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Conditional probability and statistical independence can better be explained with
contingency tables. In this note some special cases of 2x 2 contingency table is
considered. In turn an interesting insight into statistical dependence as well as
independence of events is obtained.
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1. Introduction

Elementary probabilities are obtained for the outcomes of situations conveniently
called random experiments. They are usually taught with the help of examples of
dice, coins and cards. Not everybody feels comfortable with these approaches.
Experience shows that

conditional probability and statistical independence can better be explained with
contingency tables often encountered by them in real life. Consider a general

2x 2 contingency table

B B
A | g Nyp
Ay | npp No)

The matrix given by

n n
N=[ 11 12}
N1 N2

will hereinafter be called incidence matrix. In this note some special cases of
2 x 2 contingency table is considered. In turn a relation is observed between the
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dependence structure of conditional probabilities, nonsingularity of the incidence
matrix N formed by the square contingency table, and statistical dependence of
events. The properties that are going to be discussed here will also be true for
any rxccontingency table collapsed as a 2x 2 contingency table.

The notion of statistical independence is closely related to conditional probability.
Given that B happens, the probability is

P(ANB)
P(B)
that the event A happens. The above ratio is usually denoted by P(A|B)i.e.
P(ACB) _parB). (1.1)
P(B)

The left hand side of (1.1 ) should be emphasized to the students as the right
hand side is usually misunderstood by them. If the ratio is the same as P(A), it

implies that B does not affect the occurrence of A.In other word, A is statistically
independent of B. Thus in this case it follows from (1.1) that

P(ANB) = P(A)P(B) (1.2)

which is used as the definition of statistical independence in many books. It
follows from (1.2) that if Ais statistically independent of B, then B is statistically
independent of A.

Consider the independence of the categories of two attributes Aand B. By
definition each pair of events (i) A and B, (ii) A and B, (iii) A,and B, and
(iv) A, and B, are independent if the following conditions hold:

() P(A | B,) = P(A)

(i) P(A, [ B,) = P(A)

(iii) P(A, | B,) =P(A,) and (1.3)
(iv) P(A, | B,) = P(A,)

respectively. But it is straightforward to prove that the above four (=2?%)
conditions are equivalent (Hines and Montgomery, 1990, p.51). Thus if A, and
B, are independent, then so are (a) A, and B, , (b) A, and B, and (c) A, and
B,. That is if any pair of events are independentina 2x2 table, then other
three pair of events in (1.3) are independent and not mutually exclusive.

In what follows we provide two interesting results that provide some insight into
statistical independence. They follow from the rearrangement of the equations in
(1.3).
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(1) For any contingency table having attributes A and B with categories A, A,
and categories B,, B, respectively, the events A and B, are independent if and
only if A| B, and A|B, have the same probability distribution i.e.

(i) P(AllBl): P(AllBZ)

. (1.4)
(“) P(A2|Bl): P(Alez)

In a 2x 2 contingency table it is conventional to write A = Aand B, = B so that
A, = A and B, =B . To explain (1.4), consider the following example of the
breakdown of computers having circuit boards for a modem (A) or for a printer

(B):

A A
B 10 15 25
B 30 45 75
40 60 100

The events A and B are independent if and only if A| B and A|B have the
same probability distribution i.e.

(i) P(A|B), P(A|B) and

(i) P(A[B), P(A|B)

are the same. Since the two sets of probabilities

: 10 = 15

i) P(A|B)=>-=0.40, P(A|B)=>-=0.60 and
0 PAIB)=—, (AlB)=—¢

. = 30 ~ & 45

ii) P(A|B)=--=0.40, P(A|B)=—-=0.60
(i) P(AIB)=— (AlB)=—¢

are the same, the events A and B are independent .

(2) For any contingency table having attributes A and B with categories A, A,
and categories B,, B, respectively, the events A and B, are independent if and
only

(i) P(A |B,) = P(A | B,) = P(A) and
(ii) P(Az | Bl) = P(Az | Bz) = P(Az)
(1.5)
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The equation (i) of (1.5) says that neither the occurrence of B, nor B, affects
the occurrence of A,. Similarly the equation (ii) of (1.5) indicates that neither the
occurrence of B, nor B, affects the occurrence of A,.

In what follows we provide two other interesting results that are special cases of
a 2x2contingency table:

(1) For any contingency table having attributes A and B with categories A, A,
and categories B, B, respectively, the following holds:

P(A, nB,)=P(A, nB,) ifand only if P(A)=P(A,), P(B,)=P(B,).
This means that the 2x 2 incidence matrix has equal diagonal elements.

(2) For any contingency table having attributes A and B with categories A, A,
and categories B, B, respectively, the following holds:

P(A) _ P(B)
P(A,)  P(B,)

if and only if P(A,nB,)+P(A,nB,)=P(A nB,)+P(A,nB,).

This implies that the sum of the diagonal elements is the same as that of the off-
diagonal elements. Thus the probability of having exactly one of the two
attributes is the same as having none or both the attributes.

2. The Main Result

The main result is presented below in the form of a theorem.

Theorem 2.1 For any contingency table having attributes A and B with
categories A, A, and B, B, respectively, the incidence matrix has the following
implications:

(@) P(A[B) <P(A)<P(A[B,)iff [N[<0 (2.1)
(b) P(A[B)=P(A)=P(A|B,)iff[IN|=0 (2.2)
(©) P(A|B,)>P(A)>P(A |B,)iff[N|>0 (2.3)

Proof: (a) Let P(A | B,) <P(A)<P(A |B,). Then
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n n,+n n,+n n
11 <1 12 and - 2 12

Ny + Ny n n n, +nN,,

Writing out n =n;, +n,, +n, +n,, and simplifying, we have from each of the
inequality

Ny Ny, —NpNG, < 0
or n;n,, <n,n, (i.e.|N|<0). (2.4)

Againlet |[N|<O0,ie. n,n,, <n,n, .Now adding n;(n; +n,, +n, ) to both sides
of this inequality, we have

n11nZZ + nll(nll + r]12 + Iqu) < r]12r]21 + nll (nll + an + n21)
le.  nyn<(ng +n,)(Ny +ny).
Dividing both sides by n(n,, +n,,), we have

n n,+n
11 < 12
Ny + Ny n

, i.e. P(A[B)) <P(A).

Similarly by adding n,, (n; +n,, +n,,) to both sides of (2.4), we have
n11n22 + n12 (nll + n12 + n22) < n12n21 + an (nll + n12 + n22)

or, (nll + an)(an + n22) < n12 (nll + n12 + n21 + n22)

or, (N + 0, ) (N, +1p,) <N,

Dividing both sides of the resulting inequality by n(n,, +n,,), we have

Ny + N, < LP:
n n, +n,,

, le. P(A)<P(A|B,) .

(b) See Joarder (1998).

(c) The proof is similar to that in part (a) above.
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The result in (a) here means that A, is less likely to happen if B, happens,

while A, is more likely to happen if B, does not happen. The result in (c) similarly
means that A, is more likely to happen if B, happens, while A, is less likely to
happen if B, does not happen. The result in (b) means that the occurrence of

B, does not affect the occurrence of A, and vice versa.

Part (b) implies that the events A, and B, are independent if and only if any of
the following equivalent conditions is satisfied:

(1) rows are linearly dependent

(i) columns are linearly dependent

(i) the incidence matrix N is singular

nn.
(iv) n;=——= where nj =njp+njzand nj=ngj+nyj (i=12j=12).
n

3. Some lllustrations

As earlier let A = Aand B, =Bsothat A, = A and B, = B . To explain (a) of

Theorem 2.1, consider the following the breakdown of a computer having modem
boards (A) or printer boards (B) :

A A
B |4 16 20
B |36 44 80
40 60 100

Here the following three probabilities

4 40

P(A|B)=--=020, P(A) = =040, P(A|B) =2

— =0.45
80
are not the same. Observe that |N|<0 and P(A|B) < P(A) < P(A|B). This

means that that computers without printer boards are more likely to have modem
boards than computers with printer boards. In other words, they are statistically
dependent.

Similarly, the probabilities
4 20 ~ 16
P(B|A)=—=0.10, P(B)=——=0.20, P(B]| A)=—~0.26
40 100 60

are not the same. Observe that| N [<0 and P(B|A) < P(B) < P(B|A). This
means that that computers without modem boards are more likely to have printer
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boards than computers with modem boards. In other words, they are statistically
dependent.

To explain (c) of Theorem 2.1, consider the following the breakdown of a
computer having a modem board (A) or a circuit board (B):

A A
B 12 8 20
B 28 52 80
40 60 100
Here the following three probabilities
P(A|B) = 12 0.60, P(A) = 40 _ 0.40, P(A|B) = 28 _ 035
20 100 80

are not the same. Observe that| N |>0 and P(A|B) > P(A) > P(A|B). This
means that that computers with printer boards are more likely to have modem
boards than computers without printer boards. In other words, they are
statistically dependent. Similarly, the following three probabilities

12 20 8

P(B|A)=-==0.30, P(B)=—=0.20, P(B|A) =— ~0.13,

40 100 60
are not the same. Observe that| N |>0 and P(B|A) > P(B) > P(B| A). This
means that that computers with modem boards are more likely to have printer
boards than computers without modem boards. In other words, they are
statistically dependent.

To explain (b) of Theorem 2.1, consider the following the breakdown of a
computer having a modem board (A) or a circuit board (B):

A A
B 10 15 25
B 30 45 75
40 60 100

Here the following three probabilities

P(A|B) = 10_ 0.40, P(A) = 40 _ 0.40, P(A|B) = 30 _ 040
25 100 75

are the same. Observe that| N |=0 and P(A|B)=P(A) = P(A|B). The same is
true for the following three probabilities:
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P(B| A) = 10_ 0.25, P(B) = 2 _ 0.25, P(B| A) = 5 0.25,
40 100 60
Observe that| N |=0 and P(B|A) = P(B) = P(B| A). Since the above three

probabilities are the same, it follows that having a modem has nothing to do with
having a printer or vice versa. In other words, they are statistically independent.

The notions discussed here are also true for any r x ¢ contingency table
collapsed into an appropriate 2 x 2 contingency table with categories of interest.
We remark that though Theorem 2.1 is proved in the context of contingency
table, it is true for any two events

A and B where A =A,B,=Bsothat A, =A , B, =B and

N [ P(AB) P(AB
“\P(AB) P(AB))’
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Theorem: 0<I,m,r <1. Suppose P(A)=l+mandP(B)=m+r. Then A and
B are independent iff

m>+(l+r-Om+Ir=0

Theorem: 0<I,m,r. Then A with I + melements and B with m+ r elements
are independent iff

m>+(l+r—nm+Ir=0

where nis the number of elements in the universal set.

Let us check statistical independence by (3.12).
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Here LHS =P(ANnB) = 10 =0.10 and RHS =P(A)P(B) = 40 25 =0.10. Since
100 100 100

the two sides are the same we say Aand B are statistically independent.

Let us check statistical independence by (3.12).

Here LHS =P(AN B)—% and RHS =P(A)P(B) = 40 20 . Since the two sides

100100
are not the same we say Aand B are statistically dependent.

It is interesting to check that the two equations of (3.1) hold here.

40 4 4
100 40 100
20 4 4
10020 100

P(A)P(B|A) =
P(ANB) =
P(B)P(A|B) =

It is interesting to check that the two equations of (3.1) hold here.

40 10 _ 10
100 40 100
2510 _ 10
10025 100

P(A)P(B|A) =
P(ANB) =
P(B)P(A|B) =

It may be reminded that in many real world situations only one expression of
(3.1) makes sense.

If A and B are independent then the formula in (3.5) can be written as

P(AUB)=1-P(AUuB)=1-P(A)P(B).

Though the above arguments provides insight into the problem, it is often easy to
check statistical independence by (3.12).
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Here LHS =P(An B)_—2 and RHS = P(A)P(B)_4—0£ Since the two sides
100 100 100

are not the same we say Aand B are statistically dependent.
It is interesting to check that the two equations of (3.1) hold here.

4012 12
100 40 100
2012 12
10020 100

P(A)P(B|A) =
P(ANB) =
P(B)P(A[B) =

(i) The rows (equivalently the columns) of the incidence matrix
N =(n;), i, j=12 are linearly dependent (Joarder, 1998).

(if) The incidence matrix is singular.

(iii) n; = M,

It is interesting to note that if categories are equally likely i.e. P(A,) = P(B,) =%

then A and B will be independent.

Example 3.13 We now provide an example which is to identify managerial
prospects as to who are both talented and motivated. A personnel manager
constructed the table shown here to define nine combinations of talent-motivation
levels.

TALENT (B)
High Medium  Low
High | 16 20 30
MOTIVATION Medium | 24 30 45
(A) Low 08 10 15
48 60
90

We notice that the following three sets of probabilities

P(A|B,): 16 24 8
48" 48 48
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20 30 10
P(A|B,): ==, =, —
6060 60

30 45 15
P(AIBy) = o= on
90" 90" 90

12

are identical which implies the independence of the categories of the attributes A

and B.

Finally we comment that categorical variables Aand B are independent if and
only if the following equivalent conditions hold:

(i) rows are linearly dependent.

(if) columnsare linearly dependent.

nn.

(iii) n; =—=.

n

(iv) theincidence matrix N issingular.

(v) P(A|B,),P(A|B,),...,P(A| B,) are identically distributed.
(vi) P(B|A), P(B|A,),...,P(B| A,)are identically distributed.
(3.13)

Categories i(=1,2,...,r) of A and j(=12,...,c) of B are independent if the
2 x 2 matrix in the following table is singular:

where category i' means all categories except the ith category.

Example 3.14 Consider the hypothetical example of comparing the fidelity
(accuracy of the reproduction of sound) and selectivity of 160 radio receivers.
The radio receivers are classified as Low, Medium and High in each of the two
attributes.

Sensitivity
Low (B,) Medium (B,) High
(B;)
Low (A) |18 20 26 63
Fidelity ~Medium 17 16 30 64
(A,) 10 14 09 33
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High (A;)

45 50 65 160

The categories A,and B, are dependent since the following three probabilities
are not the same (see condition (v) of (3.13)).

17

P(A, | B,) == ~0.38
(A 1B) =7
. 46

P(A, |B,) =——=0.40
(A, [B,) 115

63
P =—~0.39
(%) =160
which is obvious from the non-singularity (see condition (iv) of (3.13)) of the
following matrix :

B, B,
A, 17 16+30 =46
A, 18+10=28 | (20+26) + (14+9) =69

However the events A and B, are independent since

18
P B,)=-—=0.40
(A 1B) =
=, 20+26
P B,) = =0.40
(A1) ==

64
P =——=0.40
(A) 160
which is obvious by inspection from the following table (rows are linearly
dependent)

B, B,
A 18 20+26 64
A 17+10 (16+30)+(14+09 | 96

)
45 115 160

13



