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Conditional probability and statistical independence can better be explained with 
contingency tables. In this note some special cases of  22× contingency table is 
considered. In turn an interesting insight into statistical dependence as well as 
independence of events is obtained. 
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1. Introduction 
 

Elementary probabilities are obtained for the outcomes of situations conveniently 
called random experiments. They are usually taught with the help of examples of 
dice, coins and cards. Not everybody feels comfortable with these approaches. 
Experience shows that  
conditional probability and statistical independence can better be explained with 
contingency tables often encountered by them in real life. Consider a general 

22×  contingency table 
 
 

 1B  2B  

1A  11n  12n  

2A  21n  22n  
 
 
The matrix given by 
 

   ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

2221

1211
nn
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N   

will hereinafter be called incidence matrix. In this note some special cases of 
22× contingency table is considered. In turn a relation is observed between the 
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dependence structure of conditional probabilities, nonsingularity of the incidence 
matrix N formed by the square contingency table, and statistical dependence of 
events. The properties that are going to be discussed here will also be true for 
any  cr × contingency table collapsed as a 22× contingency table. 
The notion of statistical independence is closely related to conditional probability. 
Given that B  happens, the probability is 
 

   
)(

)(
BP

BAP ∩         

that the event A  happens. The above ratio is usually denoted by )|( BAP i.e. 

)|(
)(

)( BAP
BP

BAP
=

∩ .     (1.1) 

 
The left hand side of (1.1 ) should be emphasized to the students as the right 
hand side is usually misunderstood by them.  If the ratio is the same as )(AP , it 
implies that B does not affect the occurrence of  .A In other word, A  is statistically 
independent of  B . Thus in this case it follows from (1.1) that  
 

)()()( BPAPBAP =∩       (1.2) 
 

which is used as the definition of statistical independence in many books. It 
follows from (1.2) that if A is statistically independent of B , then B is statistically 
independent of A . 
 
Consider the independence of the categories of  two attributes . and BA  By 
definition each pair of events 11  and  )( BAi  21  and  )( BAii  12  and )( BAiii   and 

22  and  )( BAiv are independent if  the following conditions hold: 
 

)()|( )( 111 APBAPi =  
)()|( )( 121 APBAPii =  
)()|( )( 212 APBAPiii =  and        (1.3) 
)()|( )( 222 APBAPiv =                                 

 
respectively. But it is straightforward to prove that the above four  (= 22 ) 
conditions are equivalent (Hines and Montgomery, 1990, p.51). Thus if 1A  and 

1B  are independent, then so are (a) 1A  and 2B  , (b) 2A  and 1B  and (c) 2A  and 

2B .  That is if any pair of events are independent in a  22×   table, then other 
three pair of events in (1.3) are independent and not mutually exclusive.  
 
In what follows we provide two interesting results that provide some insight into 
statistical independence. They follow from the rearrangement of the equations in 
(1.3). 
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(1) For any contingency table having attributes A  and B with categories 21   , AA  
and categories 21   , BB   respectively, the events 1A  and 1B  are independent if and 
only if 21 |  and  | BABA  have the same probability distribution i.e.  
 

1 1 1 2

2 1 2 2

( )       ( | )    ( | )
( )        ( | )  ( | )  
i P A B P A B
ii P A B P A B

=
=

                  (1.4) 

 
In a 22× contingency table it is conventional to write BBAA == 11  and so that 

AA =2  and BB =2 . To explain (1.4), consider the following example of the 
breakdown of computers having circuit boards for a modem )(A or for a printer 

)(B : 
     

 A  A   
B  10 15 25 
B  30 45 75 
 40 60 100 

 
    
The events A  and B  are independent if and only if BABA |  and  |  have the 
same probability distribution i.e.  

  )|(   ,)|(      )(
and   )|(   ,)|(       )(

BAPBAPii
BAPBAPi

    

 
are the same. Since the two sets of probabilities  
 

  0.60
75
45)|(   0.40,

75
30)|(      )(

and   0.60
25
15)|(   0.40,

25
10)|(       )(

====

====

BAPBAPii

BAPBAPi
    

 
are the same, the events A  and B  are independent . 
 
(2) For any contingency table having attributes A  and B with categories 21   , AA  
and categories 21   , BB   respectively, the events 1A  and 1B  are independent if and 
only 
 

)(  )|(  )|( )( 12111 APBAPBAPi ==  and              
)(  )|(  )|( )( 22212 APBAPBAPii ==                                                  

 (1.5) 
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The equation )(i  of (1.5) says that neither the occurrence of  1B  nor 2B   affects 
the occurrence of 1A . Similarly the equation (ii) of (1.5) indicates that neither the 
occurrence of  1B  nor 2B   affects the occurrence of 2A .  
 
In what follows we provide two other interesting results that are special cases of  
a 22× contingency table:  
 
(1) For any contingency table having attributes A  and B with categories 21   , AA  
and categories 21   , BB   respectively, the following holds: 
 
 )()( 2211 BAPBAP ∩=∩  if and only if  )()(  ),()( 2121 BPBPAPAP == . 
 
This means that the 22×  incidence matrix has equal diagonal elements.  
 
(2) For any contingency table having attributes A  and B with categories 21   , AA  
and categories 21   , BB   respectively, the following holds: 
 

)(
)(

)(
)(

2

1

2

1

BP
BP

AP
AP

=   

 
if and only if       )()()()( 12212211 BAPBAPBAPBAP ∩+∩=∩+∩ . 
 
This implies that the sum of the diagonal elements is the same as that of the off-
diagonal elements.  Thus the probability of having exactly one of the two 
attributes is the same as having none or both the attributes. 
 

2. The Main Result 
 
 
The main result is presented below in the form of a theorem. 
 
Theorem 2.1  For any contingency table having attributes A  and B with 
categories 21   , AA  and 21   , BB   respectively, the incidence matrix has the following 
implications: 
 

(a)    0 ||iff )|()()|( 21111 <<< NBAPAPBAP     (2.1) 
 

(b)   0|| iff )|()()|( 21111 === NBAPAPBAP     (2.2) 
 

(c)     0 || iff )|()()|( 21111 >>> NBAPAPBAP     (2.3) 
 
Proof: (a) Let )|()()|( 21111 BAPAPBAP << . Then  
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121211

nn
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<
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Writing out 22211211 nnnnn +++=  and simplifying, we have from each of the 
inequality 
  

021122211 <− nnnn    
 
or  21122211 nnnn <   (i.e. 0 || <N ).       (2.4) 
 

 
Again let  0 || <N , i.e. 21122211 nnnn <  . Now adding )( 21121111 nnnn ++  to both sides 
of  this inequality, we have 
 

)(   )( 211211112112211211112211 nnnnnnnnnnnn +++<+++  
 
i.e. ))(( 2111121111 nnnnnn ++< .  
 
Dividing both sides by )( 2111 nnn + , we have 
 

n
nn

nn
n 1211

2111

11 +
<

+
,   i.e. )()|( 111 APBAP < .  

 
Similarly by adding  )( 22121112 nnnn ++  to both sides of  (2.4), we have  
 

)(   )( 221211122112221211122211 nnnnnnnnnnnn +++<+++  
 
or, )(   ))(( 222112111222121211 nnnnnnnnn +++<++  
 
 
or,  1222121211  ))(( nnnnnn <++ .  
 
Dividing both sides of the resulting inequality by )( 2212 nnn + , we have 
 

2212

121211   
nn

n
n

nn
+

<
+ ,    i.e.  )|()( 211 BAPAP < .   

 
(b) See Joarder (1998). 
 
(c) The proof is similar to that in part (a) above. 
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The result in (a) here means that 1A  is less likely to happen if 1B  happens, 
while 1A  is more likely to happen if 1B  does not happen. The result in (c) similarly 
means that 1A  is more likely to happen if 1B  happens, while 1A  is less likely to 
happen if 1B  does not happen. The result in (b) means that the occurrence of 

1B does not affect the occurrence of 1A  and vice versa. 
 
Part (b) implies that the events 1A  and 1B  are independent if and only if  any of 
the following equivalent conditions is satisfied: 
(i) rows are linearly dependent 
(ii) columns are linearly dependent 
(iii) the incidence matrix N is singular 

(iv) 
n
nn

n ji
ij

..=  where 21. iii nnn += and jjj nnn 21. +=  ).2 ,1 ;2 ,1( == ji  

 
3.  Some Illustrations 

 
As earlier let BBAA == 11  and so that AA =2  and BB =2 . To explain (a) of  
Theorem 2.1, consider the following the breakdown of a computer having modem 
boards )(A or printer boards )(B : 
 
 

 A  A   
B  4 16 20 
B  36 44 80 
 40 60 100 

 
Here the following three probabilities 
 

45.0
80
36)|(  ,40.0

100
40)(  ,20.0

20
4)|( ====== BAPAPBAP  

 
are not the same. Observe that  )|()()|(  and  0 || BAPAPBAPN <<< . This 
means that that computers without printer boards are more  likely to have modem 
boards than computers with printer boards. In other words, they are statistically 
dependent. 
 
Similarly, the probabilities 

26.0
60
16)|(  ,20.0

100
20)(  ,10.0

40
4)|( ≈===== ABPBPABP  

 
are not the same. Observe that )|()()|(  and  0 || ABPBPABPN <<< .  This 
means that that computers without modem boards are more likely to have printer 
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boards than computers with modem boards. In other words, they are statistically 
dependent. 
 
To explain (c) of Theorem 2.1, consider the following the breakdown of a 
computer having a modem board )(A or a circuit board )(B : 
 
 

 A  A   
B  12  8  20 
B  28  52  80 
 40 60 100 

 
Here the following three probabilities 
 

35.0
80
28)|(  ,40.0

100
40)(  ,60.0

20
12)|( ====== BAPAPBAP  

 
are not the same. Observe that )|()()|(  and  0 || BAPAPBAPN >>> . This 
means that that computers with printer boards are more  likely to have modem 
boards than computers without printer boards. In other words, they are 
statistically dependent. Similarly, the following three probabilities 

 ,13.0
60
8)|(  ,20.0

100
20)(  ,30.0

40
12)|( ≈===== ABPBPABP  

are not the same. Observe that )|()()|(  and  0 || ABPBPABPN >>> . This 
means that that computers with modem boards are more  likely to have printer 
boards than computers without modem boards. In other words, they are 
statistically dependent.  
 
To explain (b) of Theorem 2.1, consider the following the breakdown of a 
computer having a modem board )(A or a circuit board )(B : 
 
 

 A  A   
B  10 15 25 
B  30 45 75 
 40 60 100 

 
Here the following three probabilities 
 

40.0
75
30)|(  ,40.0

100
40)(  ,40.0

25
10)|( ====== BAPAPBAP  

 
are the same. Observe that )|()()|(  and  0|| BAPAPBAPN === . The same is 
true for the following three probabilities: 
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 ,25.0
60
15)|(  ,25.0

100
2)(  ,25.0

40
10)|( ====== ABPBPABP  

 
Observe that )|()()|(  and  0|| ABPBPABPN === . Since the above  three 
probabilities are the same, it follows that having a modem has nothing to do with 
having a printer or vice versa. In other words, they are statistically independent. 
 
The notions discussed here are also true for any cr × contingency table 
collapsed into an appropriate 22× contingency table with categories of interest. 
We remark that though Theorem 2.1 is proved in the context of  contingency 
table, it is true for any two events  
 
A  and B  where BBAA == 11  , so that AA =2  , BB =2  and  
 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

)()(
()(

BAPBAP
BAPABP

N . 
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Theorem: 1 , ,0 << rml . Suppose rmBPmlAP +=+= )( and )( . Then A  and 
B are independent iff 
 

0)1(2 =+−++ lrmrlm  
 
 
 
 
Theorem: rml  , ,0 < . Then A  with ml + elements and B with rm + elements 
are independent iff 
 

0)(2 =+−++ lrmnrlm  
 
where n is the number of elements in the universal set. 
 
 
 
 
 
 
 
 
 
 
 
 
Let us check statistical independence by (3.12).  
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Here 10.0
100
10)( ==∩= BAPLHS  and 10.0

100
25

100
40)()( === BPAPRHS . Since 

the two sides are the same we say BA  and are statistically independent. 
 
 
 
 
 
 
 
Let us check statistical independence by (3.12).  
 

Here 
100

4)( =∩= BAPLHS  and 
100
20

100
40)()( == BPAPRHS . Since the two sides 

are not the same we say BA  and are statistically dependent. 
 
It is interesting to check that the two equations of  (3.1) hold here. 
 

 

⎪
⎪
⎩

⎪⎪
⎨

⎧

==

==
=∩

100
4

20
4

100
20)|()(

100
4

40
4 

100
40)|()(

)(
BAPBP

ABPAP
BAP  

 
 
 
 
It is interesting to check that the two equations of  (3.1) hold here. 
 

 

⎪
⎪
⎩

⎪⎪
⎨

⎧

==

==
=∩

100
10

25
10

100
25)|()(

100
10

40
10 

100
40)|()(

)(
BAPBP

ABPAP
BAP  

 
It may be reminded that in many real world situations only one expression of 
(3.1) makes sense. 
 
If  A and B are independent then the formula in (3.5)  can be written as 
 

)( )(1) (1)( BPAPBAPBAP −=∪−=∪ .      
 
 
Though the above arguments provides insight into the problem, it is often easy to 
check statistical independence by (3.12).  
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Here 
100
12)( =∩= BAPLHS  and 

100
20

100
40)()( == BPAPRHS . Since the two sides 

are not the same we say BA  and are statistically dependent. 
 
It is interesting to check that the two equations of  (3.1) hold here. 
 

 

⎪
⎪
⎩

⎪⎪
⎨

⎧

==

==
=∩

100
12

20
12

100
20)|()(

100
12

40
12 

100
40)|()(

)(
BAPBP

ABPAP
BAP  

 
)(i The rows (equivalently the columns) of  the incidence matrix 

2 ,1,  ),( == jinN ij  are linearly dependent (Joarder, 1998).  
 

)(ii The incidence matrix is singular. 

)(iii
n
nn

n ji
ij

..=  

 

It is interesting to note that if categories are equally likely i.e.
2
1)()( 11 == BPAP  

then A  and B will be independent. 
 
 
 
 
Example 3.13  We now provide an example which is to identify managerial 
prospects as to who are both talented and motivated. A personnel manager 
constructed the table shown here to define nine combinations of talent-motivation 
levels. 
 
 TALENT  (B) 

High          Medium      Low 
 
                                   High 
MOTIVATION         Medium  
       (A)                      Low 

 
16              20                30 
24              30                45 
08              10                15    

                                                     48              60                
90 
 
We notice that the following three sets of probabilities 

:)|( 1BAP  
48
8 , 

48
24  , 

48
16  
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60
10 , 

60
30 , 

60
20 :)|( 2BAP  

 

90
15  ,

90
45  , 

90
30 :)|( 3BAP  

are identical which implies the independence of the categories of the attributes A  
and B . 
 
Finally we comment that categorical variables BA  and  are independent if and 
only if the following equivalent conditions hold: 
 

.singular  is matrix  incidence   the)(

.   )(

dependent.linearly  are columns  )(
dependent.linearly  are rows  )(

..

Niv
n
nn

niii

ii
i

ji
ij =

 

)|( ,  ... , )|( , )|( )( 21 cBAPBAPBAPv are identically distributed. 
)|( , ... , )|(  ),|(  )( 21 rABPABPABPvi are identically distributed.               

(3.13) 
 
Categories ) , ... ,2 ,1( ri =  of A  and ), ... ,2 ,1( cj = of B are independent if the 

22× matrix in the following table is singular: 
 

 j  'j  
i  ijn  iji nn −.  

'i  ijj nn −.  ijji nnnn +−− ....  

 
where category 'i  means all categories except the i th category.  
 
Example 3.14  Consider the hypothetical example of comparing the fidelity 
(accuracy of the reproduction of sound) and selectivity of 160 radio receivers. 
The radio receivers are classified as Low, Medium and High in each of the two 
attributes. 
 
 
 Sensitivity 

Low ( 1B )      Medium ( 2B )     High 
( 3B ) 

 

                   Low   ( 1A )  
 Fidelity     Medium 
( 2A )  

18                  20                      26 
17                  16                      30 
10                  14                      09 

63 
64 
33 
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                  High ( 3A ) 
 45                  50                      65 160 
 
 
The categories 2A and 1B are dependent since the following three probabilities 
are not the same (see condition (v) of  (3.13)). 
 

38.0
45
17)|( 12 ≈=BAP  

40.0
115
46)|( 12 ==BAP  

 

39.0
160
63)( 2 ≈=AP  

which is obvious from the non-singularity (see condition (iv) of  (3.13)) of the 
following matrix : 
 
 

 1B  1B  

2A  17  463016 =+  

2A  281018 =+  69)914()2620( =+++  
 
 
However the events 1A  and 1B  are independent since 

40.0
45
18)|( 11 ==BAP  

40.0
115

2620)|( 11 =
+

=BAP  

40.0
160
64)( 1 ==AP  

which is obvious by inspection from the following table (rows are linearly 
dependent) 
 
 

 1B  1B   

1A  18 20+26 64 

1A  17+10 (16+30)+(14+09
) 

96 

 45 115 160 
 
 


