King Fahd University of Petroleum and Minerals Department of Mathematical Sciences Semester II, 2005-2006 (052)

MATH 101 – Exam 1

NAME:______ ID:_____ Section: _____

Part 1: Multiple Choice Questions (1 hour)

CODE 001

Question 1 (5 points) $\lim_{t \to -4} \frac{t^2 + 5t + 4}{t^2 + 3t - 4} \text{ is:}$ a) $\frac{3}{5}$ b) $\frac{-4}{3}$ c) $\frac{2}{3}$ d) $\frac{-1}{2}$ e) $\frac{2}{5}$

Question 2 (5 points)

Let f be the function defined by $f(x) = \sqrt[4]{9-x}$ and $\varepsilon > 0$ be given. The largest possible δ such that $|f(x) - 0| < \varepsilon$ whenever $-\delta < x - 9 < 0$ is:

- a) $\sqrt[4]{9+\varepsilon}$
- b) $\sqrt[4]{\varepsilon}$
- c) $\sqrt[4]{9-\varepsilon}$
- d) ε^4
- e) ε^2

Question 3 (5 points)

Let f be the function defined by $f(x) = \begin{cases} 1-x & if \quad x \le 0\\ \ln x & if \quad 0 < x \le 1\\ x-1 & if \quad 1 < x \end{cases}$. Which one of the

following statements is correct:

- a) f is not continuous from the right at 0 and 1
- b) $\lim_{x\to 0} f(x) = \infty$
- c) The line y = 0 is a horizontal asymptote of the curve y = f(x)
- d) f is discontinuous at 0 and 1
- e) f is continuous from the left at 0 and 1

$$\lim_{x \to -\infty} \frac{\sqrt{9x^6 - x}}{x^3 + 2}$$
 is:
a) 3
b) $+\infty$
c) does not exist
d) $-\infty$
e) -3

Question 5 (5 points)

Let f be the function defined by $f(x) = |x^3|$ for each real number x. The rate of change of f with respect to x at the value c is:

- a) does not exist
- b) 3c|c|
- c) $3|c^2|$
- d) None of these

Question 6 (5 points)

$$\lim_{x \to 0^{-}} \left(\frac{1}{x^{2} + x} - \frac{1}{x} \right) \text{ is:}$$

a) $+\infty$
b) $\frac{1}{2}$
c) -1
d) 2
e) $-\infty$

Question 7 (5 points)

Let f be the function defined by $f(x) = \frac{2x^2 - 3x}{|2x - 3|}$. Which one of the following statements is true.

a)
$$\lim_{x \to (\frac{3}{2})^{-}} f(x) = \frac{3}{2}$$

b)
$$\lim_{x \to \frac{3}{2}} f(x) = \frac{3}{2}$$

c)
$$\lim_{x \to (\frac{3}{2})^{+}} f(x) \text{ does not exist}}$$

d)
$$\lim_{x \to \frac{3}{2}} f(x) \text{ does not exist and } \lim_{x \to (\frac{3}{2})^{+}} f(x) = \frac{3}{2}$$

e)
$$\lim_{x \to \frac{3}{2}} f(x) \text{ does not exist and } \lim_{x \to (\frac{3}{2})^{-}} f(x) = \frac{3}{2}$$

Question 8 (5 points)

Question 8 (5 points) The constants *a* and *b* that make the function $f(x) = \begin{cases} a \frac{\sin x}{x} & if \quad -1 \le x < 0\\ 3x^2 - 3x + 2 & if \quad 0 \le x \le 1\\ \frac{x^2 - 1}{x - b} & if \quad 1 < x \le 3 \end{cases}$

satisfy the conditions of the intermediate value theorem on [-1,3] are:

a) a = 0 and b = 2b) a = 2 and b = 3c) a = 1 and b = 1d) a = 1 and b = 3e) a = 2 and b = 1

Question 9 (5 points)

Let f be the function defined by $f(x) = \sqrt{x^2 + x + 1} + x$. Then lim f(x) is

a) $\frac{1}{2}$ b) $\frac{-1}{2}$ c) - ∞ d) $+\infty$ e) does not exist

Question 10 (5 points) A rough sketch of the derivative of the following function

Would be

King Fahd University of Petroleum and Minerals Department of Mathematical Sciences Semester II, 2005-2006 (052)

MATH 101 – Exam 1

NAME:	ID:	_Section:

Part 2: Essay Questions (1 hour)

	Score (out of 10)
Question 1	
Question 2	
Question 3	
Question 4	
Question 5	
Total (out of 50)	

Question 1

Use the squeezing theorem to find $\lim_{x\to 0} x^2 e^{\sin(\frac{1}{x})}$.

Question 2

Let $\lim_{x\to 3} f(x) = 0$ and $\lim_{x\to 3} h(x) = 5$. Use these limits and the given graph of the function g to evaluate each of the following limits if it exists. If the limit does not exist, explain why.

a)
$$\lim_{x \to 3} (f(x) - \frac{h(x)}{3})$$

b)
$$\lim_{x \to 3} \frac{g(x) - 3}{h(x)}$$

c)
$$\lim_{x \to 3^{-}} (g(x) + h(x))^3$$

d)
$$\lim_{x \to 0^+} \frac{1}{\sqrt{g(x)}}$$

e)
$$\lim_{x\to 3} f(x)g(x)$$

Question 3

By using the ε and δ definition, prove that $\lim_{x \to 4} \frac{1}{x-2} = \frac{1}{2}$.

Question 4

Prove that the equation $x^2 + x - \cos x = 0$ has at least two solutions in the interval

 $\left[-\frac{\pi}{2},\frac{\pi}{2}\right].$

Question 5 Suppose that f is a continuous function on the interval [0,1] and f(0) = f(1). Prove (analytically and not geometrically) that there exists $a \in (0, \frac{1}{2})$ such that a and $a + \frac{1}{2}$ have the same image, that is, $f(a) = f(a + \frac{1}{2})$. (**Hint**: consider the function $g(x) = f(x + \frac{1}{2}) - f(x)$)