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Algebraic Inequalities for Measures of Dispersion1  
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ABSTRACT  Some upper and lower bounds for sample standard deviation are established in terms of  
sample mean, median, range, the smallest and the largest order statistics. Upper bounds for 
variance are also derived for odd and even sample sizes whenever the sample observations are of the 
same sign. They are used to find bounds for some well-known sample statistics: z-scores, coefficient 
of variation, coefficient of skewness and the least squares estimator of the slope parameter in the 
context of a simple linear regression. Statistical inference of related parameters can be improved on 
the basis of these fixed sample properties. 
 
Keywords: Inequalities in statistics; sample mean; sample median; standard deviation; z -score, coefficient of 
variation; coefficient of skewness;  regression parameters.  
 
1. Introduction 
 
Let X  be a random variable with mean µ  and standard deviation σ .  For 0 1p< < , the p th 
quantile xp  of X  is defined by ( )  P X x pp≤ ≥ and ( ) 1P X x pp≥ ≥ −  or equivalently 

( )  ( )P X x p P X xp p< ≤ ≤ ≤  (Rohatji, 1984, 164). For example if 2/1=p , then xp µ= , the 
median of the random variable X . Page and Murty (1982 and 1983) published an elementary proof  
of the inequality | |  µ µ σ− ≤ .  O’Cinneide (1990) presented a new proof for | |  µ µ σ− ≤  and 
stated the following generalization. 
 
Proposition 1.1 Let X  be a random variable with mean µ and standard deviation σ . Then for  

10 << p  and pq −= 1 , the following inequality holds 
 

( )| |     max / ,   /x p q q pp µ σ− ≤  where xp is the  p th quantile.  

 
For 2/1=p ,   it follows from the above proposition that | |  µ µ σ− ≤ . Dharmadhikari (1991) noted 
that for 2/1≠p , the inequality is somewhat unsatisfactory. The refined inequality proved by her 
with the help of  one-sided Chebyshev inequality is stated in the following theorem.  
 

                                                           
1 The paper is based on a Technical Report  "Inequalities in Descriptive Statistics" by A H Joarder and A. 
Laradji, No. 321 (June 2004), King Fahd University of Petroleum and Minerals, Saudi Arabia. Both Anwar H. 
Joarder and A. Laradji are Associate Professors in the Department of Mathematical Sciences at King Fahd 
University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia, Emails: anwarj@ kfupm.edu.sa, 
alaradji@kfupm.edu.sa . 
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Proposition 1.2 Let X  be a random variable with mean µ and standard deviation σ . Then for  
10 << p  and pq −= 1 , the following inequalities hold 

 
 

/    /  .q p x q ppµ σ µ σ− ≤ ≤ +  
 
For stimulating discussions, readers may go through Mallows (1991) and the references therein. A  
more general inequality than that in Proposition 1.2 relating sample standard deviation to mean and 
the  i -th order statistic discussed by David (1988 and 1991) is presented in Theorem 1.2. Interested 
readers can go through the references in David (1988) for bounds of order statistics.  
 
Sample standard deviation )(s or variance )( 2s  is nonnegative, and is defined by 

( )22 2 2

1 1
( 1) .

n n

i i
i i

n s x x x nx
= =

− = − = −∑ ∑    But for most data sets, the range of s  is much narrower than 

the nonnegative part of the real line. This motivated us to find bounds for standard deviation and 
related statistics. Some representations of sample variance are discussed in Joarder (2002).  Further it 
has been proved by Joarder (2003) that if a computer program is used to calculate sample variance, 
then it can be efficiently calculated by the representation based on the first order differences of 
observations. Another motivation for the current research is the improved inference in situations 
when the parameter is known to have a restricted space (Silvapulle and Sen, 2004). 
 
It is well known that 1  n s n u− ≥  where u  is the mean absolute deviation of sample values 

around the mean defined by 
1
| |

n

i
i

nu x x
=

= −∑ . Let n ordered sample observations be denoted by  

)()2()1( nxxx ≤≤≤ . It is also well known that for 2=n , the sample standard deviation has a simpler 

form given by / 2 s w=  where )1()( xxw n −=  is the sample range. Shiffler and Harsha (1980) have 
formulated an upper bound for the sample standard deviation )(s  in terms of the sample range w , 
while Mcleod and Henderson (1984) have determined a lower bound for s  in terms of  w  which also 
follows from Thomson (1955). Eisenhauer (1993) combined them. A stronger version of these results 
with more transparent arguments is provided in Theorem 2.1. 
 
Theorem 1.1 (Macleod and Henderson (1984) and (Shiffler and Harsha (1980)). Let w  and s  
denote, respectively,  the range and standard deviation of a sample of size 2n ≥ . Then  
 

1
  

2
  

)1( 2 −
≤≤

− n
nws

n
w .   

 
Theorem 1.2 (David, 1991) For 1 i n≤ ≤ , let ( )ix  be the i th order statistic and s , the standard 
deviation based on a sample of size 2n ≥ . Then  
 

( )
( 1)( 1) ( 1)( )  | |    max ,    

( 1 )i
n i n n ix x s
n n i ni

⎛ ⎞− − − −
− ≤ ⎜ ⎟⎜ ⎟+ −⎝ ⎠

.  
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By the use of Theorems 1.1 and 1.2 we immediately obtain the following corollaries: 
 
Corollary 1.1 For 1 i n≤ ≤ , let ( )ix  be the i th order statistic from a sample of size 2≥n . Then 
 

  1      | |        ( )max( 1, ) 1 2 1
n n w nx x sii n i n n

− − ≤ ≤
− − − −

. 

 
Corollary 1.2 (Eisenhauer, 1993) Let w  and s  denote the range and standard deviation of a sample 
of size n . Then  

(a) 
1

  
2
1        

)1(2
1

−
≤≤

− n
n

w
s

n
,  

 
(b) 2/1/0 ≤≤ ws  as ∞→n .  
 
 
2. Some Inequalities in Descriptive Statistics 
 
The following result is a refined version of Theorem 1.1. 
 
Theorem 2.1 Let , ,x x w  and s  respectively denote the mean, median, range and standard deviation 
of a sample of size n . Then  
 

2 2
(1) ( )( )( )( )     

2( 1) 2 1 2 12 ( 1)
nn x x x xw w x x w ns

n n nn
− −−

≤ + ≤ ≤ ≤
− − −−

.   

 

Proof. For any a  and 2n ≥ , ( )
2

22

1 1

1( 1) ( )
n n

i i
i i

n s x a x a
n= =

⎛ ⎞
− = − − −⎜ ⎟

⎝ ⎠
∑ ∑  so that for the ordered sample 

observations )()2()1( nxxx ≤≤≤ , we have ( ) ( )( ) 22
)(

2
)1(

2 )(,max )1( axnaxaxnsn n −−−−≤− . In 
particular, for 2/2/)( )1()()1( wxxxa n +=+= , we have  
 

( ) ))((2/)(4/)1( )()1(
2

)1(
22 xxxxnwxxnnwsn n −−=−−−≤− .                         (2.1) 

 
Since 4/)( 2baab +≤  for any real numbers a  and b , we deduce by putting ,0)1( ≥−= xxa  

0)( ≥−= xxb n  that 4/))(( 2
)()1( wxxxx n ≤−− . Then the two inequalities in the theorem are evident 

by (2.1).  Next, by using 2 2 22( ) ( )a b a b+ ≥ − ,  for any nyyy ≤≤≤ 21  with 1y nw y y= − ,  we have  

( ) ( ) ( )2 2 2 2 2 2 2 2
1 2 1 2 1

1

2 2 2 2
n

i n n y n
i

y y y y y w y y− −
=

= + + + + ≥ + + +∑ .                         (2.2) 

 
For  n  odd, rewrite (2.2) as  
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( ) ( )2 2 2 2 2 2
2 ( 1) / 2 ( 3) / 2 1

1
2 2 2

n

i y n n n
i

y w y y y y+ + −
=

= + + + + + +∑ .                        (2.3) 

 
Let y  be the median of the ( 1, 2, , )iy i n=  values. If 0~ <y  then for 3n ≥  and 2 ( 1) / 2i n≤ ≤ +  , 
we have ,  iy y≤ or 2 2 ,  iy y≥ so it follows from (2.3) that  

( )2 2 2 2 2

1

2 2 ( 1) / 2 2 1 ( 1)
n

i y y
i

y w n y w n y
=

≥ + + − + = + −∑ . If 0~ ≥y  then for 3n ≥  and  

( 1) / 2) ( 1)n i n+ ≤ ≤ − , we have   iy y≤ , so that it follows from (2.3) that   

2 2 2 2 2

1
2 2( 1 ( 1) / 2 1) ( 1)

n

i y y
i

y w n n y w n y
=

≥ + − − + + = + −∑ .  

 
Next, let n be even. For 2n =  we have ( )2 2 2 2 2 2 2 2

1 2 2 1 2 12 ( ) ( ) (2 ) 2y yy y y y y y w y w y+ = − + + = + ≥ + . 

For 4n = , we have 
4

2 2 2 2 2 2 2
4 1 3 2 4 1 3 2

1
2 ( ) ( ) ( ) ( ) 4i y

i
y y y y y y y y y w y

=

= − + − + + + + ≥ +∑ . Since 

2 2 22( ) ( )a b a b+ ≥ + , rewrite (2.2) for even 2n ≥  as 
 

( ) ( ) ( )22 2 2 2 2 2
2 / 2 1 / 2 / 2 1 / 2 2 1

1
2 2 2

n

i y n n n n n
i

y w y y y y y y− + + −
=

≥ + + + + + + + +∑ .       (2.4)  

 
If  0~ <y  , then for even 6n ≥  and / 2 / 2 1n i n≤ ≤ − , we have , iy y≤ i.e. 2 2 , iy y≥ and it follows 

from (2.4) that  2 2 2 2 2 2

1
2 2( / 2 1 2 1) (2 )

n

i y y
i

y w n y y w ny
=

≥ + − − + + ≥ +∑ . Similarly, if  0y ≥  , then for 

even 6n ≥ and  / 2+2 1n i n≤ ≤ − , we have , iy y≤  and it follows from (2.4) that  

( ) ( ) ( )22 2 2 2 2 2 2
2 / 2 1

1
2 2 2 2 1 ( / 2 2) 1)

n

i y n y
i

y w y y y n n y w ny−
=

≥ + + + + + − − + + ≥ +∑ . So for even 2n ≥ , 

22

1

2 ~2 ynwy
n

i
i +≥∑

=

. In all cases for 2n ≥ , we have  

 
2 2

2
2 2

( 1)  if  is odd
( 1)

 if  is even
w n y n

n s
w ny n

⎧ + −⎪− ≥ ⎨
+⎪⎩

        (2.5) 

 
By putting ,   (1 ),  2i iy x x i n n= − ≤ ≤ ≥  in (2.5), we have 
 

2 2
2

2 2

( 1)( )  if  is odd
2( 1)

( )  if  is even
w n x x n

n s
w n x x n

⎧ + − −⎪− ≥ ⎨
+ −⎪⎩

  

 
as required. 
 
By putting ( ),  (1 ),  2i iy x f x i n n= − ≤ ≤ ≥ , in (2.5) we have ( )22 22( 1) ( 1) ( )n s w n x f x− ≥ + − −  
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where ( )f x is a function of sample values x  say the geometric mean ( )g x  or harmonic mean ( )h x . 
By putting  ( ) ( ),  (1 ),  2i iy x x g x h x i n n= − − − ≤ ≤ ≥ , in (2.5) we have 

[ ]22 22( 1) ( 1) ( ( ) ( ))n s w n x x g x h x− ≥ + − − − + . 
 
Cartwright and Field (1978) provided bounds for variance in terms of the geometric mean and the 
most extreme observations as follows: 
 

2
(1) ( )

2 2 ( ( ))  ( ( ))
1 1 n

n nx x g x s x x g x
n n

− ≤ ≤ −
− −

. 

 
It may be remarked here that the two sides of the rightmost inequality in the theorem are equal in 
case xxx n 2)()1( =+ , otherwise the sharper inequality ( )( ) / 2(1) ( )x x x x wn− − <  holds. The 

following result improves the bound for s  described in Theorem 1.2. It is also in agreement with the 
known result that for any two observations / 2s w=  where ( ) (1)nw x x= − . In what follows let  [ ]n  
be the greatest integer function i.e. it is the largest integer not exceeding n . 
 
Corollary 2.1 For any sample of 2≥n  observations )()2()1( nxxx ≤≤≤ ,  
 

2[ / 2]
2 2 1

1

1
2( 1) 2( 1)

n

i
i

ws w
n n=

≥ =
− −∑  where ,  (1 )( 1) ( )w x x i mi n i i= − ≤ ≤− + . 

 
Proof.  For any real numbers nyyy ,,, 21 and [ / 2]m n= we have 

( ) ( ) ( ) ( ) ( )2 22 2 2 2 2 2 2
1 2 1 1 1 1

1

1
2

n

i n n m n m n n m m
i

y y y y y y y y y y y− − + − +
=

⎡ ⎤≥ + + + + + + ≥ − + + −⎣ ⎦∑  

Letting ( )  ,   ( 1, 2, , )i iy x x i m= − =  and 1 ,  (1 )j n j jw y y j m− += − ≤ ≤ , it follows from the above 

inequality that 2 2 2 2 2
1 2 12( 1) mn s w w w w− ≥ + + + ≥ .  

 
Theorem 2.2 For 1 i n≤ ≤ , let ( )ix  be the i th order statistic from a sample of size 2≥n . Then 

( )

( )

1( )  | |      for each 

1 1( ) | |       if 
2( 1)

1( ) | |       

i

i

ni x x s i
n
n nii x x s s i

n n

niii x x s s
n

−
− ≤

− +
− ≤ ≤ =

+

−
− ≤ <

 

 
Proof.  (i) max

i
  ( ) ( ) (1)| |  max( ,    )i nx x x x x x− ≤ − − . But by Theorem 1.2 we have 

( ) (1)
1 1 1 1 max  ,   0   and   max  0,      n

n n n nx x s s x x s s
n n n n
− − − −⎛ ⎞ ⎛ ⎞− ≤ = − ≤ =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
.  

 
(ii) Use Theorem 1.2 
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(iii) If  n is odd and ( 1) / 2i n= + ,  then ( )ix x= , and 
n

n
nn

n 1
)1(

1 −
≤

+
−  for any 1≥n , the 

inequality follows from (ii).  If n  even, then ( ) 2/~
)12/()2/( ++= nn xxx , and the leftmost inequality in 

(iii) follows from ( ) ( ) ( )1 1
( / 2) ( / 2 1) ( / 2) ( / 2 1)| |  2   2 | | | |  n n n nx x x x x x x x x x− −

+ +− ≤ − + − ≤ − + −  

by virtue of Theorem 1.2. 

Let the z -scores be defined by ( ) / ,  1, 2, ,z x x s i ni i= − = . Then it follows from 2

1
1

n

i
i

z n
=

= −∑  that 

2max{| |} 1ii
n z n≥ −  so that, by virtue of (i),  1 1min{| |} max  {| |}i ii i

n nz z
n n
− −

≤ ≤ ≤  as in Hayes 

(2004). The upper bound is originally by Pearson and Chandra Shekhar (1936). Shiffler (1987 and  
1988) argued that minimum and maximum achievable value for the largest positive -scorez  is 1/ n  
and ( 1) /n n−  respectively.  
 
The inequality in (iii) tells us that sxxsx +<<− ~~ , or,  sxxsx +<<− ~ . That is sample mean and 
median lie within one standard deviation of each other.  The following corollary is obvious from 
Theorem 2.1 and Theorem 2.2. 
 
Corollary 2.2  Let xx ~ and  be the sample mean and median based on a sample of size 2≥n . Then  
 

2 2( )max | |  ,    
1 2( 1) 2 2 1

n w x x w nx x s
n n n

⎛ ⎞−
− + ≤ ≤⎜ ⎟⎜ ⎟− − −⎝ ⎠

. 

 
Theorem 2.3 If the observations are of the same sign, then for any sample size 2≥n , the following 
inequalities hold: 
 

(i) 2 2 21
4

ns nx x+
≤ −  if n  is odd,  

(ii) 2 2 2( 2)
4( 1)
n ns nx x

n
−

≤ −
−

 if n  is even.  

 
Proof. Without loss of generality we assume that all the observations are nonnegative. If n  is odd, 

there are 
( 1) / 2

2
n +⎛ ⎞

⎜ ⎟
⎝ ⎠

 products of the form i jx x  where 1 i j n≤ < ≤  and ,i jx x x≥ . Then 

( )
2

2 2 2 2

1 1

12 2
8

n n

i i j i
i i j i

nnx x x x x x
= < =

⎛ ⎞−
= + ≥ + ⎜ ⎟

⎝ ⎠
∑ ∑ ∑ . If n  is even, there are 

/ 2
2

n⎛ ⎞
⎜ ⎟
⎝ ⎠

 products of the form 

i jx x  where 1 i j n≤ < ≤  and ,i jx x x≥ . Then  

( )2 2 2 2

1 1

( / 2)( / 2 1)2 2
2

n n

i i j i
i i j i

n nnx x x x x x
= < =

−⎛ ⎞= + ≥ + ⎜ ⎟
⎝ ⎠

∑ ∑ ∑ .  The rest of the proof is immediate. 

 
The following corollary follows from Theorem 2.1 and Theorem 2.3. 
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Corollary 2.3  For any sample of 2≥n  observations )()2()1( nxxx ≤≤≤ ,  if all the observations are 
of the same sign. the following inequalities hold: 
 

(1) ( ) 2 2( )( ) 1( ) min ,  for odd ,
1 4

nn x x x x ni s nx x n
n

⎛ ⎞− − +
≤ −⎜ ⎟⎜ ⎟−⎝ ⎠

 

(1) ( ) 2 2( )( ) ( 2)( ) min ,  for even .
1 4( 1)

nn x x x x n nii s nx x n
n n

⎛ ⎞− − −
≤ −⎜ ⎟⎜ ⎟− −⎝ ⎠

 

 
Corollary 2.4 For any sample size 2≥n , if all the observations are of the same sign, the following 
inequalities hold: 
 

( 2)2 2 2 2 2 ( )   
1 4( 1)

n n nx x s nx x nx
n n

−
− ≤ ≤ − ≤

− −
  . 

Proof. For any 2n ≥ , it follows from Theorem 2.3 that  ( 2)2 2 2( 1) ( 1)
4

n nn n x n s x−
− ≥ − +  i.e.  

( 2)2 2 2
4( 1)
n nnx s x

n
−

≥ +
−

. The leftmost inequality is by virtue of Theorem 2.2 (iii). 

 
Note that if all the observations are of the same sign, a less sharper but simpler than the above 
inequality is given by  | |     | |x x s n x− ≤ ≤ . The following corollary  is by virtue of Theorem 2.1 
and Corollary 2.4. 
 
Corollary 2.5 For any sample size 2≥n , if all the observations are of the same sign, the following 
inequalities hold: 
 

2 2

2 2
(1) ( )

( )max ,  | |
2( 1) 2 1

2min ( 1) ,  ( )( ) .
1 4 n

w x x n x x
n n

n ns n x x x x x x
n

⎛ ⎞−
+ −⎜ ⎟⎜ ⎟− −⎝ ⎠
⎛ ⎞−

≤ ≤ − − − −⎜ ⎟⎜ ⎟− ⎝ ⎠

 

 
The following corollary is obvious by virtue of Theorem 1.2 and Corollary 2.3. 
 
Corollary 2.6 For any sample of n nonnegative observations ( 2≥n ), the following inequalities hold: 
 

1
1
−n

max ,   | |  min   | |,    
2 12

w w nn x x s n x
n

⎛ ⎞⎛ ⎞− ≤ ≤ ⎜ ⎟⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠
. 

 
The following result is due to Laradji and Joarder (2002). 
 
Theorem 2.4 For any sample of 2≥n  observations )()2()1( nxxx ≤≤≤ , the following inequalities 
hold: 
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(1) ( )

(1) ( )

1 1 1 1 1 1( )  1  1   1  1  ,
2 2

1( ) | |       max  ( , ),
1

( )  1 1.

n

n

i x x x x x
n n n n

nii x x x x x x
n

xiii
x

⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞+ + − ≤ ≤ + + −⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦
−

− ≤ − −
+

− ≤

 

 
3. Inequalities for some Useful Statistics 
   
The following corollaries are obvious from Theorem 2.2 and Corollary 2.4 respectively. 
 
Corollary 3.1 If 2≥n  observations are positive, then the coefficient of variation ( ) /CV x s x=  
satisfies the following inequalities: 
 

 1  1 ( )
1

x n x CV x n
x n x
− ≤ − ≤ ≤

−
 .           

 

Corollary 3.2 If 2≥n  observations are positive, then the coefficient of  skewness  ( )
/ 3

x xCS x
s
−

=  

satisfies the following inequalities: 
 

1 13 ( ) 3 n nCS x
n n
− −

− ≤ ≤  

 
which is slightly narrower than the known interval ]3 ,3[− . 
 
Theorem 3.1. Let 2

( ) (1), ( ) (1) , ( )( ),y n x n xy xx xw y y w x x s x x y y s s= − = − = − − =∑ . Then the regression 

coefficient 1̂ /xy xxs sβ = satisfies the following inequalities: 
 

 1̂( )  y y

x x

s s
i

s s
β− ≤ ≤  ,    

1̂( )         .
2 2

y y

x x

w wn nii
w w

β− ≤ ≤  

 
Proof.  The sample correlation coefficient )(r  is defined by xxxyyx sssrs 1β̂==  so that  the inequality 
in (i)  follows by virtue of 11 ≤≤− r . The proof for part (ii) is immediate by virtue of  Theorem 1.2. 
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Dr MH Omar's Resaerch 
 
Theorem 2.1 Let , ,x x w  and s  respectively denote the mean, median, range and standard deviation 
of a sample of size n . Then  
 

( ) ( ) ( ) ( )2 2 22
(1) ( )2 ( )( )( )     

2( 1) 2( 1) 2 1 4 1
nE w E w E wnE x x x xE x x nE s

n n n n
− −−

≤ + ≤ ≤ ≤
− − − −

.   

 
Since ( )2 2E s σ= , and hence the above inequality is a fixed interval for any population. 
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