King Fahd University of Petroleum and Minerals
 Department of Mathematical Sciences

Semester II, 2005-2006 (052)

Part 1: Multiple Choice Questions (1 hour)

1. The function $f(x)=\sqrt{2} x-2 \sin x$ defined on the interval $[0, \pi]$ is:
A) Decreasing in $\left[0, \frac{\pi}{4}\right]$ and increasing in $\left[\frac{\pi}{4}, \pi\right]$.
B) Increasing in $\left[0, \frac{\pi}{4}\right]$ and decreasing in $\left[\frac{\pi}{4}, \pi\right]$.
C) Decreasing in $\left[0, \frac{\pi}{4}\right]$ and $\left[\frac{\pi}{2}, \pi\right]$ and increasing in $\left[\frac{\pi}{4}, \frac{\pi}{2}\right]$.
D) Increasing in $\left[0, \frac{\pi}{4}\right]$ and $\left[\frac{\pi}{2}, \pi\right]$ and decreasing in $\left[\frac{\pi}{4}, \frac{\pi}{2}\right]$.
E) Increasing in $\left[0, \frac{\pi}{2}\right]$ and decreasing in $\left[\frac{\pi}{2}, \pi\right]$.
2. The value of $\lim _{x \rightarrow 0}\left(\frac{1}{x}-\frac{1}{e^{x}-1}\right)$ is:
A) $\frac{1}{2}$.
B) $-\frac{1}{2}$.
C) Does not exist.
D) $-\infty$.
E) $+\infty$.
3. The critical numbers of $f(x)=\sqrt[5]{x^{2}-3 x}$ are:
A) $x_{0}=\frac{3}{2}$ and all $x \in(0,3)$.
B) $x_{0}=0$ and all $x>3$.
C) $x_{0}=\frac{3}{2}$ and all $x \neq 0$ and $x \neq 3$.
D) $x_{0}=\frac{3}{2}, x_{1}=0$, and $x_{2}=3$.
E) $x_{0}=\frac{2}{3}, x_{1}=0$, and $x_{2}=3$.
4. Which of the following statement is correct:
A) $2 \sin ^{-1} \sqrt{x}=\frac{\pi}{2}+\tan ^{-1} \frac{x-1}{x+1}$.
B) $\sin ^{-1} \sqrt{x}=\frac{\pi}{2}+\frac{1}{2} \tan ^{-1} \frac{x-1}{x+1}$.
C) $\tan ^{-1} \sqrt{x}=\frac{\pi}{4}+\frac{1}{2} \sin ^{-1} \frac{x-1}{x+1}$.
D) $\sin ^{-1} \frac{x-1}{x+1}=-\frac{\pi}{2}+2 \tan ^{-1} \sqrt{x}$.
E) $\sin ^{-1} \frac{x-1}{x+1}=-\frac{\pi}{2}+\tan ^{-1} \sqrt{x}$.
5. Let $y=x^{3}-2 x^{2}+1$. The value of Δy at $\mathrm{x}=2$ when $\Delta x=0.1$ is:
А) 0.382
B) 0.391
C) 0.4
D) 0.416
E) 0.441 .
6. The value of the $\operatorname{limit} \lim _{x \rightarrow+\infty}\left(\frac{x}{x+1}\right)^{x}$ is:
A) 1 .
B) e.
C) e^{-1}.
D) 0 .
E) $+\infty$.
7. The height of a right circular cone is three times its radius. If the radius of the cone is decreasing at a constant rate of $1 \mathrm{~cm} / \mathrm{min}$, then the rate at which the volume of the cone is changing, when the height of the cone is 6 cm , is equal to:

Hint: $V=\frac{\pi}{3} r^{2} h$
A) $-8 \pi \mathrm{~cm}^{3} / \mathrm{min}$
B) $-32 \pi \mathrm{~cm}^{3} / \mathrm{min}$
C) $-12 \pi \mathrm{~cm}^{3} / \mathrm{min}$
D) $8 \pi \mathrm{~cm}^{3} / \mathrm{min}$
E) $12 \pi \mathrm{~cm}^{3} / \mathrm{min}$.
8. The critical numbers of the function

$$
f(x)=\sin ^{2}(x)-2 \cos (x)
$$

are:
A) $\{n \pi \mid n$ is odd integer $\}$
B) $\{n \pi \mid n$ is an integer $\}$
C) $\{2 n \pi \mid n$ is an integer $\}$
D) $\left\{\left.\frac{n \pi}{2} \right\rvert\, n\right.$ is odd integer $\}$
E) $\left\{\left.\frac{3 \pi n}{2} \right\rvert\, n\right.$ is an integer $\}$.
9. A linear approximate value of $\frac{1}{\sqrt{27}}$ is equal to:
A) $\frac{1}{5}-\frac{1}{\sqrt[3]{25^{2}}}$
В) $\frac{26}{125}$
C) $\frac{48}{250}$
D) $\frac{49}{250}$
E) $\frac{51}{250}$.
10. Let $g(x)=f\left(x^{2}\right)$, where f is twice differentiable for all $x, f^{\prime}(x)>0$ for all $x \neq 0$, and f is concave downward on $(-\infty, 0)$, and concave upward on $(0, \infty)$. Which of the following statement is correct about the function $g(x)$. Hint: Verify the symmetry of $g(x)$.
A) The function $g(x)$ has a minimum at $x=0$ and is concave upwards on $(-\infty, 0)$ and is concave downwards on $(0, \infty)$.
B) The function $g(x)$ has a maximum at $x=0$ and is concave upwards on $(-\infty, 0)$ and is concave downwards on $(0, \infty)$.
C) The function $g(x)$ has a minimum at $x=0$ and is concave downwards on $(-\infty, \infty)$.
D) The function $g(x)$ has a minimum at $x=0$ and is concave upwards on $(-\infty, \infty)$.
E) The function $g(x)$ has a minimum at $x=0$ and is concave downwards on $(-\infty, 0)$ and is concave upwards on $(0, \infty)$.

