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Abstract

The Poisson semigroup associated with the singular differential operator

∆B =
nP

k=1

³
∂2

∂x2k
+ 2υk

xk
· ∂
∂xk

´
is introduced and some properties are studied.

1 Auxiliary definitions, notations and results

Suppose that Rn is the n-dimensional Euclidean space, x = (x1, . . . , xn), ξ =
(ξ1, . . . , ξn) are vectors in Rn, (x · ξ) = x1ξ1 + · · · + xnξn , |x| = (x · x)1/2 and
Rn
+ = {x = (x1, . . . , xn) ; x1 > 0, . . . , xn > 0} .
We denote by ∆B ≡ ∆B (x), υ = (υ1, . . . , υn) the singular differential operator

∆B =
nX

k=1

µ
∂2

∂x2k
+
2υk
xk

· ∂

∂xk

¶
(υ1 > 0, . . . , υn > 0) . (1.1)

Let Lp,υ ≡ Lp

¡
Rn
+, x

2υ dx
¢
, 1 ≤ p <∞, be the space of measurable functions

on Rn
+ with the norm

kfkp,υ =

 Z
Rn+

|f(x)|p x2υ dx


1/p

; x2υ = x2υ11 . . . x2υnn ; dx = dx1. . .dxn. (1.2)

For x ∈ Rn
+, y ∈ Rn

+, the generalized B-translation of f : Rn
+ −→ C is defined

by

T yf(x) = π−n/2
nY

k=1

Γ

µ
υk +

1

2

¶
Γ−1 (υk)

∞Z
0

· · ·
∞Z
0

nY
k=1

sin2υk−1 αk (1.3)

× f

µq
x21 − 2x1y1 cosα1 + y21, . . . ,

p
x2n − 2xnyn cosαn + y2n

¶
dα1 . . . dαn.

679
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For the relevant one-dimensional generalized Bessel translation operator

Sρg(r) =
Γ
¡
υ + 1

2

¢
Γ (υ)Γ

¡
1
2

¢ πZ
0

g
³p

r2 − 2rρ cosα+ ρ2
´
sin2υ−1 αdα

the following relations are known [3]:

Sρg (r) = Srg (ρ) , SρSτg (r) = SτSρg (r) ,

Sρg (r) = S−ρg (r) , S0g (r) = g (r) ,

∞Z
0

f (r)Srg (ρ) r2υ dr =

∞Z
0

Srf (ρ) g (r) r2υ dr.

Let f ∈ Lp,υ, 1 ≤ p < ∞. Then for all x ∈ Rn
+, the function T xf belongs to

Lp,υ (see [4]) and
kT xfkp,υ ≤ kfkp,υ . (1.4)

The generalized B-translation operator T y generates the corresponding B-convolution

(f ⊗ g) (x) =

Z
Rn+,

T yf (x) g (y) y2υ dy. (1.5)

By using (1.4) and the Riesz-Thorin interpolation theorem it is not difficult to prove
the corresponding Young inequality

kf ⊗ gkr,υ ≤ kfkp,υ . kgkq,υ , 1 ≤ p, q, r ≤ ∞,
1

p
+
1

q
=
1

r
+ 1. (1.6)

The Fourier-Bessel transform and its inverse are defined by

(Fυϕ) (z) =

Z
Rn+

ϕ (x)

Ã
nY

k=1

jυk− 1
2
(xkzk)

!
x2υ dx, (1.7)

¡
F−1υ ϕ

¢
(x) = cυ (n) (Fυϕ) (−x) , cυ (n) =

Ã
nY

k=1

22υkΓ2
µ
υk +

1

2

¶!−1
, (1.8)

where jp (t)
¡
t > 0, p > −12

¢
is connected with the Bessel function of the first kind

Jp (t) as follows [3]:

jp (t) = 2
pΓ (p+ 1)

Jp (t)

tp
.

It is known that for f ∈ Lp,υ (p = 1 or p = 2)

Fυ (f ⊗ g) = Fυ (f)Fυ (g) . (1.9)
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2 A Poisson semigroup associated with the
generalized B-translation and its properties

The Poisson semigroup associated with ∆B is an integral operator of convolution
type generated by the generalized B-translation. The kernel of this operator is de-
fined as the Fourier-Bessel transform of the function exp (−α |y|) ¡y ∈ Rn

+, α > 0
¢
.

Let us calculate Fυ (exp (−α |y|)) by using the following formulas [5] and [1],
respectively,

e−β =
1√
π

∞Z
0

e−t√
t
e−β

2/4t dt,

Fυ

³
e−α|x|

2
´
(t) = 2−nΓ

µ
υ1 +

1

2

¶
. . .Γ

µ
υn +

1

2

¶
α−

2υ1+...+2υn+n
2 e−

|t|2
4α .

By Fubini’s theorem we have

Fυ

³
e−|y|

´
(x) =

Z
Rn+

e−|y|
Ã

nY
k=1

jυk− 1
2
(xkyk) y

2υk
k

!
dy

=

Z
Rn+

 1√
π

∞Z
0

e−t√
t
e−|y|

2/4t dt

 Ã
nY

k=1

jυk− 1
2
(xkyk) y

2υk
k

!
dy

=
1√
π

∞Z
0

e−t√
t

Z
Rn+

e−|y|
2/4t

nY
k=1

jυk− 1
2
(xkyk) y

2υk
k dy dt

=
1√
π

∞Z
0

e−t√
t

nY
k=1

∞Z
0

e−y
2
k/4tjυk−1

2
(xkyk) y

2υk
k dyk dt

=
1√
π

∞Z
0

e−t√
t

nY
k=1

1

2

µ
1

4t

¶−υk− 1
2

Γ

µ
υk +

1

2

¶
e−(x

2
k/4)

1
4tdt

=
1√
π

∞Z
0

e−t√
t

h 1
2n
(4t)υ1+

1
2 . . . (4t)υn+

1
2Γ(υ1+

1

2
) . . .Γ(υn+

1

2
)e−tx

2
1 . . . e−tx

2
n

i
dt

=
1√
π

1

2n
· 22υ1+···+2υn2nΓ

µ
υ1 +

1

2

¶
. . .Γ

µ
υn +

1

2

¶ ∞Z
0

e−t√
t
tυ1+···+υn+

n
2 e−t|x|

2

dt
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=
1√
π
22υ1+···+2υnΓ

µ
υ1 +

1

2

¶
. . .Γ

µ
υn +

1

2

¶ ∞Z
0

t
n−1
2
+υ1+···+υne−t(1+|x|

2) dt

=
1√
π
2υ1+···+υn

³p
cυ (n)

´−1 ∞Z
0

t
n+1
2
+υ1+···+υn−1e−t(1+|x|

2) dt,

where cυ (n) is defined in (1.8).
From the last equality we get

Fυ

³
e−|y|

´
(x) =

1√
π
2υ1+···+υn

³p
cυ (n)

´−1
Γ

µ
n+ 1

2
+ υ1 + · · ·+ υn

¶
×
³
1 + |x|2

´−(n+12 +υ1+···+υn)
,

by using the definition of the Gamma function.
Finally, using the equality

Fυ (f (λy)) (x) = λ−(n+2υ1+···+2υn)Fυ (f (y))
³x
λ

´
(λ > 0) ,

we have

Fυ

³
e−α|y|

´
(x) =

1√
π
2υ1+···+υn

³p
cυ (n)

´−1
Γ

µ
n+ 1

2
+ υ1 + · · ·+ υn

¶
× α³
|x|2 + α2

´n+1
2
+υ1+···+υn

.

In view of the last equality we define the Poisson kernel as

Pυ (x;α) =
p
cυ (n)

1√
π
2υ1+···+υnΓ

µ
n+ 1

2
+ υ1 + · · ·+ υn

¶
× α³
|x|2 + α2

´n+1
2
+υ1+···+υn

. (2.1)

It is not hard to verify the following properties of Pυ (x;α):

1) Fυ (Pυ (x;α)) (x) = e−α|x|;

2) kPυ (·;α)k1,υ = 1 (for all α > 0);

3) Pυ (x;α+ β) = Pυ (x;α)⊗ Pυ (x;β) ≡
R
Rn+

Pυ (y;α)T
y
x (Pυ (x;β)) y

2υ dy,
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where the symbol T y
x denotes the translation T y applied to the variable x.

Now, we define the Poisson integral (semigroup) generated by the generalized
translation as

(Vαf) (x) ≡ v (x;α) =

Z
Rn+

f (y)T y
x (Pυ (x;α)) y

2υ dy. (2.2)

By making use of the Fourier-Bessel transform, it is not difficult to verify that
the Poisson integral v (x;α) is the solution of the following boundary value problem( ³

∂2

∂α2 +∆B (x)
´
v (x;α) = 0,

v (x;α) |α=0= f (x)

for “good” f .
It is easy to show the semigroup property, VαVβ = Vα+β (0 < α, β < ∞) of

{Vα}, α > 0 by using the Fourier-Bessel transform

Fυ (Vα+βf) = e−(α+β)|y|Fυf = e−α|y|
³
e−α|y|Fυf

´
= Fυ (VαVβf) .

Now, let us investigated the approximation and other properties of the Poisson
semigroup Vαf (α > 0) associated with ∆B. For this, first we define the Hardy-
Littlewood maximal function MBf generated by the generalized translation. The
maximal function MBf of f ∈ Lp,υ, 1 ≤ p ≤ ∞, is defined as

MBf (x) = sup
r>0

1

|E+ (0, r)|
Z

E+(0,r)

T y |f (x)| y2υ dy,

where E+ (x, r) =
©
y : y ∈ Rn

+, |x− y| < r
ª
,

|E+ (0, r)| =
Z

E+(0,r)

y2υ dy = w (n, υ) rn+2υ1+···+2υn , w (n, υ) =
Z

E+(0,1)

x2υ dx.

It is known (see [2]) that the maximal operator MB is of weak type (1,1) and is
bounded on Lp,υ, 1 < p ≤ ∞.

We can prove the following lemma for the maximal function MBf by using
some ideas in E. Stein and G. Weiss’s monograph [5].

Lemma 1 Let ϕ ∈ L1,υ be a radial and ψ (r) = ϕ (x) ||x|=r (0 < r <∞) be a non-
negative and decreasing function on [0,∞). Then for every f ∈Lp,υ (1 ≤ p ≤ ∞)
we have

sup
ε>0

|(f ⊗ ϕε) (x)| ≤ kϕk1,υMBf (x) , (2.3)

where ϕε (x) = ε−n−(2υ1+···+2υn)ϕ
¡
x
ε

¢
(ε > 0).
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Proof. For the sake of natural simplicity, we assume f ≥ 0.
Step I. Let the function ϕ be defined by

ϕ (x) =

½ 1
w(υ,n) , x ∈ E+ (0, 1) ,

0 , x ∈ Rn
+\E+ (0, 1) .

We have kϕk1,υ = 1. Putting ϕε (x) = ε−n−(2υ1+···+2υn)ϕ
¡
x
ε

¢
, we get kϕεk1,υ =

kϕk1,υ = 1 for all ε > 0. Then

MBf (x) = sup
ε>0

|(f ⊗ ϕε) (x)| for all f ∈ Lp,υ (f ≥ 0) .

Step II. Let ϕ (x) =
mP
k=1

ckχk(x) (ck ≥ 0, k = 1, . . . ,m), where χk (x) is the
characteristic function of the sphereE+(0, rk). Putting ϕε(x) = ε−n−(2υ1+···+2υn)ϕ(xε ),
we get

(f ⊗ ϕε) (x) =
mX
k=1

ckε
−n−(2υ1+···+2υn)

Z
E+(0,εrk)

T yf (x) y2υ dy

=
mX
k=1

ckw (n, υ) r
n+(2υ1+···+2υn)
k

1

w (n, υ) (εrk)
n+(2υ1+···+2υn)

Z
E+(0,εrk)

T yf (x) y2υ dy

≤ MBf (x)
mX
k=1

ckw (n, υ) r
n+(2υ1+···+2υn)
k

= MBf (x)
mX
k=1

ck

Z
E+(0,rk)

x2υ dx

= MBf (x)
mX
k=1

ck

Z
Rn+

χk (x)x
2υ dx

= MBf (x)

Z
Rn+

Ã
mX
k=1

ckχk (x)

!
x2υ dx

= MBf (x) kϕk1,υ .

Thus,
sup
ε>0

|(f ⊗ ϕε) (x)| ≤ kϕk1,υMBf (x)

for every nonnegative simple function ϕ.
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Step III. Since ψ (r) is nonnegative decreasing on [0,∞) and the function ϕ ∈
L1,υ is of the form ϕ (x) = ψ (|x|), then we have ψ (r) → 0 as r → ∞. Thus, it
is possible to approximate the nonnegative function ϕ (x) = ψ (|x|) from below by

an increasing sequence of simple functions of the type ϕm (x) =
mP
k=1

cmk χk (x) . We

have proved above the inequality (2.3) for the simple functions ϕm . Now, taking
the limit as m→∞, one concludes the proof.

The following theorem states the main result of this work which gives some prop-
erties of the Poisson integral generated by the Laplace-Bessel differential operator
∆B.

Theorem 2 Let Vαf (α > 0) be the Poisson semigroup for a function f.
If f ∈ Lp,υ , 1 ≤ p ≤ ∞, then:

a) kVαfkp,υ ≤ kfkp,υ ;

b) sup
α>0

|(Vαf) (x)| ≤MBf (x) ;

c) VαVβf = Vα+βf (α > 0, β > 0) ;

d) ess sup
x∈Rn+

|(Vαf) (x)| ≤ C α−
n+2υ1+···+2υn

p kfkp,υ;

e) (Lp,υ) lim
α→0+

Vβf = f (1 ≤ p <∞),

where (Lp,υ) lim denotes the limit in the norm Lp,υ and pointwise for almost all
x ∈ Rn.

Proof.
a) By using Young’s inequality (1.6) and the equality kPυ (·;α)k1,υ = 1 for all α > 0,
we have kVαfkp,υ = kf ⊗ Pυ (·;α)kp,υ ≤ kfkp,υ kPυ (·;α)k1,υ .

b) The proof of this result follows directly from (2.3) by taking ϕε (x) = Pυ (x; ε) ≡
ε−n−(2υ1+···+2υn)Pυ

¡
x
ε ; 1
¢
.

c) is proved above.

d) is obtained by substituting ∞ for r and Pυ (x;α) for the function g in Young’s
inequality (1.6) and using the homogeneity property of Pυ (·;α).
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e) By using the equality kPυ (.;α)k1,υ = 1 we have

kVαf − fkp,υ =
°°° Z
Rn+

Pυ (x;α) [T
xf (y)− f (y)]x2υ dx

°°°
p,υ

.

By setting αx instead of x and applying the generalized Minkowski’s inequality,
we have

kVαf − fkp,υ =
°°° Z
Rn+

Pυ (x; 1) [T
αxf (y)− f (y)]x2υ dx

°°°
p,υ

≤
Z
Rn+

Pυ (x; 1) k[Tαxf (y)− f (y)]kp,υ x2υ dx

by using (1.4) and the property

lim
t→0

°°T tf (.)− f (.)
°°
p,υ
= 0 (see [4])

of T t and, finally, applying the Lebesgue dominated convergence theorem we get

lim
α→0 kVαf − fkp,υ = 0.
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