King Fahd University of Petroleum and Minerals Department of Mathematical Sciences Semester II, 2005-2006 (052)

MATH 101 – Exam 1

NAME:	ID:	_Section:

Part 2: Essay Questions (1 hour)

	Score (out of 10)
Question 1	
Question 2	
Question 3	
Question 4	
Question 5	
Total (out of 50)	

Question 1

Use the squeezing theorem to find $\lim_{x\to 0} x^2 e^{\sin(\frac{1}{x})}$.

Question 2

Let $\lim_{x\to 3} f(x) = 0$ and $\lim_{x\to 3} h(x) = 5$. Use these limits and the given graph of the function g to evaluate each of the following limits if it exists. If the limit does not exist, explain why.

a)
$$\lim_{x \to 3} (f(x) - \frac{h(x)}{3})$$

b)
$$\lim_{x \to 3} \frac{g(x) - 3}{h(x)}$$

c)
$$\lim_{x \to 3^{-}} (g(x) + h(x))^3$$

d)
$$\lim_{x \to 0^+} \frac{1}{\sqrt{g(x)}}$$

e)
$$\lim_{x\to 3} f(x)g(x)$$

Question 3

By using the ε and δ definition, prove that $\lim_{x \to 4} \frac{1}{x-2} = \frac{1}{2}$.

Question 4

Prove that the equation $x^2 + x - \cos x = 0$ has at least two solutions in the interval

 $\left[-\frac{\pi}{2},\frac{\pi}{2}\right].$

Question 5 Suppose that f is a continuous function on the interval [0,1] and f(0) = f(1). Prove (analytically and not geometrically) that there exists $a \in (0, \frac{1}{2})$ such that a and $a + \frac{1}{2}$ have the same image, that is, $f(a) = f(a + \frac{1}{2})$. (**Hint**: consider the function $g(x) = f(x + \frac{1}{2}) - f(x)$)