King Fahd University of Petroleum and Minerals

Department of Mathematical Sciences
Semester II, 2005-2006 (052) MATH 101 - Exam 3

NAME:

Part 2: Essay Questions (1 hour)

Score (out of 10)	
Question 1	
Question 2	
Question 3	
Question4	
Question 5	
Total (out of 50)	

1. Tow cars start moving from the same point. One travels east at $40 \mathrm{~km} / \mathrm{h}$ and the other travels west at $30 \mathrm{~km} / \mathrm{h}$. How fast is the distance between the cars increasing when they are 50 km away from each other?
2. Let $f(x)=x \tan x$ defined on the interval $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$
(a) Find the critical numbers of f.
(b) Find the intervals on which f increases and decreases.
(c) Find the absolute maximum and minumum.
3. Show that the equation

$$
4 x^{5}+x^{3}+2 x+1=0
$$

has exactly one real root.
4. Use differentials (or linear approximation) to estimate $\cot \left(134^{\circ}\right)$.
5. Let $f(x)=x e^{-x}$.

Showing all details on the next empty page, find each of the following:

1. (a) $\operatorname{Domain}(f(x))=$
(b) x-intercept(s) (if any):
(c) y-intercept (if any):
(d) Symmetries (if any):
(e) $\lim _{x \mapsto+\infty} f(x)=$
(f) $\lim _{x \mapsto-\infty} f(x)=$
(g) Asymptote(s) (if any):
(h) Critical Point(s) (if any):
(i) Interval(s) on which $f(x)$ is increasing (if any):
(j) Interval(s) on which $f(x)$ is decreasing (if any):
(k) Relative Maxima (if any):
(l) Relative Minima (if any):
(m) Absolute Maximum (if any):
(n) Absolute Minimum (if any):
(o) Interval(s) on which the curve of $y=f(x)$ is concave up (if any):
(p) Interval(s) on which the curve of $y=f(x)$ is concave down (if any):
(q) Inflection Point(s) (if any)
2. Draw the graph of $f(x)$ using the input found above:
