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Abstract
In this paper, we present one of the interesting applications on the predictor

curve tracing method which is the line integrals. We give a modification for the
Simpson’s rule and the adaptive quadrature method. Results of some numerical
experiments for evaluating the line integral of a vector field over an implicitly
defined curve are presented. Moreover, we give some error estimates for our
modified rules. Finally, we present some numerical experiments.
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1 Introduction

The predictor methods for numerically tracing implicitly defined curves have been
developed and investigated in a number of papers and books. For recent surveys
see, e.g., [1]. One of the interesting application of the continuation methods is
calculating the line integrals over implicitly defined curves. In order to handle this
case for an implicitly defined curve, it is necessary to develop reliable numerical
methods for determining when the curve has been completely traversed.

In Section 2 we review the main ideas of a predictor continuation method. One
of the most important aspects which has to be faced is how to deal with the lack
of an explicit parametrization of the curve in the numerical quadrature for the line
integral.

In Section 3, we present the modified Simpson’s rule for evaluating the line
integral as a vector field over an implicitly defined curve. Also, we give some error
estimates for this modified rule. Moreover, the proofs of these error estimates are
presented.

In Section 4, we present the modified adaptive quadrature method. Finally, in
Section 5, we present some of our numerical experiments and their analysis.
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2 Continuation methods

We shall mean that a map is smooth if it has as many continuous derivatives as the
discussion requires.

Definition 2.1 Let A be an n × (n + 1) matrix with rank (A) = n. The unique
vector t(A) ∈ <n+1 satisfying the three conditions:

1. At = 0;

2. ktk = 1;

3. det
·

A
tT

¸
> 0;

is called the tangent vector induced by A. We shall denote the transpose of A by
AT .

Definition 2.2 Let A be an n × (n + 1) matrix with maximal rank. Then the
Moore-Penrose inverse of A is defined by A+ = AT (AAT )−1.

Now assume that A is an n × (n + 1) matrix with rank (A) = n, and that a
decomposition

AT = Q

·
R
0T

¸
is given, where Q is an (n + 1) × (n + 1) orthogonal matrix, and R is an n × n
nonsingular upper triangular matrix. If z denotes the last column of Q, then Az = 0
and kzk = 1, the remaining task is to choose the sign of z so that

det

·
A
zT

¸
> 0.

Now ¡
AT z

¢
= Q

·
R 0
0T 1

¸
implies

det

·
A
zT

¸
= det(AT , z) = det(Q) det(R).

Hence, t(A) = ± z in dependence on whether the determinant is positive or negative.

Since

AT = Q

·
R
0T

¸
and A = (RT , 0)QT ,
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one can easily show that

A+ = Q

"
(RT )−1

0T

#
.

Next, assume that

1. H : <n+1 −→ <n is a smooth map;

2. There is a point u ∈ <n+1 such that:

I) H(u) = 0;

II) The Jacobian matrix H 0(u) has maximum rank, i.e., rank (H 0(u)) = n.

Then it follows from the Implicit Function Theorem that there exists a smooth
curve C : J −→ <n+1 for some open interval J containing the zero such that for
all a ∈ J :

1. C(0) = u;

2. H(C(a)) = 0;

3. rank (H 0(C(a))) = n;

4. C 0(a) 6= 0.
We will use the predictor continuation method to numerically trace the solution

curve C. The predictor step we will use is called the Runge-Kutta predictor of order
three which is given by

v = u+
h

9
(2K1 + 3K2 + 4K3) ,

where u is a point lying along the solution curve C, h > 0 represents a stepsize,

K1 = t(H 0(u)),
K2 = t(H 0(u+ h

2K1)),

and

K3 = t(H 0(u+
3h

4
K2)).

One of the most important issues in the predictor continuation method is the
stopping criterion. We modified a stopping criterion for determining when an im-
plicitly defined closed curve has been completely traversed. We have implemented
and tested the modified stopping criterion on many different examples. The results
obtained indicate that it is efficient and works properly in higher dimensions. For
more details, see [2]—[4].
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3 The modified Simpson’s rule

For a smooth curve C with a parametrization, say β : [0, 1] −→ <n+1 and C =
{β(s) : 0 ≤ s ≤ 1}, the line integral RC f · dC can be written as an ordinary

integral, i.e., Z
C

f · dC =
Z 1

0
f(β(s)) · β0(s) ds.

For the latter integral the Simpson’s rule is given byZ
C

f · dC ≈ 1
6
[f(β(0)) · β0(0) + 4 f(β(1

2
)) · β0(1

2
) + f(β(1)) · β0(1)]. (3.1)

For the section Ci of the curve C with endpoints ui and ui+1, the modified
Simpson’s rule is given byZ

Ci

f · dCi ≈ 1
3
[f(ui) + 4 f(

ui + ui+1
2

) + f(ui+1)] · [ui+1 − ui]. (3.2)

To find the line integral
R
C f · dC , we divide the curve C into finite number

of subcurves according to the points generated along the oriented curve C while
traversing, then we use Equation (3.2) to approximate the line integral on each
subcurve and then we add the approximate values to get an approximate value for
the integral on the whole curve.

It is well known that the global discretization error of the standard Simpson’s
rule is °(h4). In this paper, we prove that the modified Simpson’s rule has the
same global discretization error. This result is given in the following theorem.

Theorem 3.1 The global discretization error of the modified Simpson’s rule is
°(h4).

Proof. Let f : <n −→ < be a smooth map. Let Ci be a subcurve of the closed
curve C for which ui and ui+1 are its endpoints. Let {0, h, 2h, . . . , nh = 1} be
a uniform partition of [0, 1]. Let σj = [jh, (j + 1)h] for j = 0, 1, . . . , n − 1. Let
αi : [0, 1] −→ Ci be a smooth map such that it isomorphically maps [0, 1] onto Ci.
This map will divide Ci into subdivisions C

j
i = αi(σj) for j = 0, 1, . . . , n−1. Let T j

i

be the line segment for which vj = α(jh) and vj+1 = α((j +1)h) are its endpoints.
Let dji (x) denote the distance of a point x ∈ <n+1 from Cj

i in the direction of
the normal nji of T

j
i and γji : [0, 1] −→ T j

i denote the parametrization of the line
segment T j

i defined by
γji (t) = (1− t)vj + t vj+1.
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Furthermore, we parametrize Cj
i via β

j
i : T

j
i −→ Cj

i by

βji (v) = v + dji (v)n
j
i .

Thus, Z
Cj
i

f · dC =
Z
σj

f(βji (γ
j
i (t))) | (βji ◦ γji )0(t) | dt. (3.3)

Now,

dC = | (βji ◦ γji )0(t) | dt
= | (γji + dji (γ

j
i )n

j
i )
0 | dt

= | (γji )0 + (5dji · (γji )0)nji | dt
≤ | (γji )0 | (1+ k 5dji k) dt.

It is well known that dji = °(h4) and hence 5dji = °(h3) since we use Runge-
Kutta method of order three to generate the point along the solution curve. Thus,
dC =| (γji )0 | °(1 + h3) dt. Since γji is a linear parametrization of T

j
i , dC =

°(1 + h3) dt. Therefore, from Equation (3.3) we getZ
Cj
i

f · dC =
Z
σj

f ◦ βji dt° (1 + h3)

and hence, Z
Ci

f · dC = (
X
j

Z
σj

f ◦ βji dt)° (1 + h3). (3.4)

The conclusion of the proof of Theorem 3.1 follows from the standard arguments.
Note that each integral in the right-hand side of Equation (3.4) is taken over a closed
interval . Hence, we can apply the well known error estimate for the Simpson’s rule
to get the result of Theorem 3.1. ¤

Also, we note that the exact value of the line integral can be written as a sum
of the approximate value of the line integral and the expansion of terms of h2. This
result is given by the following theorem.

Theorem 3.2 If In(h) denotes the approximation of the line integral I0 =
R
C f ·dC

using the modified Simpsons’s rule, then In(h) can be expanded in terms of h2 as
follows

In(h) = I0 + h4 I1 + · · ·+ h4+2k Ik+1 +°(h5+2k). (3.5)

Proof. It is similar to the proof of Syam [5] for the modified trapezoidal rule. ¤
In the next section, we want to discuss the modified adaptive quadrature method

for approximating the line integrals over an implicitly defined closed curves.
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4 The modified adaptive quadrature method

Modified adaptive quadrature is a process designed to use the modified Simpson’s
rule to approximate the line integral

R
C f · dC to within a given error tolerance,

> 0. To explain the total procedure, let us assume that f is badly behaved only on
some small subcurve Γ of C. The composite modified Simpson’s rule with relatively
few points will produce fairly accurate approximation for

R
C\Γ f · dC although the

entire estimate for
R
C f ·dC may be badly in error. If we were to take the seemingly

natural course of halving the step size over C, we would no appreciably increase
the accuracy estimate for

R
C f · dC. Thus the new work done in C \ Γ is essentially

wasted whereas more refinement may still be necessary on Γ.
Let Γ be a subcurve of C for which its endpoints are u and v. Then,Z

Γ

f · dΓ = S(u, v) + γ1h
5, (4.1)

where γ1 is constant, and S(u, v) = 1
3 [f(u) + 4f(

u+v
2 ) + f(v)] · [v − u]. Moreover,

we can predict a point w using a stepsize h
2 and the Runge-Kutta method of order

three from u. Write the integral in equation (4.1) asR
Γ

f · dΓ = [S(u,w) + γ2
¡
h
2

¢5
] + [S(w, v) + γ3

¡
h
2

¢5
]

= S(u,w) + S(w, v) + γ4
h5

16 ,
(4.2)

where γ4 =
γ2+γ3
2 . Assume that γ1 ≈ γ4. The success of the technique depends on

the accuracy of this assumption. If it is accurate, then using equation (4.1) and
(4.2) we get ¯̄̄̄

¯̄Z
Γ

f · dΓ− [S(u,w) + S(w, v)]

¯̄̄̄
¯̄ <

if
|S(u, v)− [S(u,w) + S(w, v)]| < 15 .

The following algorithm explain how this method works.

Algorithm 4.1 Approximate the integral
R
Γ

f ·dΓ, where Γ is a subcurve of C with
endpoints u and v to within a given tolerance .

Input: The points u and v; tolerance limit N to number of levels.
Output: Approximation I or message than N is exceeded.
Step 1: Set I = 0; k = 1; k = 10 ; wk = (v − u)/2; uk = u; fuk =

f(uk); frk = f(u+wk); fvk = f(v); Sk = (1/3)∗(fuk+4∗frk+fvk) ·wk; Lk = 1.
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Step 2: while k > 0, do steps 3—5.
Step 3: Set fyk = f(uk + (1/2) ∗ wk); fzk = f(uk + (3/2) ∗ wk);
S1 = (1/6)∗ (fuk+4 ∗ fyk+ frk) ·wk; S2 = (1/6) ∗ (frk+4 ∗ fzk+ fvk) ·wk;
q1 = uk; q2 = fuk; q3 = frk; q4 = fvk; q5 = wk; q6 = k; q7 = Sk; q8 = Lk.

Step 4: k = k − 1.
Step 5: if |S1 + S2− q7| < q6, then

set I = I + S1 + S2,

elseif q8 ≥ N , then
Output (‘Level exceeded’); Stop

else set k = k + 1;

uk = q1 + q5; frk = fzk; fvk = q4; wk =
q5
2 ; k = qk/2; Sk = S2; Lk = q8 + 1.

set k = k + 1;

uk = q1; fuk = q2; frk = fyk; fvk = q3; wk = wk−1; k = k−1; Sk =
S1; Lk = Lk−1.

Step 6: Output the approximation I; stop.

In the next section we present some of our numerical examples.

5 Numerical results

In this section the following notation is used.
h: the stepsize which is taken to be fixed during tracing of the solution curve.
1: absolute value of the difference between the exact value of the integral and

the approximated values by using the modified trapezoidal rule, see [2].
2: absolute value of the difference between the exact value of the integral and

the approximated values by using the modified Simpson’s rule.
δ: the quotient 2(h)

2(h/2)
.

T1: The computational time in seconds for computing the approximate values
by using the modified Simpson’s rule.

T2: The computational time in seconds for computing the approximate values
within 2 by using the adaptive Simpson’s rule.

Example 5.1 Let H = (H1,H2,H3) : <4 → <3 be the smooth map defined by

H1(x, y, z, w) = x2 +
y2

4
+

z2

9
+

w2

16
− 1,

H2(x, y, z, w) =
1

1000
xey +

1

1000
yez + ew − 1.001,

H3(x, y, z, w) = x2 − y2 + z2 − w − 1,
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and let the integrand g : <4 → <4 be given by

g(x, y, z, w) = 5(x2y2z2w2).

From the fundamental theorem of calculus it is easy to see that
R
C

g · dC = 0, where
C is generated by the smooth map H. The approximation errors of the approximate
values of the line integral are given in Table 5.1.

h 1 2 δ T1 T2
0.128 1.2356*10−06 1.2781*10−10 – 0.36 0.12
0.064 2.9578*10−07 7.8895*10−12 16.2000 0.42 0.14
0.032 7.0779*10−08 4.9279*10−13 16.0100 0.44 0.15
0.016 1.8427*10−08 3.0795*10−14 16.0020 0.50 0.16
0.008 4.6063*10−09 1.9246*10−15 16.0009 0.54 0.17
0.004 1.1515*10−09 1.2028*10−16 16.0003 0.61 0.17
0.002 2.8787*10−10 7.5178*10−18 16.0001 0.70 0.19

Table 5.1

From Table 5.1, we see that the modified Simpson’s rule gives better results than
the modified trapezoidal rule. Also, the asymptotic error of the modified Simpson’s
rule is satisfied. Also, we see that the adaptive technique saves many flops and
computational time.
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