated some finite sample properties of the estimators 
numerically for the case of the multivariate t -error. Gilies (1992) also considered pre-test (PT) 
estimator for two sample linear regression model under spherically symmetric disturbances. Kibria 
(1996) considered SE for the multicollinear data and for the restricted linear model with Students  
error. Using MSE criterion, he discussed the performance of the estimators with respect both to 
non-centrality and ridge parameters. Judge et al. (1985) discussed the finite sample properties of 
James-Stein type and its positive part of the location parameter vector under squared errors loss 

t
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with errors having a multivariate t -distribution. They compared the risk functions of the estimators 
via a monte carlo experiments.  
 
Singh (1991) discussed the properties of James-Stein rule estimators in a regression model with 
multivariate Student's t -error. In general, the risk characteristics are found to be the same under 
normal and non-normal errors. However, there is very limited literature on the analytical results 
relating to the finite samples properties of positive rule shrinkage estimator for the linear model 
with non-normal error distribution.  
 
Khan (2004) discussed the role of shape parameter for the shrinkage estimators of the mean vector 
of multivariate student t -population. Stein-type estimators based on the sample information and 
uncertain non-sample information were defined in Khan (2004). The impact of shape parameter on 
the performance of the shrinkage and positive rules shrinkage estimators with respect to the criteria 
of unbiasedness and minimum quadratic risk were also investigated.  For more on this topic the 
readers are referred to Khan (2004) and  Tabatabaey et al. (2004a) and references therein. 

 
6.2 Pre-test and Shrinkage Estimation under Stochastic Constraint and 
Multivariate T- Error 
 

 The pre-test or shrinkage estimation under the general linear hypothesis (exact or non-
stochastic) are available in literature. In rare cases we have exact prior information on the linear 
combination of parameters while estimating economic relations. Some uncertainty about the prior 
information are stochastic for many practical situation (see Theil and Golberger, 1961 and Theil 
1963). In that case non-stochastic constraint does not work. Here we will discuss about the 
estimation of β  when the error distribution belongs to (24) and it is suspected that β  may be 
restricted to the stochastic subspace defined by  

 
  ,= δβ +Hh  (34) 
 

where  is an  vector of observations, H is an h 1×q pq×  matrix of known constants of full rank , 
and 

q
δ  is an  vector of errors, which is distributed according to the laws belonging to the class 

of compound normal distributions. That is,  
1×q

 

  
0

( ) = ( | ) ( ) ,qf f g dδ δ ω ω ω
∞

∫  (35) 

 
where )(δf  is the p.d.f. of δ , ( | )qf v ω  is the normal p.d.f. with mean vector ψ  and variance-

covariance matrix  and 2 ( > 0)ω ωΛ )(ωg  is the inverted Gamma density with scale  and 
degrees of freedom 

2σ
ν , denoted by . Thus  ),( 2σνIG

 

 ( ) ( ) / 21/ 2 1

/2 2

( ) / 2 | | ( ) ( )( ) = 1 , 0 < , , < , < < .
( ) ( /2)

q

q q

q
f

νν δ ψ δ ψδ ν
νπ ν σ νσ

− +− −Γ + Λ ′ ′⎛ ⎞− Λ −
+ ∞⎜ ⎟Γ ⎝ ⎠

σ δ−∞ ∞ (36) 

 
  with  

  2 2 2( ) = ,  ( ) = ,  = ,  2.
2e eE E νδ ψ δδ σ ψψ σ σ ν

ν
′ ′Λ + >

−
 

We assume that γδ |  and γ|e  are independent. We combine the sample and stochastic prior 
information to get the following linear statistical model  
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  1 = ,
y X e
h H

β
δ

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
+⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦ ⎣ ⎦
 (37) 

 
 where  
 

  20 0
| ~ , ,

0
N

N q

e I
Nω ω

δ ψ+

⎧ ⎫⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎨ ⎬⎢ ⎥ ⎢ ⎥ ⎢ ⎥Λ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎩ ⎭

 

 
 subject to condition  
 

   0.==],[ ψ
ψβ

β
⎥
⎦

⎤
⎢
⎣

⎡
+

−
H

IH q

 
 Rewrite the model as  
 
  ,= uZy +φ  
 
 subject to exact restriction  
 
  0,==ψφR  (38) 
 
 where  
 

  1
1/ 2 1/ 2

0
= , = , = , = [

0 q

y X
, ]y Z R

h H
β

φ
β ψ− −

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
−⎢ ⎥ ⎢ ⎥ ⎢ ⎥Λ Λ +⎣ ⎦ ⎣ ⎦ ⎣ ⎦

H I

).I

 

 
 and  
 

   2
1/ 2= | ~ (0,

( ) N q n q

e
u Nω ω

δ ψ + +−

⎡ ⎤
⎢ ⎥Λ −⎣ ⎦

 
 Then using (35),  the p.d.f. of u  is obtained as,  
 

  ( ) ( ) / 2

( ) / 2 ( ) 2

( ) / 2
( ) = 1 , 0 < , , < , < < .

( ) ( /2)

N q

iN q N q

N q u uf u u
ν

ν

ν
ν σ

πν ν σ νσ

− + +

+ + +

Γ + + ′⎛ ⎞+ ∞ −∞ ∞⎜ ⎟Γ ⎝ ⎠
 

 
   For the full model the  Unrestricted Least Squares Estimator (UE ) of φ  is given by  
 

   (39) ,
ˆ

=ˆ
ˆ

=)(=ˆ
2

11
⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
′′ −

h
yZZZ

UE

UE

UE
UE β

φ
φφ

 
where  is the unrestricted estimator of yXXXUE ′′ −1)(=β̂ β .  The  Restricted Least Squares 
Estimator ( RE ) of φ  is given by  
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   (40) ,ˆ
ˆ

=ˆ
ˆ

=ˆ]')([')(ˆ=ˆ
2

111
⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
′′− −−

RE

RE

RE

RE
UEUERE

H
RZZRRZZ

β
β

φ
φφφφ

 
 where  is the stochastic hypothesis restricted estimator of REβ̂ β  and is given by  

 
   (41) ),ˆ()'('ˆ=ˆ 111 hHHHSHS UEUERE −Ω+− −−− βββ
 

where  is the information matrix. Note that unlike usual restricted estimator, the stochastic 
hypothesis restricted least squares estimator does not satisfy the condition .   The  
Preliminary Test Least Squares Estimator ( ) of 

XXS ′=
hH RE =β̂

PT φ  is given by  
 

   (42) 
, ,

, ,

ˆ ˆ ˆ( ) ( > )
ˆ

         ,ˆ ( ) ( > )

PT RE UE
N N N N

PT

RE
N N N N

I L L I L L

H I L L hI L L

α α

α α

φ φ φ

β

β

= ≤ +

⎛
⎜ ⎟=
⎜ ⎟≤ +⎝ ⎠

⎞

 
 where  

   )>(ˆ)(ˆ=ˆ
,, αα βββ NN

UE
NN

REPT LLILLI +≤
 

is the stochastic preliminary test least squares estimator,  
 

  
1 1

2

ˆ ˆ( ) ( ' ) (= ,
UE UE

N
e

H r HS H H hL
qS

β β− −′− +Ω )−  

 
 with  

 

  2 1 1
ˆ ˆˆ ˆ ( ) ( )( ) ( )= =

UE UEUE UE

e
y X y Xy Z y ZS

N p N p
β βφ φ ′′ − −− −

− −
,  

 
,NL α  is the upper α -level critical value of  and  is the indicator function of the set NL )(AI A . 

Under the null hypothesis and normal theory,  follows a central -distribution with ( ,NL F )q N p−  
degrees of freedom while under the alternative hypothesis, 0≠φH , the  of  is given by  pdf NL

 

,

/2 /2 1

/2
=0 2

( , , ) =

2 2 2 ,
( 1) 1 12 2 2 2

q N p N

r

q r q r
N

r N rr

N

g L

N p qr r
Lq

q N pN p r r q L
N p

ν p q

ν

ν
ν

ν
ν

−

+ + −∞

+ −
+

Δ

− + Δ⎛ ⎞ ⎛ ⎞ ⎛ ⎞Γ + Γ +⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎛ ⎞ −⎝ ⎠ ⎝ ⎠ ⎝ ⎠
⎜ ⎟ −− ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ Δ⎛ ⎞⎝ ⎠ Γ + Γ Γ + Γ ⎛ ⎞+⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ +⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎜ ⎟−⎝ ⎠ −⎝ ⎠

∑ +
(43) 

where  

  
1 1

2

( ' )= ,
e

HC Hψ ψ
σ

− −′ + Λ
Δ  

 is the departure parameter from the null hypothesis. It is important to remark that  is bounded 
and performs better than  in some  parameter space. The Stein-type shrinkage estimator (SE) of 

PTφ̂
REφ̂

φ  is defined as  
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   (44) 

1

1

ˆ ˆ ˆ ˆ( )
ˆ 

     ,
ˆ( )

SE UE UE RE
N

SE

RE
N

dL

h dL h H

φ φ φ φ

β

β

−

−

= − −

⎛
= ⎜ ⎟⎜ ⎟− −⎝ ⎠

⎞

)

 
 where,  

   1ˆ ˆ ˆ ˆ= (SE UE UE RE
NdLβ β β β−− −

 
is the stochastic shrinkage estimator and 

 

  ( 2)( )= ,
( 2)

q N pd a
q N p

3.nd q− −
≥

− +
 

 
The SE in (44) will provide uniform improvement over , however it is not a convex 
combination of  and . This encourage one to find an alternative estimator. Hence, we define 
a better estimator, namely, the positive-rule shrinkage estimator (PR) of 

UEφ̂
UEφ̂ REφ̂

β  as follows:  

   (45) 

1

1 1

ˆ ˆ ˆ ˆ(1 ) ( )( )
ˆ ,

     
ˆ ˆ( ) (1 ) ( )(

PR SE UE RE
N N

PR

RE RE
N N N

dL I L d

h dL h H dL I L d h H

φ φ φ φ

β

β β

−

− −

= − − ≤ −

⎛ ⎞
= ⎜ ⎟⎜ ⎟− − − − ≤ −⎝ ⎠)

)

where  
 
   1ˆ ˆ ˆ ˆ= (1 ) ( )(PR SE UE RE

N NdL I L dφ β β β−− − ≤ −
 
is the stochastic positive rule shrinkage estimator.   Tabatabaey et al. (2004b)  analyzed above five 
well known possible stochastic restricted estimators namely, unrestricted estimator (UE), restricted 
estimator (RE), preliminary test (PT) estimator, shrinkage estimator (SE) and positive rule (PR) 
shrinkage estimators for the multivariate t regression model. The bias and risk functions of the 
proposed estimators are analyzed under both the null and alternative hypotheses. Under the null 
hypothesis, the restricted estimator (RE) has the smallest risk followed by the pre-test or shrinkage 
estimators. However, the pre-test or shrinkage estimator performs the best followed by the 
unrestricted estimator (UE) and restricted estimator (RE) when the parameter moves away from the 
subspace of the restrictions. It has been evident that the positive rule shrinkage estimator utilizes 
both sample and non-sample information and performs uniformly better than UE and ordinary 
shrinkage estimator.  

  
6.3 Ridge Regression under Multivariate T- Error 
 

   It is observed from (27) that the properties of the usual Least Squares Estimator ( ) of LSE
β  depends heavily on the characteristics of the information matrix XXC ′= . If the columns of C  
matrix are linearly dependent, then the least squares estimator (LSE) produces unduly large 
sampling variances. Moreover, some of the regression coefficients may be statistically insignificant 
with wrong sign and the deduction of meaningful statistical inference become difficult for the 
researcher. Hoerl and Kennard (1970 a,b) found that multicollinearity is a common problem in 
many fields of applications. To resolve this problem, they suggested to use 

 rather than C  in the estimation of 0)(,=)( ≥+′ kkIXXkC p β . The resulting estimator of β  is 
known as the Ridge Regression Estimator (RRE). Hoerl and Kennard (1970) considered the  
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unrestricted ridge regression estimator (URRE ) of β , as  
 
  ,~)(=)(~  (46) βkRβ k
 

where  is the ridge or biasing parameter and  is the shrinkage parameter.   
Based on the , Sarkar (1992) proposed the following restricted ridge regression estimator 
(

11][=)( −−+ kCIkR p 0≥k
RLSE

RRRE ),  
 

   (47) .ˆ)(=)(ˆ ββ kRkRE

 
 Similarly, Saleh and Kibria (1993) considered the Preliminary Test Ridge Regression Estimator 

 of )(PTRRE β  as,  
 

  , ,
ˆ ˆ( ) = ( ) ( ) ( ) ( > ) = ( ) .ˆPT PT

N N N Nk k I L L k I L L R kα αβ β β≤ + β  (48) 
 

Under MSE criterion Saleh and Kibria (1993) compared URRE, RRRE and PTRRE and discussed 
their relative merits and demerits. Tabatabey et al. (2004a) considered the SE and PRE under the 
ridge regression and obtained the corresponding Shrinkage Ridge Regression Estimator (SRRE) and 
Positive rule ridge regression estimator (PRRRE). Under the both quadratic bias and risk criterion 
he compared all five ridge regression estimators, namely, URRE, RRRE, PTRRE, SRRE and 
PRRRE. They  also pinpointed some insights of these five estimators.  

 
6.4 Ridge Regression under the Conflicting Statistics and Multivariate T -Error 

 
 In order to define the preliminary test estimators of β , we first consider the three well-

known test-statistics for testing hHH =:0 β  against hHH A ≠β:  with Students' -error, namely (i) 
the Wald (W ) test (ii) the likelihood ratio (

t
LR ) test and (iii) the Lagrangian Multiplier ( LM ) test 

and they are respectively given by  
 

  

1 1

2

2 2

1 1

2

( ) ( ) ( )= ( ) ,

ˆ= [ln( ) ( )],

( ) ( ) ( )= ,
ˆ( )

W
N

LR N N

LM
N

H h HC H H hL N

L N ln

H h HC H H hL
N

β βλ
σ

σ σ

β β
λ σ

− −

− −

′ ′− −

−

′ ′− −

 (49) 

 

where 2 1= ( ) (N y X y X
N

)σ β β′− −  and 2 1 ˆˆ = ( ) (N y X y X
N

ˆ)σ β ′− − β  are the unrestricted and 

restricted maximum likelihood estimator of  and  2σ
 

  ( ) = , 0 ( ) 1.
2

NN N
N

νλ λ
ν
+

< <
+ +

 

 
For details, we refer to Ullah and Walsh (1984). Note that if  is large then N ( )Nλ  is close to 1, 
then the results in (49) also hold for normal regression model.    
 
The test statistics in (49) can also be written as follows  
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1

= ( ) ,

=  1 ,

= ( ( )) ,

W N

LR N

N
LM

N

NqL N L
N p

qL N ln L
N p

NqLL N
N p qL

λ

λ −

−

⎛ ⎞
+⎜ ⎟−⎝ ⎠
⎛ ⎞
⎜ ⎟− +⎝ ⎠

 (50) 

 
where  is the test statistic for testing the null hypothesis (28). The test statistic  follows a 
central -distribution with ( ,  degrees of freedoms under  (see Zellner 1976, and King 
1980).   Ullah and Zinde-Walsh (1984) showed that for these test statistics in (50) the following 
inequalities hold:  

NL NL
F )q N p− 0H

  

1

1 2

2 3

3

< < < ( ( )),
< ( ( )) <
> ( ( )) <

> > ( ( ))

W LR LM

LR W LM

W LM LR

W LR LM

L L L if N
L L L if N N
L L L if N N
L L L if N

( ( )),
( ( )),

,

ω ω λ
ω λ ω ω λ
ω λ ω ω λ
ω ω λ

≤ ≤
≥

≥
≤

 (51) 

 
where = /WL Nω , and 1 2( ( )), ( ( ))N Nω λ ω λ  and 3( ( ))Nω λ  are respectively the unique positive 
roots (depending on ( )Nλ ) of the equations  
 

  2 1

1

( ) (1 ) = 0,
( ( )) (1 ) = 0,

( ) (1 ) (1 ) = 0.

N log
N

N log

λ ω ω

λ ω ω ω

λ ω ω ω

−

−

− +

− +

+ − +

 (52) 

 
Clearly under hHH =:0 β , we have  

 

  (0 , 0 , ,( ) ( ) = ( ) = .W q N p q N p q N p
NqP L N F P F F

N p
)λ α− − −

⎛ ⎞
≥⎜ ⎟−⎝ ⎠

α α≥  (53) 

 
 It follows from (53) that the size of the Wald test can be greater or less than the LR -test depending 
on the solution for ω  and the value of ( )Nλ . Similar comments apply to the size of LR  and LM  
tests.   The exact sampling distribution of the three test statistics are complicated. Thus in practice 
the critical regions of the tests are commonly based on asymptotic approaches (see Evans and 
Savin, 1982). It is known that the asymptotic distributions of the three tests is approximated by the 
chi-squared distribution with  degrees of freedom. Let the q α  level critical value of the 
distribution be  as a first approximation. This choice of critical value for three tests leads to 
conflicts as in the case of finite sample inference. The inequalities of statistics given in (51) will 
occur if  
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 respectively.   For the normal error case, Evan and Savin (1982) showed that on using the  
critical value there are two characteristics: First, they will differ with respect to their sizes and 
powers in small samples and there may be conflict between their conclusions. Second: when the 
sizes of the tests are corrected to be the same, the power are approximately the same and there may 
no any confliction. For the Students'  error case, Ullah and Walsh (1984) showed that the 
inequalities in (51) is complicated, the relationship among the sizes of these test and the possibility 
of conflict quite different than the normal case. For more details, please see Ullah and Walsh 
(1984). For excellent references and for various researches on W , 

)(2 αχq

t

LR  and LM  tests, readers are 
refereed to Savin (1976), Berndt and Savin (1977), Rao and Mukerjee (1977), Evans and Savin 
(1982), Ullah and Zinde-Walsh (1984), Billah and Saleh (2000 a,b), Kibria and Saleh (2003 a,b) 
and Kibria (2004) among others.   Based on the above considerations, Kibria and Saleh (2003b) 
considered the following preliminary test ridge regression  estimators (PTRRE)  based on W , LR  
and LM  tests, which are given below,  

 
  )),(>()(~))(()(ˆ=)(ˆ 2

*
2

** αχβαχββ qq
PT LIkLIkk +≤  (55) 

 
where  stands for either of ,  and  tests. They studied the finite sample properties of 
the  based on the Wald, the Likelihood Ratio and the Lagrangian Multiplier tests. They 
have effectively determined some conditions on the departure parameter and the shrinkage 
parameter for the superiority of the proposed estimators. They have also discussed the method of 
choosing optimum level of significance to obtain minimum guaranteed efficient estimators. The 

 based on W  test is found to perform the best with the choice of smallest level of 
significance to yield the best estimator in the sense of highest minimum guaranteed efficiency. It is 
worth noting that the analysis of Kibria and Saleh (2003b) under the assumption of t-distribution 
coincides with the traditional results developed under normality assumption for large degrees of 
freedom. The analysis of Kibria and Saleh (2003b) also coincide with that of Billah and Saleh 
(2000b), where they considered  performance of Preliminary Test Least Squares Estimator 
( ) based on W , 

*L WL LRL LML
PTRRE

PTRRE

PTLSE LR  and LM  tests. 
 

6.5 Predictive Inference with Multivariate Students T-Error 
 
 The distribution of future responses for given a set of observed data is known as predictive 

distribution. The predictive distribution for future responses for the regression model with errors 
having a multivarite t-distribution can be obtained by using structural, classical and Bayesian 
approaches and they give the same future predictive distribution (see Kibria 2006). Using the 
structural relation of the model eXY σβ += , where  has the density (1), Haq and Khan (1990) 
derived the predictive distribution of 

e
fN  future responses for the future regression model, 

fff eXY σβ += . The predictive distribution of  has been obtained as fY fN  dimensional 
multivariate -distribution with mean vector , variance covariance matrix ,  t fy Xb

1 1| [ ' ']y N f f f fS I X XX X X X− −− + / 2|  
 

and degrees of freedom . It is to noted that the predictive distribution does not depend on the 
degrees of freedom of the parent t -distribution. Since  

N p−

 
2 1( ) ( )( [ ' '] )( )y f y f n f f f f f y fN p S Y b X I X XX X X X Y b X− ′− − − + −  

 
has an -distribution with F fN  and N p−  degrees of freedoms, the prediction region for a set of 
future responses can be determined for any desired coverage probability.   The literature on 
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predictive inference for the multivariate linear model with ARMA(p,q) processes are limited. 
However, most of the studies relating to predictive inference from the multivariate linear models 
have been considered with errors having a Gaussian ARMA(p,q) process. Kibria and Haq (1998) 
have considered the multivariate linear model with error having a multivariate t -distribution and a 
ARMA(1,1) process. They derived the marginal likelihood function of the parameters and predictive 
distribution of a set of future responses.   The intra-class correlation coefficient ρ  is often used to 
measure the degree of intra-family resemblance with respect to biomedical attributes such as blood 
pressure, weight, height etc. Intra-class correlation also arises in psychology, education and 
genetics, where the population may be divided into clusters. For instance, in sampling from a 
biological population, it is advantageous to select a sample of population clusters and then to select 
a sample of organisms within these clusters. The consequences of such a sampling procedure is that 
the sample observations within a cluster may exhibit a residual covariance of intra-class structure 
rather than diagonal form (Wiorkowski, 1975).  
 
Using structural relation of the model, Kibria and Haq (1999) derived the predictive distribution for 
a set of future responses from a multivariate linear model with error following a multivariate -
distribution and intra-class covariance structure. The predictive distribution obtained as multivariate 

 with appropriate parameters. For 

t

t 0=ρ , the results in Kibria and Haq (1999) reduces to Haq and 
Khan (1990).    

 
6.6 Bayesian Regression Analysis under Multivariate T-Distribution 

 
Zellenr (1976) analyzed the traditional multiple regression model  

 
  uXy +β=  

under the assumption that error terms have a joint multivariate -distribution with the following 
p.d.f. 

t

  
( ) / 2/2

/2 2
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N u up u
ννν νν σ ν
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Thus he considered uncorrelated but dependent errors for the model for which it can be shown that 
maximum likelihood estimator for the regression coefficient vector,  is simply the 
least square estimator and the maximum likelihood estimator is a minimum variance linear unbiased 
estimator when relevant moments exist. Zellner (1976) also considered the Bayesian analysis of the 
regression model with a diffuse prior p.d.f. for the regression coefficients as  

YXXX ′′(=β̂ −1)

  2

1),(
σ

σβ ∝p  

and found that the joint posterior distribution of the parameters as multivariate -distribution as 
arises from multivariate normal model. The marginal posterior distribution for the regression 
parameter was also  found to have a multivariate t -distribution, which does not depend on the 
unknown parameter 

t

ν . However, the posterior distribution of the scale parameter was found to be 
in the form of -distribution. He has shown several important inference procedures about the 
regression coefficients developed under normality remain valid for the multivariate -model. 
However, inference about the scale parameter will depend on the extent of the departure from 
normality, as measured by the value of degrees of freedoms parameters. He also presented a natural 
conjugate prior distribution for the regression model having a multivariate Student t -distribution. 

F
t
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7 Concluding Remarks 
 

 This paper has discussed some basic properties of the multivariate t -distribution with 
applications to various fields of science and business. Special attention has been made for the 
estimation for the parameters for the linear regression model under the multivarite t -distribution. 
Predictive distributions for future observation under the multivariate t -distribution are also 
discussed. Since the application of the multivariate -distribution has been increasing day by day in 
business and econometrics, the paper will help and encourgae young researchers to stimulate further 
research. 

t
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