MIATHI 101 -Exam 2

NAME: \qquad ID: \qquad Section: \qquad

Part 1 : Multiple Choice Questions (i hour)

CODE OO1

Question 1 (5 points)
The equation of the tangent line to the curve $y=x \sin x$ at the point $\left(\frac{\pi}{2}, \frac{\pi}{2}\right)$ is
a) $y=x$
b) $y-\frac{\pi}{2}=-x+\frac{\pi}{2}$
c) $y=-x+\frac{\pi}{2}$
d) $y=x-\frac{\pi}{2}$
e) $y=x-\pi$

Question 2 (5 points)
If $g(x)+x \sin (g(x))=x^{2}$ and $g(1)=0$, then the value of $\left.\frac{d g}{d x}\right|_{x=1}$ is equal to
a) 4
b) 2
c) -1
d) 1
e) -3

An equation of the line that passes through the origin and is perpendicular to the tangent line to the curve $y=x \sqrt{16+x^{2}}$ at the origin would be
a) $x-4 y=0$
b) $x+4 y=0$
c) $y-4 x=0$
d) $x+16 y=0$
e) $x-16 y=0$

Question 4 (5 points)
$\lim _{\theta \rightarrow 0} \frac{\tan \theta}{\theta+\sin \theta}=$
a) 0
b) $\frac{1}{2}$
c) Does not exist.
d) $\frac{3}{2}$
e) $+\infty$

Question 5 (5 points)
The derivative of $f(x)=\ln (\ln (\ln x))$ at $x=e$ is
a) $\frac{1}{e}$
b) 1
c) e
d) 0
e) not defined

Question 6 (5 points)
The diagram that describes the motion of the particle moving along a straight line (the s-axis) according to the position function $s(t)=2 t^{3}-4 t^{2}+2 t-1$ is
a)
b)
c)
d)
e)

If $x^{4}+y^{4}=a^{4}$ where a is a constant and x and y are variables, then $\frac{d^{2} y}{d x^{2}}$ is equal to
a) $\frac{3 y^{3} x^{2}-3 y^{2} x^{3}}{y^{7}}$
b) $\frac{-3 x^{6}-3 x^{2} y^{4}}{y^{7}}$
c) $-\frac{3 x^{2}}{y^{6}}$
d) $\frac{-3 x^{2} y^{3}+3 x^{3} y^{2}}{y^{6}}$
e) $\frac{-3 x^{3}-3 y^{4}}{y^{6}}$

Question 8 (5 points)
If $y=\frac{(2 x+1)^{5}\left(x^{4}-2\right)^{6}}{\left(1-2 x^{2}\right)^{7}}$, then $\left.\frac{d y}{d x}\right|_{(-1,1)}=$
a) 42
b) -21
c) 0
d) 14
e) -35

Let $f(x)=\tanh ^{-1}(x)$ and $g(x)=\operatorname{coth}^{-1}(x)$. Which of the following statements is true?
a) $f^{\prime}(c)=g^{\prime}(c)$ for all $c \neq \pm 1$.
b) $f^{\prime}(c)=-g^{\prime}(c)$ for all $c \neq \pm 1$.
c) $f^{\prime}(c)=\frac{1}{1-c^{2}}$ for all $c>1$.
d) $g^{\prime}(c)=\frac{1}{1-c^{2}}$ for all $c<1$.
e) $f^{\prime}(c) g^{\prime}(c)$ is undefined for all c.

Question 10 (5 points)
The derivative of $y=4^{\cos \left(\frac{\pi}{2} x\right)}$ is equal to
a) $-\frac{\pi}{2} 4^{\cos \left(\frac{\pi}{2} x\right)}(\ln 4) \sin \left(\frac{\pi}{2} x\right)$
b) $\frac{\pi}{2} 4^{\cos \left(\frac{\pi}{2} x\right)}(\ln 4) \sin \left(\frac{\pi}{2} x\right)$
c) $4^{\cos \left(\frac{\pi}{2} x\right)}(\ln 4) \sin \left(\frac{\pi}{2} x\right)$
d) $-4^{\cos \left(\frac{\pi}{2} x\right)}(\ln 4) \sin \left(\frac{\pi}{2} x\right)$
e) $-\frac{\pi}{2} 4^{\cos \left(\frac{\pi}{2} x\right)}(\ln 4) \cos \left(\frac{\pi}{2}\right)$

M1ATHE 1 —1 Exam 2

NAME: \qquad ID: \qquad Section: \qquad

Part 2: Essay Questions (1 hour)

	Score (out of 10)
Question 1	
Question 2	
Question 3	
Question 4	
Question 5	
Total (Out Of 50)	

Question 1

Find the derivative of $\quad y=\frac{x+1}{\sqrt{(x+1)^{2}+1}}$.

Question 2

Differentiate $y=\sqrt{\tan ^{-1} x y}$ with respect to x.

Question 3

If $y=\left(\frac{x^{3}+1}{x^{4}-x}\right)\left(\frac{1}{x}-x^{2}\right)$, find $\frac{d y}{d x}$.

Question 4

Find the point(s) at which the tangent to the curve of

$$
f(x)=\ln \left|x^{3}-3 x^{2}+3 x-1\right|
$$

is parallel to the line $y-3 x-2=0$.

Question 5

Where does the normal line to the curve of $x^{2}-2 x y+4 y^{2}=12$ at the point $(-2,1)$ intersect the curve a second time?
(The normal line to a curve C at a point P is the line that passes through P and is perpendicular to the tangent line to C at P).

