Name:______ Show all your work.

1. Prove that $H = \{2^n 6^m : m, n \in Z\}$ is a group under multiplication.

2. Let *G* be a group and *H* be a nonempty subset of *G*. Prove that *H* is a subgroup of *G* if $ab^{-1} \in H$ whenever $a, b \in H$.

3. Find the center of GI(2, R).

4. Suppose that $G = \langle a \rangle$ and |a| = 20. Find all the subgroups of G.

5. Let $G = \langle a \rangle$ be a cyclic group of order *n*. Prove that $G = \langle a^k \rangle$ if and only if gcd(k, n) = 1.

- **6**. Prove or disprove:
 - **a.** If $\phi : G \to \check{G}$ is an isomorphism and $K \leq G$, then $\phi(K) \leq \check{G}$ where $\phi(K) = \{\phi(k) \mid k \in K\}$.
 - **b**. $U(10) \cong U(12)$.

- 7. Let $H = \{ \alpha \in S_n \mid \alpha(1) = n, \alpha(n) = 1 \} \bigcup \{ \alpha \in S_n \mid \alpha(1) = 1, \alpha(n) = n \}$ and let n > 1.
 - **a**. Show that *H* is a subgroup of S_n .
 - **b**. Find the order of *H*.
 - c. Find the order of the permutation $\binom{123456789}{314259687}$.

8. Find the number of all elements of order 15 in the group $Z_{45} \bigoplus Z_{25}$.

- **a**. State and prove Fermat's Little Theorem
- **b.** Suppose that K is a proper subgroup of H and H is a proper subgroup of G. If the order of K is 42 and the order of G is 420, what are the possible orders of H.