King Fahd University of Petroleum and Minerals
Department of Mathematical Sciences
Semester II, 2005-2006 (052)

MIATHI 101 -Exam 1
\qquad

Pant 2: Essay Questions (1 hour)

Question 1	Score (Out of 10)
Question 2	
Question 3	
Question 4	
Question 5	
Total (out of 50)	

Question 1

Use the squeezing theorem to find $\lim _{x \rightarrow 0} x^{2} e^{\sin \left(\frac{1}{x}\right)}$.

Question 2

Let $\lim _{x \rightarrow 3} f(x)=0$ and $\lim _{x \rightarrow 3} h(x)=5$. Use these limits and the given graph of the function g to evaluate each of the following limits if it exists. If the limit does not exist, explain why.
a) $\lim _{x \rightarrow 3}\left(f(x)-\frac{h(x)}{3}\right)$
b) $\lim _{x \rightarrow 3} \frac{g(x)-3}{h(x)}$
c) $\lim _{x \rightarrow 3^{-}}(g(x)+h(x))^{3}$
d) $\lim _{x \rightarrow 0^{+}} \frac{1}{\sqrt{g(x)}}$
e) $\lim _{x \rightarrow 3} f(x) g(x)$

Question 3

By using the ε and δ definition, prove that $\lim _{x \rightarrow 4} \frac{1}{x-2}=\frac{1}{2}$.

Question 4

Prove that the equation $x^{2}+x-\cos x=0$ has at least two solutions in the interval $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$.

Question 5

Suppose that f is a continuous function on the interval $[0,1]$ and $f(0)=f(1)$. Prove (analytically and not geometrically) that there exists $a \in\left(0, \frac{1}{2}\right)$ such that a and $a+\frac{1}{2}$ have the same image, that is, $f(a)=f\left(a+\frac{1}{2}\right)$.
(Hint: consider the function $\left.g(x)=f\left(x+\frac{1}{2}\right)-f(x)\right)$

