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Summary  Neater representations for variance are given for small sample sizes 
especially for 3, 4 etc. With these representations, variance can be calculated without 
a calculator if sample sizes are small and observations are integers, and an upper 
bound for the standard deviation is immediate. Accessible proofs of lower and upper 
bounds are presented for broad spectrum of readers. 
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1. INTRODUCTION 
 
Throughout the paper we will assume that the observations in a sample of any size 

2n ≥  are arranged in ascending order as 1 2 ( 2)nx x x n≤ ≤ ≤ ≥ . Sample variance 

)( 2s  is defined by ( ) ( ) ( )2 2 22
1 2( 1) nn s x x x x x x− = − + − + + −  where 

1 2( ) /nx x x x n= + + +  is the arithmetic mean of the sample observations. The 

sample standard deviation ( )s  is the positive square root of variance. In case the 
sample mean is not an integer, this formula for variance needs rounding off the mean 
which propagates error in the calculation. Prompted by this idea Joarder (2002) came 
up with many interesting representations of sample variance. In this note we provide 
neater representations for variance, implicit in Joarder (2003),  for small sample sizes 
especially for 3, 4 etc. With these representations, variance can be calculated without 
a calculator especially if sample sizes are small and observations are integers.  
 
Since the calculation of variance is difficult especially for beginners in a statistics 
course, bounds for variance may be useful in guarding against gross errors of 
calculation. Shiffler and Harsha (1980) have formulated an upper bound for the sample 
standard deviation ( )s in terms of the sample range d , while Mcleod and Henderson 
(1984) have determined a lower bound for s  in terms of  d  which also follows from 
Thomson (1955). Recently a better upper bound for standard deviation is derived by 
Croucher (2004) but for a sample of size 3.  This is further discussed by Eisenhauer 
(2005) and Petocz (2005). The conjecture by Croucher (2004) that for a large sample, 
the standard deviation cannot exceed 60% of the range is argued to be true. 
 
For broad spectrum of readers we present here the relevant representations of 
variance discussed by Joarder (2003). With these representations, the lower bound for 
standard deviation is also immediate. Accessible proofs of lower and upper bounds are 
presented for the same reason.  
 
2. STANDARD DEVIATION FOR SMALL SAMPLES 
 
(i) It is well known that for 2=n , the sample variance has a simpler form given by 

2 2 / 2 s d=  where 2 1d x x= −  is the sample range.   
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(ii) The variance 2( )s for a sample of 3 observations can be written as  
 

 ( )22 2 2 2
1 2 3 1 2 3

1 1
2 3

s x x x x x x⎡ ⎤= + + − + +⎢ ⎥⎣ ⎦
.  

 

Since ( ) ( )2 2 2 2
1 2 3 1 2 3 1 2 1 3 2 32x x x x x x x x x x x x+ + = + + + + + ,  it follows that 

 

( )2 2 2 2
1 2 3 1 2 1 3 2 33s x x x x x x x x x= + + − + + .            (1) 

 
Letting 2 1 1 3 2 2, x x d x x d− = − = , the first order differences of observations, we have 
 

( )
( )

22 2 2 2 2
1 2 1 2 2 1 3 2 3 1

2 2 2
1 2 3 1 2 1 3 2 3

( ) ( ) ( )

                              2 .

d d d d x x x x x x

x x x x x x x x x

+ + + = − + − + −

⎡ ⎤= + + − + +⎣ ⎦
          (2) 

 
Then from (1) and (2) we have the following equivalent forms 
 

( ) ( )2 2 2 2 2 2 2
1 2 1 2 1 2 1 2 1 2

1 1 1( )
6 3 3

s d d d d d d d d d dd⎡ ⎤= + + + = + + = +⎣ ⎦                                   (3) 

where 1 2d d d= + , the range of the 3 values in the sample. 
 
Example 2.1 Consider calculating the variance of  a sample 5, 6, 10. Since the first 
order differences are 1 26 5 1 ,  10 6 4d d− = = − = = , and range 1 4 5d = + = , by (3) we 
have  

( ) ( )2 2 2(1) (4) / 3 (1) 5(4) / 3 7s d= + = + = . 

 
(iii) For a sample of size 4n = , the variance can be represented by 
 

2 2 2 2 2 2 2
1 2 3 1 2 2 3 1 2 3

1 ( ) ( ) ( )
4(4 1)

s d d d d d d d d d d⎡ ⎤= + + + + + + + + +⎣ ⎦−
.         (4) 

where 1 2 1 2 3 2 3 4 3,  ,  d x x d x x d x x= − = − = − . Defining 12 1 2 23 2 3,d d d d d d= + = + , the 
above expression can also be written as 

( ) ( ) ( )2 2 2 2 2
1 12 2 2 23 3 212 2 2s d d d d d d d d= + + + + − . 

 
Example 2.2  Consider calculating the variance of  a sample 60, 65, 71, 80.  Since the 
first order differences are 65 60 5,  71 65 6,  80 71 9− = − = − = , and range 

5 6 9 20d = + + = , we have  
 

2 2 2 2 2 2 21 5 6 9 (5 6) (6 9) (5 6 9) 74.
4(3)

s ⎡ ⎤= + + + + + + + + + =⎣ ⎦  

 
Note that by subtracting an arbitrary number (say the smallest observation), the 
observations in the sample can be coded as 0, 5, 11, 20, and then (4) can be applied. 
 
(iv) For a sample of size 5n = , the variance can be represented by 
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2 2 2 2 2 2 2 2
1 2 3 4 1 2 2 3 3 4

2 2 2
1 2 3 2 3 4

1 ( ) ( ) ( )
5(5 1)

    ( ) ( ) .

s d d d d d d d d d d

d d d d d d d

⎡= + + + + + + + + +⎣−

⎤+ + + + + + + ⎦

          

 
Example 2.3 Consider calculating the variance of  a sample 72, 71, 80, 73, 85.  If the 
observations are ordered as 71, 72, 73, 80, 85, the first ordered differences would be 
1, 1, 7, 5 and range 1 1 7 5 14d = + + + =  so that 
 

2 2 2 2 2 2 2 2 2 2 21 (1) (1) (7) (5) (1 1) (1 7) (7 5) (1 1 7) (1 7 5) 14
5(4)

   36.7.

s ⎡ ⎤= + + + + + + + + + + + + + + + +⎣ ⎦

=
 
(v) In general for a sample of any size 2n ≥ , let 1 ( 1, 2, , 1)i i ix x d i n+ − = = −  be the 
first order differences of  observations arranged in ascending order. It is obvious that 
neither any of the  id  value is negative, nor does it exceed 1 2 1nd d d d −= + + + .  

Then in general for a sample of any size 2n ≥ , we have the following. 
 
The quantity 2( 1)n n s−  is the sum of squares of (i) ( 1)n −  id  values, (ii) the totals of 

all ( 2)n−  consecutive pairs of  id  values, (iii) the totals of all ( 3)n −  consecutive 

triplets of  id  values, and so on. The last term in the addendum should be the square 

of the range 1 2 1nd d d d −= + + +  (cf. Joarder, 2003).  
 
The method is not a feasible alternative for calculating variance for large samples. For 
large samples with integer valued observations, Joarder (2003) argued that the above 
formula for variance would be an efficient method if computer programs are used for 
calculation. Note that in case observations are not arranged in ascending order, some 

id  values would be negative, and 1 2 1nd d d −+ + +  would be different from the range. 
 
 
3. BOUNDS FOR STANDARD DEVIATION 
 

 (i)  It is well known that for a sample of 2 observations / 2 0.707s d d= ≈ .  Since 
2 2 2 2

1 2 1 2( )d d d d d+ ≤ + = , iIt follows from (3) that for 3 observations,  

( )2 2 2 2 2 2
1 26s d d d d d= + + ≤ +  i.e. / 3 0.577s d d≤ ≈  which is proved recently by 

Croucher (2004). Again, since 2 2 2 2 2
1 2 3 1 2 3( )d d d d d d d+ + ≤ + + = , it follows from (4) 

that for 4 observations, ( )2 2 2 2 2 2 2 2
1 2 2 312 ( ) ( ) 2s d d d d d d d d d≤ + + + + + ≤ + +  i.e. 

/ 3 0.577s d d≤ ≈ . Since 2 2 2 2 2 2
1 2 3 4 1 2 3 4( )d d d d d d d d d+ + + ≤ + + + = , it follows from 

(5) that for 5 observations, ( )2 2 2 2 220 3 2s d d d d≤ + + +  i.e. 7
20 0.592s d d≤ ≈ .  In 

general, it follows from Section 2 (v) that 
 

2 2 2 2 2 2 2 2( 1) ( 2) ( 3) 2 ( 1)( 2) / 2n n s d n d n d d d d n n d⎡ ⎤− ≤ + − + − + + + ≤ + − −⎣ ⎦  
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i.e. 
2

2

3 4 1 2  ,   2.
2( ) 2 ( 1)

n n ns d d n
n n n n
− + −

≤ = − ≥
− −

     (6) 

 
Simple proofs for lower and upper bounds for standard deviation are in order.  
 
(ii) Let 3n = ordered sample observations be denoted by  1 2 3y y y≤ ≤  and 3 1d y y= − . 

Since  ( )2 2 2 2
1 3 3 12 ( )y y y y d+ ≥ − = ,  it follows that ( ) ( )2 2 2 2 2 2

1 2 3 1 32 2y y y y y d+ + ≥ + ≥ . 

Further, let  ( 1, 2,3)i iy x x i= − =  and 2s  be the variance of  3 observations 1 2,x x  and 

3x . Since the range of the iy  values is the same as that of the ix   values, and 

( )2 2 2 2 2 2 2
1 2 3 1 2 32 2 ( ) ( ) ( ) 2 2y y y x x x x x x s⎡ ⎤+ + = − + − + − = ×⎣ ⎦ , it follows that 2 24s d≥  

i.e. 0.50 s d≥ . In general for a sample of any size 2n ≥ , the lower bound for 
standard deviation given by   
 

2( 1)
ds
n

≥
−

                (7) 

 
is derived by Mcleod and Henderson (1984) which also follows from Thompson (1955). 

Next consider ( ) ( ) ( ) ( ) ( ) ( )2 2 2 2 2 2
1 2 3 1 2 3x x x x x x x a x a x a− + − + − ≤ − + − + − . By 

choosing 1 / 2a x d= +  we have 2 2 2 22 ( / 2) ( / 2) ( / 2)s d d d≤ − + − + , i.e.  

3
8 0.612s d d≤ ≈ . In general, for a sample of any size 2n ≥ , the upper bound for 

standard deviation is given by   
 

    
2 1
d ns

n
≤

−
.                (8) 

 
(Shiffler and Harsha, 1980). Thus for a sample of size 3, the above bounds simplify 

approximately to 31 1
2 2 2 0.612d s d d≤ ≤ ≈  while the upper bound in (6) is 

/ 3 0.577d d≈ .  For any sample of  size 4, the upper bound in (6) is  the same as that 
offered by Shifler and Harsha (1980). However as the sample size becomes larger than 
4, the upper bound in (8) keeps uniformly dominating that in (6). The upper bound in 

(8) approaches to 0.5d  whereas that in (6) approaches to 1
2 0.707d≈  as n becomes 

very large. 
 
iii) The Croucher Conjecture 

 
The way Croucher (2004) improved the above upper bound, given in (8), for a sample 
of 3 values is described below with the help of (3). Since variance does not depend on 
the location, he considered the observations as 0, ,a ka  where 1k ≥ . With notations in 

Section 2, 1 2,  d a d ka a= = −  and d ka= , it follows from (3) that 

( )22 2 2 2 23 ( ) ( 1) / ( 1).s a ka ka a a k k d k k k= + − = − + = − +   That is 
2

2
2

1 11 .
3

ds
k k

⎛ ⎞= − +⎜ ⎟
⎝ ⎠

 

Then given d , the variance for a sample of size 3 has a maximum value of  2 / 3d  
occurring at 1k =  i.e.  
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/ 3 0.577s d d≤ ≈ .               (9) 

 
In view of (8), the conjecture by Croucher (2004) that for large data sets s  cannot 
exceed 60% of the range, is just true. In what follows we argue that the upper bound 
of standard deviation given in (9) is true for any sample of size 3n ≥ . 
 
Example 3.1 To find the variance of the sample (60, 65, 71, 80), draw a sample 
without replacement of size 2 from the given sample. The ( 1) / 2! 4(4 1) / 2 6n n − = − =  
samples (60, 65), (65, 71), (71, 80), (60, 71), (65, 80), (60, 80) have the ranges  

1 2 3 4 55, 6, 9, 11, 15d d d d d= = = = =  neither of which exceed 20d = , the range of the 
given sample. Then the variance of the given sample is  

( )
2 2 2 2 2 2

2 2 2 2
1 2 6

1 1 5 6 9 11 15 20 74
6 6 2 2 2 2 2 2

s s s s
⎛ ⎞

= + + + = + + + + + =⎜ ⎟
⎝ ⎠

 

where 2 ( 1,2, ,6)is i =  is the variance of the ith sample. Observe that none of the 6 

sample variances exceeds 220 / 3 . 
 
Example 3.2 To find the variance of the sample (60, 65, 71, 80), draw a sample 
without replacement of size 3 from the given sample. The 

( 1)( 2) / 3! 4(4 1)(4 2) / 6 4n n n− − = − − =  samples are (60, 65, 71), (60, 65, 80), (60, 71, 

80), (65, 71, 80) with variances 1 1 1
3 3 330 ,108 ,100  and 57  respectively. Then the 

variance of the given sample is 

( ) ( )2 2 2 2 2 1 1 1
1 2 3 4 3 3 3/ 4 30 108 100 57 / 4 74.s s s s s= + + + = + + + =  Observe that none of the 4 

sample variances exceeds 220 / 3 . 
 
In general if 3 observations are drawn without replacement from a given sample of 
size 3n ≥ ,  there would be ( 1)( 2) / 3!m n n n= − −  samples with ranges 1 2, , , md d d  

and variances 2 2 2
1 2, , , ms s s  respectively. It is obvious that neither any of the  

( 1, 2, , )id i m=  value is negative, nor does it exceed d , the range of the given 
sample. It then follows from the above considerations (or see Cochran, 1977) that 

( )2 2 2 2
1 2 /ms s s s m= + + + ,  and then by (6) or (9) we have 

22 2 2
2 1 21

3 3 3 3
mdd d ds

m
⎛ ⎞

≤ + + + ≤⎜ ⎟
⎝ ⎠

. 

 

That is / 3 0.577s d d≤ ≈ . Thus the conjecture by Croucher (2004) is proved to be 
true for a sample of any size 3n ≥ .  
 
 
4.  BETTER BOUNDS FOR STANDADR DEVIATION 
 
For a sample of  any size 2n ≥ , Joarder and Laradji (2004) improved the lower bound 
of standard deviation given by Mcleod and Henderson (1984) in terms of  range and the 
difference between mean ( )x  and median ( )x  to account for the skewness in the 
sample. They also improved the upper bound of standard deviation given by Shiffler 
and Harsha (1980) or Croucher (2004) in terms of range and some other statistics. In 
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passing we mention that the lower bound for standard deviation is 

2 2/(2 2) ( ) / 2s d n x x≥ − + − .  
Clearly the improvement considered in Joarder and Laradji (2004) for the bounds of 
standard deviation by incorporating mean, median and other sample statistics looses 
the simplicity offered in (9) by Croucher (2004) or others.  
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Refer to the end of Example 3.2: ([urther Better Bound along Croucher (2004)] 
 
 
In general if k  observations are drawn without replacement from a given sample of 
size 3n ≥ ,  there would be ( 1) ( ) / !m n n n k k= − −  samples with ranges 

1 2, , , md d d  and variances 2 2 2
1 2, , , ms s s  respectively. It is obvious that neither any of 

the  ( 1, 2, , )id i m=  value is negative, nor does it exceed d , the range of the given 

sample. If 2 ,  ( 1, 2, , )i is b i m≤ = it then follows (see Cochran, 1977) that 

( )2 2 2 2
1 2 /ms s s s m= + + +  and    

( )2
1 2 /ms b b b m≤ + + + . 

 
Research Directions: Assume 4k =  and find ,  ( 1, 2, , )ib i m= .]] 
 
 


