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Part 1: Multiple Choice Questions (1 hour) 
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Question 1 (5 points) 
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Question 2 (5 points) 
Let f  be the function defined by 4 9)( xxf −=  and 0>ε  be given. The largest 
possible δ such that ε<− 0)(xf  whenever 09 <−<− xδ  is: 

a)  4 9 ε+  
b)  4 ε  
c)  4 9 ε−  
d) 4ε  
e)  2ε  



Question 3 (5 points) 

Let f  be the function defined by  
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following statements is correct: 
a) f  is not continuous from the right at 0 and 1 
b) ∞=

→
)(lim

0
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c) The line 0=y  is a horizontal asymptote of the curve )(xfy =  
d) f  is discontinuous at 0 and 1 
e) f  is continuous from the left at 0 and  1 
  

 
Question 4 (5 points) 
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a) 3 
b) ∞+  
c) does not exist  
d) ∞−  
e) -3 

 
 
Question 5 (5 points) 
Let  f  be the function defined by 3)( xxf =  for each real number x . The rate of 
change of  f  with respect to x  at the value c  is: 

a)  does not exist  
b)  cc3  

c) 23c   
d) None of these  

 
 
Question 6 (5 points) 
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d) 2 
e) ∞−  

 
 



Question 7 (5 points) 

Let f be the function defined by 
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xxxf . Which one of the following 

statements is true. 
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Question 8 (5 points) 

The constants a and  b that make the function 
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satisfy the conditions of the intermediate value theorem on [-1,3] are: 
a) a  = 0 and b  = 2 
b) a  = 2 and b  = 3 
c) a  = 1 and b  = 1 
d) a  = 1 and b  = 3 
e) a  = 2 and b  = 1 

 
 
 
Question 9 (5 points) 
 
Let f  be the function defined by xxxxf +++= 1)( 2 . Then )(lim xf

x −∞→
 is  

a) 
2
1  

b) 
2
1−

  

c) ∞−  
d) ∞+  
e) does not exist 



Question 10 (5 points)  
A rough sketch of the derivative of the following function 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Would be 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



King Fahd University of Petroleum and Minerals 
Department of Mathematical Sciences 

Semester II, 2005-2006 (052) 
 
 
 

MATH 101 – Exam 1  
 

 
 
NAME:_______________________________________ ID:_____________________ Section: ______ 
 

 
 
 
 

Part 2: Essay Questions (1 hour) 
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Question 1 

Use the squeezing theorem to find 
)1sin(2
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Question 2 
Let  0)(lim

3
=

→
xf

x
 and 5)(lim

3
=

→
xh

x
. Use these limits and the given graph of the 

function g to evaluate each of the following limits if it exists. If the limit does not exist, 
explain why. 
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Question 3 

By using the ε  and δ definition, prove that 
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Question 4 
Prove that the equation 0cos2 =−+ xxx  has at least two solutions in the interval 
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Question 5 
Suppose that f  is a continuous function on the interval ]1,0[  and )1()0( ff = . Prove 

(analytically and not geometrically) that there exists )
2
1,0(∈a  such that a and 

2
1

+a  

have the same image, that is, )
2
1()( += afaf . 

(Hint: consider the function )()
2
1()( xfxfxg −+= ) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


