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An attempt is made to put the notion of sample quartiles on a mathematical footing in the 
light of  ranks of  observations, and equisegmentation property that the number of  ranks 
below that of the first quartile, that between the consecutive quartiles, and that above the 
third quartile are the same. Ranks of sample quartiles provided by the proposed Halving 
Method, based on hinges, does satisfy the property.  
 

1. Introduction 
 
There are many methods available for calculating sample quartiles in different 
elementary text books on statistics without any explanation. The most popular one, called 
Popular Method hereinafter, is described here. The rank of the )3,2,1( =ii th quartile is 
given by  
 

3 ,2 ,1 i   ,1)/4(   =+=+ dlni         (1.1) 
 
where l  is the largest integer not exceeding 4/)1( +ni .  Then the Popular Method uses 
the following linear interpolation formula for the calculation of  sample quartiles 
 

)1()()()1()(   )1()( ++ +−=−+= llllli xdxdxxdxQ ,    )3 ,2 ,1 i( = ,  (1.2) 
 
where )(lx  is the l -th ordered observation ( Ostle, Turner, Hicks and  McElrath, 1996,  
38).  
 
However, students and instructors alike are curious to know why the formulae for 
quartiles in (1.1) contain the quantity 1+n . Why not n or ?1−n  Though the formulae for 
the median in the literature appear to be different, they all are equivalent. It is given by 

 2/)1(2 += nQ  th observation. In case n is odd, 2/)1( +n will be an integer so that the 
median will be an observation with integer rank. If however, n is even, 2/)1( +n  will lie 
between 2/n  and 12/ +n . Then the median can be calculated by the use of linear 
interpolation. Because of the success of  the quantity )1( +n  in equation (1.1) to find the 
median, the idea of  proportional weight given by (1.1) or (1.2) has possibly been popular 
to find other quartiles by the above method. 
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It would be clear down the road that 1+n  is the total of the ranks for the largest and 
smallest observations in the sample, and that the rank of the median is the average of the 
ranks of the observations.  
 
To write out the ranks exhaustively let us denote the sample size by the following 
remainder-modulus representation 
 

)3,2 ,1 ,0(  ,4 4 mod =+== rrmrn ,       (1.3) 
so that the number of observations in each of the n≤4  segments is given by 

4/)( rnm −= . With this representation of the sample size the ranks and quartiles of a 
sample will be denoted respectively by 3,2,1,0  ;3,2,1   ;  and == riQR irir .  Though 
quartiles 3,2,1,0  ;3,2,1   ;  == riQir are usually denoted by 3,2,1   ;  =iQi , we will not 
suppress r  as it plays an important role in the proposed Halving Method for quartiles. 
The ranks in (1.1) given by the Popular Method can be rewritten as  
 

4/)1(4/)14( ++=++= riimrmiRir , 3,2,1,0  ;3,2,1 == ri     (1.4) 
which is the the rank of the i  th quartile corresponding to the sample size with remainder 
r .  Then the ranks for sample quartiles provided by the Popular Method can be written 
out exhaustively as: 
 

4/33  ,4/22  ,4/1 302010 +=+=+= mRmRmR  
4/213  ,12  ,4/2 312111 ++=+=+= mRmRmR  

4/123  ,4/212  ,4/3 322212 ++=++=+= mRmRmR  
33  ,22  ,1 332313 +=+=+= mRmRmR  

 
We propose the new criterion of equisegmentation property that the number of  ranks 
below that of the first quartile, that between the consecutive quartiles, and that above the 
third quartile are the same.  However this will divide the ordered sample observations 
into four segments leaving the same number of observations in each if  all the 
observations are distinct. Let the number of  integers in each segment be )4,3,2,1(  =imi . 
Then the equisegmentation property guarantees that 4321 mmmm === . In case 

31 ≤≤ n , the above formulae can also be used to calculate quartiles with 0=m . 
 
It is interesting to note that though the Popular Method is not based on good 
mathematical reasoning, the equisegmentation property is satisfied by the quartiles 
provided by this method for all sample sizes except for rmn += 4 ,  2  ,1 =≥ rm . For 

2=r , the number of observations in four segemnts are mmmm  and )1( ),1( , ++  
respectively. 
 
Thus it is essential to modify the formulae of ranks so that the equisegmentation property 
is satisfied by quartiles provided by the Popular Method for any sample size. It is 
observed that, whenever 24 += mn , simple arithmetic rounding of ranks provided by 
this method would satisfy the equisegmentation property.  
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The Halving Method discussed in this paper demonstrates in an accessible way that the 
set of formulae for quartiles offered by this method is based on good mathematical 
reasoning. The ranks provided by the Halving Method written out exhaustively by the 
remainder-modulus representation of the sample size help prove that the corresponding 
quartiles satisfy the equisegmentation property. Moreover, ranks provided by the Halving 
Method guarantee that the remainder r of the sample size is the number of quartiles 
having integer ranks. Linear interpolation should be used to find quartiles with noninteger 
ranks. 
 

2. The Halving Method for Sample Quartiles 
 
The method, developed in the spirit of  Tukey (1977, p32-35), is based on hinges which 
finds the median first, and then finding the medians of upper and lower halves of the data. 
Usually median is included in both halves while calculating the hinges. But we observe 
that  if median of the whole data set is ignored in the calculation of hinges, then the two 
extreme hinges and median enjoy equisegmentation property. We develop algebraic 
expressions for ranks of  quartiles based on this argument and call this method the 
Halving Method. It thus resolves the difference between quartiles and hinges. The ranks 
for the quartiles given by the Halving Method are developed below in terms of r  and m  
where the sample size )3 ,2 ,1 ,0(  ,4 =+= rrmn : 
 

mna 4for  quartiles of Ranks )( =  
 
The observations have ranks mmm 4 ..., ,12 ,2  ..., ,2 ,1 + .  The rank of the median is  
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which is between m2  and 12 +m so that the ranks of extreme quartiles are given by 
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It is worth mentioning that in this case none of the quartiles has integer ranks. 
 

14for  quartiles of Ranks )( += mnb  
 
The observations have ranks 14 ..., 22 ,12 ,2  ..., ,2 ,1 +++ mmmm . The rank of the median 
is  
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)14(1
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++
= mmR  

 
 which is between m2  and 22 +m  so that the ranks of extreme quartiles are given by 
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It is worth mentioning that in this case the median has an integer rank. 
 

24for  quartiles of Ranks )( += mnc  
 
The observations have ranks 24 ..., 22 ,12 ,2 ..., ,2 ,1 +++ mmmm . The rank of the median 
is  
 

5.12
2

)24(1
22 +=

++
= mmR   

 
which is between 12 +m  and 22 +m so that the ranks of extreme quartiles 
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It is worth mentioning that in this case the extreme quartiles have integer ranks. 
 

34for  quartiles of Ranks )( += mnd  
 
The observations have ranks 34 ..., ,32 , 22 ,12 ,2 ..., ,2 ,1 ++++ mmmmm . The rank of 
the median  is 
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2

)34(1
23 +=

++
= mmR   

 
which is between 12 +m  and 22 +m so that the ranks of extreme quartiles are 
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= mmmRmmR . 

 
In practice one may simply use the above argument to calculate ranks of quartiles. The 
other alternative is to find r  and 4/)( rnm −= and then use the ranks of  quartiles given 
below to calculate quartiles. 
 

4/23  ,4/22  ,4/2 302010 +=+=+= mRmRmR  
4/213  ,12  ,4/2 312111 ++=+=+= mRmRmR  

23  ,4/212  ,1 322212 +=++=+= mRmRmR  
33  ,22  ,1 332313 +=+=+= mRmRmR  

 
The rank of the median, in Popular Method as well as in Halving Method, is the average 
of the first and third quartiles. The remainder r here is also the number of quartiles 
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having integer ranks in the Halving Method but not in the Popular Method. It is easy to 
check that equisegmentation property is satisfied by the quartiles offered by the Halving 
Method for 3,2,1,0  ,4 =+= rrmn  i.e. for all sample sizes. The explicit form of the ranks 
of quartiles by the two methods help us compare them. In fact each of the rank 

  , , , 32123010 RRRR  given by the Popular Method differs from that given by the Halving 
Method by 4/1 .  
 
We recommend to use the Halving Method as it is based on logic. The generalization of 
the method to deciles, percentiles or to any quantiles, in general, remains open. 
 
3. An Illustration 
 
The following  ten value are sample weights (in grams) of coating materials used in a 
masking process: 
 

5.3 5.4 5.7 6.0 6.1 6.2 6.3 6.4 6.5 6.6 
 
 
(i) Calculation of Quartiles by Popular Method  
 
Here the sample size 2)2(410 +==n so that 2=m  and 2=r . Since 2=r  we will 
denote the ranks of quartiles by )3 ,2 ,1( 2 =iRi . The rank of the quartiles provided by the 
Popular Method are (see equation 1.1) 
 

25.84/)1(3  ,5.52/)1(  ,75.24/)1( 322212 =+==+==+= nRnRnR  
 
which can also be written equivalently as       
 

25.84/123  ,5.54/212  ,75.24/3 322212 =++==++==+= mRmRmR  
 (see equation 1.4). Note that the consecutive ranks are apart by 3, and there are 2 ranks 
below 12R or above 32R . Then  by linear interpolation  (see equation 1.2) 
the quartiles are given by 
 

12 (2.75) (2) (3)

22 (5.5) (5) (6)

32 (8.25) (8) (9)

(1 0.75) 0.75 0.25(5.4) 0.75(5.7) 5.625

(1 0.5) 0.5 0.5(6.1) 0.5(6.2) 6.15  

(1 0.25) 0.25 0.75(6.4) 0.25(6.5.) 6.425

Q x x x
Q x x x
Q x x x

= = − + = + ≈

= = − + = + =

= = − + = + ≈

 

 
To check the equisegmentation property, we show the ranks of the quartiles by downward 
arrows in the sample:  
 
 

5.3   5.4    5.7    6.0 6.1   6.2  6.3   6.4   6.5     6.6 
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We observe that there are 2 )( m= , )1(3 += m , )1(3 += m  and )(2 m= observations in the 
four segments i.e. the ranks of the quartiles do not satisfy the equisegmentation property.  
 
 
(ii) Calculation of Quartiles by Halving Method  
 
Instead of using the formulae provided by the Halving Method at the end of section 2, we 
prefer to use the idea of halving to find quartiles with the hope that it would provide more 
insight into the problem. 

The rank of the median is  5.5
2

1
22 =

+
=

nR  so that  

22 (5.5) (5) (6)(1 0.5) 0.5 0.5(6.1) 0.5(6.2) 6.15 Q x x x= = − + = + = . The first quartile is the 

median of the observations below the median of the whole data set i.e. is  3
2

51
12 =

+
=R  

so that 7.5)3(12 == xQ . The third quartile is the median of the observations above the 

median of the whole data set i.e. is  8
2
106

32 =
+

=R  so that 4.6)8(32 == xQ . 

 
To check the equisegmentation property, we show the ranks of the quartiles by downward 
arrows in the sample:  
 
 
 

  5.3  5.4    5.7     6.0  6.1    6.2   6.3  6.4 6.5 6.6 
 

We observe that there are )(2 m= observations in each of the four segments i.e. the ranks 
of the quartiles do satisfy the equisegmentation property. The author also thanks an 
anonymous referee for constructive suggestions that have improved the readability and 
presentation of an earlier draft of the paper. 
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