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Abstract

We find some comparison results between solutions of some quasilinear
problems in regular bounded domains in Rn, using a Picone-type multidimen-
sional identity. Here we will not be investigating how to use the identity for
super-sub-solutions methods purpose but to use it as to check how/if the con-
cerned solutions “co-habit” or not in the concerned domains.
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1 Introduction

Let p and Q be two differential operators. To extend the comparison theorem of C.
Sturm for solutions u and v of the Sturm-Liouville equations

−(p1(x)u0)0 + p0(x)u = 0; p1 > 0,

and
−(P1(x)v0)0 + P0(x)v = 0; P1 > 0,

Mauro Picone ([5]) used the fact that if u, v, pu0 and Qv0 are differentiable with
v 6= 0, then

d

dx

nu
v
[vpu0 − uQv0]

o
= u(pu0)0 − u2

v
(Qv0)0

+ (p−Q)(u0)2 +Q
³
u0 − u

v
v0
´2

.

(P )

This equation bears his name since. Many extensions and generalizations of that
identity had been made (e.g., [2, 3] and references therein). One of the interests
of such identities is that integrating them over regular bounded domains provides
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crucial information about the functions u and v compared with each other in the
required domain. This work is focused on the multidimensional type identity [3],
namely, if G is a bounded domain in Rn (n ≥ 2) with a regular boundary (e.g.,
∂G ∈ Cl, l ≥ 1), we define for α > 0 and f, F ∈ C(G× R; R) and R+ := [0,∞)
the operators

Pu := Pfu = ∇ · {aΦ(∇u)}+ cφ(u) + f(x, u),

Qv := QF v = ∇ · {AΦ(∇v)}+ Cφ(v) + F (x, v),

where a,A ∈ C1(G; R+), c, C ∈ C(G;R);
φ(t) = |t|α−1t and Φ(ξ) = |ξ|α−1ξ for t ∈ R, ξ ∈ Rn.

 (1)

Solutions will be supposed to be in

DP (G) := {u ∈ C1(G; R) | aΦ(∇u) ∈ C1(G; R)
\

C(G; R)} (2)

and respectively in DQ(G) which is defined similarly. As in [3], we note that sφ0(s) =
αφ(s); φ(s) 6= 0 if s 6= 0; φ(s)φ(t) = φ(st); φ(s)Φ(ξ) = Φ(sξ). So, similar to
Theorem 1.1 of [3], we have the following result:

Lemma 1.1 If u ∈ DP (G), v ∈ DQ(G) with v 6= 0 in G, then from

∇ ·
½

u

φ(v)
[φ(v)aΦ(∇u)]

¾
= a|∇u|α+1 + uPu− c|u|α+1 − uf(x, u) and

∇ ·
½
uφ(u)

AΦ(∇v)
φ(v)

¾
= (α+ 1)Aφ(u/v) ∇u · Φ(∇v)

− αA
¯̄̄u
v
∇v
¯̄̄α+1

+
u

φ(v)
φ(u)Qv − C|u|α+1 − u

φ(v)
φ(u)F (x, v),

we get

∇ ·
½

u

φ(v)
[φ(v)aΦ(∇u)− φ(u)AΦ(∇v)]

¾
= (a−A)|∇u|α+1 + (C − c)|u|α+1

+A

½
|∇u|α+1 − (α+ 1)

¯̄̄u
v
∇v
¯̄̄α−1∇u · ³u

v
∇v
´
+ α

¯̄̄u
v
∇v
¯̄̄α+1¾

+
u

φ(v)
{[φ(v)Pu− φ(u)Qv] + [φ(u)F (x, v)− φ(v)f(x, u)]}.

(3)

Remarks 1.2
In the formulae (3) diverse values attributed to the coefficients a, A, c, C and the
functions f and F provide various identities.
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1) a) For a general operator Ku := ∇ · {aΦ(∇u)} + g(x, u), results related to P
can apply after defining f(x, u) = g(x, u)− cφ(u) .
b) Let a be a function as that in (1). For the operator

Eλu := ∇ · {a(x)Φ(∇u)}+ λφ(u),

the corresponding “first eigenvalue” in the domain G if it exists will be defined for
ν := α+ 1 as the number

λ1 := λ1(a;G) = inf

½R
G a(x)|∇v|ν dxR

G |v|ν dx
; v ∈W 1,ν

0 (G) \ {0}
¾
. (λ)

Let G be a bounded and regular domain and a be bounded and bounded away from
0. Then λ1 exists and the solution u1, say, of

∇ · {aΦ(∇u)}+ λ1φ(u) = 0 in G; u|∂G = 0, (Eλ1(G))

is unique modulo a constant multiplier and belongs to C1+θ(G) for some θ ∈ (0, 1)
[1, 4, 6]. The solution u1 is called the eigenfunction corresponding to λ1 and can
be chosen positive.
2) a) For any µ > 0,

Ψ(µu) := ∇ · {a(x)Φ(∇µu)}+ cφ(µu) = µαΨ(u)

and we will say that a function f(x, ·) is α−homogeneous if
f(x, µt) = µαf(x, t) ∀µ > 0.

b) We will denote P0u and Q0v for the operators in (1) where f(x, u) ≡ 0 and
F (x, v) ≡ 0 respectively.
3) We have the following result from [3, Lemma 2.1]:

Given α > 0,

∀ξ, η ∈ Rn |ξ|α+1 + α|η|α+1 − (α+ 1)|η|α−1ξ · η ≥ 0 (4a)

and the equality holds if and only if ξ = η.
Some identities:
4) If a = A, c = C, Pu = Qv = 0 in G, then (3) becomes

∇ ·
½

u

φ(v)
a[φ(v)Φ(∇u)− φ(u)Φ(∇v)]

¾
= Z(u, v) + uφ(u)

·
F (x, v)

φ(v)
− f(x, u)

φ(u)

¸
= a

½
|∇u|α+1 − (α+ 1)

¯̄̄u
v
∇v
¯̄̄α−1∇u · ³u

v
∇v
´
+ α

¯̄̄u
v
∇v
¯̄̄α+1¾

+ uφ(u)

·
F (x, v)

φ(v)
− f(x, u)

φ(u)

¸
,

(4b)
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where Za(u, v) or Z(u, v) (if there is no confusion) is defined by

Z(u, v) := a

½
|∇u|α+1 + α

¯̄̄u
v
∇v
¯̄̄α+1 − (α+ 1) ¯̄̄u

v
∇v
¯̄̄α−1∇u · ³u

v
∇v
´¾

.

If we interchange the functions u and v in (4b) assuming that none of them takes
zero value inside G then as in (4b) we have

∇ ·
½

v

φ(u)
a[φ(u)Φ(∇v)− φ(v)Φ(∇u)]

¾
= a

½
|∇v|α+1 − (α+ 1)

¯̄̄v
u
∇u
¯̄̄α−1∇v · ³v

u
∇u
´
+ α

¯̄̄v
u
∇u
¯̄̄α+1¾

+ vφ(v)

·
F (x, u)

φ(u)
− f(x, v)

φ(v)

¸
= Z(v, u) + vφ(v)

·
F (x, u)

φ(u)
− f(x, v)

φ(v)

¸
.

(4c)

5) For the functions u and v above, if Ω ⊂ G has a nonempty interior and f(x, t) ≡
F (x, t) , then after integrating (4b) over Ω we getZ

∂Ω
au

½
|∇u|α−1 ∂u

∂νΩ
− |∇v|α−1 ∂v

∂νΩ

¾
ds

=

Z
Ω

£
Z(u, v) + |u|α+1 {χ(x, v)− χ(x, u)}¤ dx, (4d)

and from (4c)Z
∂Ω

av

½
|∇v|α−1 ∂v

∂νΩ
− |∇u|α−1 ∂u

∂νΩ

¾
ds

=

Z
Ω

£
Z(v, u) + |v|α+1 {χ(x, u)− χ(x, v)}¤ dx, (4e)

where νΩ denotes the outward normal unit vector to ∂Ω and

χ(x, t) := f(x, t)/φ(t). (5)

In the sequel G and any subset of its are assumed to be of the class Cl, l ≥ 1.

2 Main results

When the perturbations are homogeneous only for α = 1, obviously the possibility
that a solution of the problem coincides with a multiple of that of a half-linear
equation cannot hold.
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Theorem A Let f ∈ C(G×R;R) and let u, v ∈ DP (G) be two solutions of

Pw := ∇ · {aΦ(∇w)}+ cφ(w) + f(x,w) = 0 in G; w|∂G = 0

such that each of them remains nonzero inside G and they have the same sign.
1) If t 7→ f(x, t)/φ(t) := χ(x, t) is monotone in R uniformly for x ∈ G, then the
two solutions have at least one common point.
If Ω is a subset of G and χ(x, t) is increasing in t > 0, then if v ≥ u in Ω,Z

∂Ω
au

½
|∇u|α−1 ∂u

∂νΩ
− |∇v|α−1 ∂v

∂νΩ

¾
ds ≥ 0 (a1)

and if, in addition, u = v on ∂Ω, then

0 ≥
Z
Ω

©
Z(v, u) + |v|α+1[χ(x, u)− χ(x, v)]

ª
dx

= −
Z
Ω

©
Z(u, v) + |u|α+1[χ(x, v)− χ(x, u)]

ª
dx.

(a2)

2) If χ(x, t) is decreasing in t and nonnegative for any x ∈ Ω, then the two solutions
coincide.

In the sequel, Ω ⊂ Rn is a bounded domain with ∂Ω ∈ C1; a ∈ C1(Ω;R+) and
K ∈ C(Ω×R+;R+).

Theorem B Consider in Ω the problems(
Eu := ∇ · {a(x)|∇u|α−1∇u}+K(x, u) = 0;

u|∂Ω = 0; u ∈ DE(Ω).
(E)

If there are β ∈ C(Ω;R+) and W ∈ C1(Ω;R+) such that a.e. in Ω

W |∂Ω = 0, K(x,W )− β(x)φ(W ) ≥ 0 andZ
Ω

©
a|∇W |α+1 − c|W |α+1ª dx ≤ 0, (Ea)

then any solution u ∈ DE(Ω) of (E) has a zero inside Ω unless there is λ ∈ R such
that u = λW and Z

Ω
W {λαK(x,W )−K(x, λW )} dx = 0.
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Theorem C Suppose that a ∈ C1(Ω; (0, ∞) ) and let λ1 := λ1(a,Ω) as in Remarks
1.2. If K is α−homogeneous only for α = 1, then
1) if

K(x, t)− λ1φ(t) ≥ 0 in Ω×R+, (Eb)

(E) has no solution which is strictly positive in Ω;
2) assume that K(x, t) := µφ(t) + h(x, t) where h(x, t) ≤ 0 and µ > 0 ; then if
λ1 ≥ µ , (E) has no solution which is strictly positive in Ω.

The solution u1 corresponding to λ1 can be taken to satisfy |u1|C(Ω) ≤ 1 and replace
W in (Ea). Thus the inequality in (Eb) to hold in Ω× [0, 1] will be sufficient.
An application of these results is

Theorem D Assume that K is α−homogeneous only for α = 1. Then the problem(
Eu := ∇ · ©a(x)|∇u|α−1∇uª+K(x, u) = 0, u > 0 in Ω;

u|∂Ω = 0; u ∈ DE(Ω).
(E+)

has at most one solution satisfying for some β ∈ C(Ω;R+)

K(x, u)− β(x)φ(u) ≥ 0 in Ω.

In particular, for any β ∈ C(Ω;R+) and f ∈ C(Ω×R+;R+)

∇ · ©a(x)|∇u|α−1∇uª+ β(x)Φ(u) + f(x, u) = 0, u > 0 in Ω;

u|∂Ω = 0; u ∈ DE(Ω)

has at most one solution.

3 Some comparison results

Theorem 3.1 Assume that there are u, v ∈ DP (G) , respectively nontrivial solu-
tions of

P0u := ∇ · {aΦ(∇u)}+ cφ(u) = 0 in G

and
Pgv := ∇ · {aΦ(∇v)}+ g(x, v) = 0 in G, v|∂G = 0

for some g ∈ C(G×R;R) .
a) If Z

G
v(x){cφ(v)− g(x, v)} dx ≥ 0, (6)
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then u has a zero inside G. If equality prevails in (6), then there is k ∈ R such that
u ≡ kv in G.
b) If

g(x, v)− cφ(v) ≥ 0 in G orZ
G

|u|α+1
φ(v)

[g(x, v)− cφ(v)] dx ≥ 0, (60)

then v has a zero inside G. If equality prevails in (60), then there is k ∈ R such that
u ≡ kv in G.

Proof.
a) Assume that u 6= 0 in G.

Applied to u and v, (4c) where f(x, v) := g(x, v)− cφ(v) and F (x, u) ≡ 0 reads

∇ ·
½

v

φ(u)
a[φ(u)Φ(∇v)− φ(v)Φ(∇u)]

¾
= Z(v, u) + v{cφ(v)− g(x, v)}.

(6a)

The integration of (6a) over G and using (4a) leads to

0 =

Z
G
Z(v, u) +

Z
G
v(x){cφ(v)− g(x, v)} dx. (7)

Thus if (6) holds, v 6= 0 cannot hold throughout G as otherwise (7) would not
hold. From (7), if equality holds in (6), then by (4a) ∇u = (u/v)∇v whence
v∇u− u∇v := v2 ∇(u/v) = 0 and the conclusion follows.

b) If we suppose that v 6= 0 in G, then from (4b) we have

∇ ·
½

u

φ(v)
a[φ(v)Φ(∇u)− φ(u)Φ(∇v)]

¾
= Z(u, v) +

|u|α+1
φ(v)

{g(x, v)− cφ(v)}
(6b)

and the proof is completed as in the a)-case. ¤

Theorem 3.2 Let Ω be a regular bounded domain in Rn as G in (1) and Ω1 be a
domain containing Ω. Let a,A ∈ C1(Ω1;R+) and c, C ∈ C(Ω1;R) with a ≡ c ≡ 0
in Ω. Assume that there is u ∈ C1(Ω) such that u|∂Ω = 0 andZ

Ω
{A|∇u|α+1 − C|u|α+1} dx ≤ 0. (8)
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Then any solution v ∈ DQ(Ω) of
Qv := Qfv = ∇ · {AΦ(∇v)}+ Cφ(v) + f(x, v) = 0 in Ω

satisfying φ(v)f(x, v) ≥ 0 in Ω

or
R
Ω

n
Z(v, u) + |u|α+1 f(x,v)φ(v)

o
dx ≥ 0

(9)

must vanish somewhere in Ω unless there is k ∈ R such that u = kv and either f is
α-homogeneous or

R
Ω v {kαf(x, v)− f(x, kv)} dx = 0.

Note that the (heavy) introduction of Ω1 can be avoided by defining the operator
P as Pv ≡ f(x, v).
Proof. Assume that such v is nonzero throughout Ω. With the operator P := Pf
as in (1), in Ω, Pu = f(x, u) and (3) reads

∇ · {φ(u/v)AΦ(∇v)} = A|∇u|α+1 − C|u|α+1 − Z(u, v)− uφ(u/v)f(x, v). (9a)

Integrating this over Ω we getZ
Ω

©
A|∇u|α+1 − C|u|α+1ª dx =

Z
Ω

n
Z(u, v) + uφ

³u
v

´
f(x, v)

o
dx (10)

and the conclusion follows.
If u = kv, we have equality in (8) and (10) is reduced to

kφ(k)

Z
Ω
v {kαf(x, v)− f(x, kv)} dx = 0. ¤

4 Proofs of Theorems

4.1 Proof of Theorem A

The statement (a1) follows from (4d). Adding (4d) and (4e), we getZ
∂Ω

a(u− v){Φ(u)− Φ(v)} · νΩ ds

=

Z
Ω

©
Z(u, v) + Z(v, u) +

£|u|α+1 − |v|α+1¤ ( χ(x, v)− χ(x, u) )
ª
dx

leading to (a2). For the two solutions, (4b) and (4c) lead (after an integration over
G) to

0 ≤
Z
G
Z(u, v) dx = −

Z
G
uφ(u)

½
f(x, v)

φ(v)
− f(x, u)

φ(u)

¾
dx

= −
Z
G
|u|α+1{χ(x, v)− χ(x, u)} dx

(A1)
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and

0 ≤
Z
G
Z(v, u) dx = −

Z
G
vφ(v)

½
f(x, u)

φ(u)
− f(x, v)

φ(v)

¾
dx

=

Z
G
|v|α+1{χ(x, v)− χ(x, u)} dx.

(A2)

Assume that χ(x, t) is increasing. If we suppose that v > u in G, then (A1) provides
a contradiction and if we suppose that u > v, (A2) would lead to a contradiction.
Assume that χ(x, t) is decreasing and define

G+ (G−) := {x ∈ G | X(x) := χ(x, v)− χ(x, u) > (<) 0}.

Then (without loss of generality) 0 < v ≤ u in G+ and v > u ≥ 0 in G− whenceZ
G+

|v|α+1X(x) dx ≤
Z
G+

|u|α+1X(x) dx andZ
G−
|v|α+1X(x) dx ≤

Z
G−
|u|α+1X(x) dx.

(A3)

This implies from (A1) and (A2) that

0 ≤
Z
G
|v|α+1X(x) dx ≤

Z
G
|u|α+1X(x) dx ≤ 0,

whence
R
GZ(u, v)dx = 0, leading to v ≡ u in G by (4a).

If f is nonnegative and decreasing in t, χ is decreasing in t and the same con-
clusion is reached. ¤

4.2 Proof of Theorem B and Theorem C

B) This is an application of Theorem 3.2.
We just need to take f(x, z) := K(x, z)− βΦ(z).

C) 1) Follows easily from Theorem B when we take for W the eigenfunction u1
corresponding to λ1 and β = λ1.

2) This follows from Theorem 3.1, where c = λ1 and g(x, t) := K(x, t). ¤

4.3 Proof of Theorem D

To prove this it is enough to notice that if we suppose to have two such solutions,
with one of them playing the role of W , the conclusion follows from Theorem B.
When K is α−homogeneous only for α = 1, the last part of the conclusion of
Theorem B can apply only for that value of α. ¤
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4.4 Concluding remarks

Remark 4.1 Concerning the problems (E), the hypothesis for the results in The-
orem B through Theorem D is more or less K(x, u) − β(x)φ(u) ≥ 0 in Ω;
φ(t) = O(tα) for small t > 0.
As the datum on ∂Ω is 0, using the change U(x) := u(x)/{maxΩ u(x)} the results
more likely hold for sublinear perturbations, (e.g., K(x, t) = O(tq); q ∈ (0, α] ) .
But if we consider strictly positive solutions of the Neumann problem(

∇ · {a(x)|∇v|α−1∇v}+K(x, v) = 0 in Ω;

∇v|∂Ω = 0; v ∈ DE(Ω),
(N)

using this time the change V (x) := v(x)/{minΩ v(x)} the results apply for
superlinear perturbations (K(x, t) = O(tp); p > α).

Remark 4.2 In [3], some oscillation theorems are established for half-linear prob-
lems. Following similar approaches (hopefully with the help of Theorem 3.1), similar
results could be obtained for some cases with perturbations.

Remark 4.3 A Wirtinger-type inequality states that
For a regular domain G, if there is a solution v ∈ DP0(G) of the half-linear equa-
tion P0v = ∇ · {a(x)|∇v|α−1∇v} + c(x)φ(v) = 0 such that v 6= 0 in G, thenR
G[a(x)|∇u|α+1− c(x)|u|α+1] dx ≥ 0 holds for any nontrivial function u ∈ C1(G;R)
such that u|∂G = 0 where the equality holds if and only if u is a constant multiple
of v. (see [3])
For the perturbations cases, Theorem 3.2 provides some corresponding (alternative)
version of the inequality, namely, for any domain G as above and f ∈ C(G×R; R+)

Proposition 4.1 If
R
G v{kαf(x, v) − f(x, kv)} dx 6= 0 ∀k 6∈ {0, 1} where

v ∈ DP (G) is nonzero in G and solves ∇ ·{AΦ(∇v)}+Cφ(v)+f(x, v) = 0 in G,
then

R
G{ A(x)|∇u|α+1−C(x)|u|α+1 }dx > 0 holds for any nontrivial u ∈ C1(G;R)

such that u|∂G = 0.

Remark 4.4 For a nonhomogeneous perturbation g(x, v), Theorem 3.1 implies
that the respective solutions u, v ∈ DP (G) of ∇ · {aΦ(∇u)} + cφ(u) = 0 in G
and ∇ · {aΦ(∇v)}+ g(x, v) = 0 in G, v|∂G = 0 cannot be both nonzero inside G
if g(x, v)− cφ(v) is nonzero (whence keeps the same sign) in G.

Remark 4.5 The uniqueness result in Theorem A can be deduced from (a1) and
(4d) or (4e).
In fact, if there are two solutions u, v, say, such that in some D b G v > u > 0 and
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u = v on ∂D , then by (4.e) and (a1) 0 ≥ R∂D av{|∇v|α−1 ∂v
∂νD
− |∇u|α−1 ∂u

∂νD
} ds

=
R
D[Z(v, u)+ |v|α+1 {χ(x, u)−χ(x, v)}] dx and the last member is strictly positive

if χ(x, t) is decreasing in t.
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