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Abstract

We study the dependence of the attractors on the contraction ratios of the
iterated function systems, associated to expanding discontinuous maps with
holes on the interval. For this class of maps, an extension of Milnor-Thurston
theory is provided. Introducing weights on the formal power series, we establish
a weighted kneading theory. We show that this method allows us to derive
techniques to compute explicitly some topological and metrical invariants: the
topological entropy, the Hausdorff dimension and the escape rate.
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1 Introduction

Let I ⊂ R be a compact interval and f := {fi}ni=1 be an iterated function system
(IFS), a collection of self-maps on I, defined by

fi (x) := ρi x+ (i, with i = 1, . . . , n,

where for all i, 0 < |ρi| < 1 and (i ∈ R. Let E denote the attractor of the IFS, i.e.,
the unique compact set E ⊂ R satisfying the equation

E =
n[
i=1

fi (E) .

∗Both authors thank FCT (Portugal) for having in part supported this work through program
POCTI.
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We consider IFS’s where the open set condition is satisfied, [5] and [6]. On these
circumstances the Hausdorff dimension of the attractor, which will be denoted by
dimH (E), can be rigorously calculated.

Observe that, if fi is monotone, then it is usual to see E as the repeller of a linear
expanding map F :

Sn
i=1 fi (I) → I, which will be denoted by F = (F1, . . . , Fn) ,

where
Fi (x) := f−1i (x) if x ∈ fi (I) .

We consider the piecewise linear map F with a single hole, i.e., there is an open
subinterval Ih ⊂ I with Ih 6= ∅ such that I is the disjoint union of Ih and

Sn
i=1 Im (fi),

[9] and [11]. We denote the hole by Ih = ]ah, ah+1[. The points x ∈ Ih will be
mapped out of I and the same will happen to all the points x ∈ F−k(Ih) for k ≥ 1.
The set

S
k F

−k(Ih) is open and dense in I and has full Lebesgue measure [1]. We
can obtain the same results for a finite union of disjoint holes Ihj ⊂ I.

A brief overview of this paper is as follows. In Section 2, considering just the
orbits of the turning points and discontinuity points of F , we define a Markov
partition of I. We associate with the IFS a weighted subshift of finite type, which
is described by a weighted transition matrix. This matrix allows us to compute
explicitly the Hausdorff dimension of E. Section 3 contains an algorithm to define
a fractal Markov measure, the maximum entropy measure to the fractal one-sided
Markov subshift. Using this invariant probability measure, we characterize the
metric entropy and the Lyapunov exponent. Thus, we show a relation between the
Hausdorff dimension, the metric entropy and the Lyapunov exponent. In Section
4, to a three parameter family of IFS’s, using a weighted kneading determinant,
we relate the periodic, eventually periodic orbits and the orbits that lie in the hole
with the topological entropy, the Hausdorff dimension and the escape rate.

2 Weighted transition matrix

The hole and the set of n laps of F determine a partition

PI := {I1, . . . , Ih, . . . , In+1}
of the interval I. Let ai, with i = 1, . . . , n+ 2, be the discontinuity points and the
turning points of the map F . Considering the orbits of these points, we define a
Markov partition P 0I of I. The orbit of each point ai is defined by

o (ai) :=
n
x
(i)
k : x

(i)
k = F k (ai) , k ∈ N0

o
.

Concerning the itinerary of each point ai we will have

F k (ai) = x
(i)
k with x

(i)
k /∈ Ih or F k (ai) ∈ Ih.
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In the first case, we have periodic, eventually periodic or aperiodic orbits [14]. While
in the second one, after a finite number of iterates, the itinerary of the points lies
in the hole.

To simplify the presentation, we consider the points a1 and an+2 as fixed points.
Now, let

{b1, . . . , bm+1} := {o (ai) : i = 1, . . . , n+ 2}
be the set of the points corresponding to the orbits of the discontinuity points and
turning points, ordered on the interval I. This set allows us to define a subpartition
P 0I of PI . The subpartition

P 0I := {J1, . . . , Jm}
with m ≥ n determines a Markov partition of the interval I. Note that, the hole
is an element of the Markov partition. Note also that, the map F determines P 0I
uniquely, but the converse is not true.

The IFS f induces a subshift of finite type whose m × m transition matrix
A := [aij ] is defined by

aij :=

½
1 if F (intJj) ⊇ intJi
0 otherwise.

We note that, if there exists k points bi such that bi ∈ Ih, with 1 < i < m + 1,
then the matrix A has k+1 columns with all elements equal to zero, corresponding
to the hole. We denote this subshift by (ΣA, σ), where σ is the shift map on ΣNm
defined by σ (x1x2 . . .) := x2x3 . . ., with Σm := {1, . . . ,m} corresponding to the m
states of the subshift. The topological entropy of (ΣA, σ) is log λA, where λA is
the spectral radius of the transition matrix A. See [9] and [11] for the topological
entropy, which is related with the kneading theory.

Concerning the subshift (ΣA, σ) and the associated Markov partition P 0I , we
consider a Lipschitz function φ : I → R, defined by

φ := {φi : Ji → R, 1 ≤ i ≤ m} ,
where

φi (x) := −β ϕi (x) and ϕi (x) := log
¯̄
F 0i (x)

¯̄
, with β ∈ R.

This function is a weight for the dynamical system associated to the subshift, de-
pending on the real parameter β, compare with [18].

Let L1 (I) be the set of all Lebesgue integrable functions on I. The transfer
operator Lφ : L1 (I)→ L1 (I), associated with F and P 0I , is defined by

(Lφ g) (x) :=
mX
j=1

expφj

³
F−1j (x)

´
g
³
F−1j (x)

´
χF (int Ij), (2.1)
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where χIj is the characteristic function of Ij . We refer to [2, 3, 18, 19] and the
references therein for other important spectral properties of the transfer operator,
and [5] for this operator with respect to the cookie-cutter system.

Nevertheless, we consider a class of one-dimensional transformations that are
piecewise linear Markov transformations. Consequently, the transfer operator has
the following matrix representation

Lφ g = Qβ πg

with g ∈ C, where C is the class of all functions that are piecewise constant on the
partition P 0I and πg = (π1, . . . , πm)

T , [2] and [11]. If Dβ is the diagonal matrix
defined by

Dβ := (expφ1, . . . , expφm)

and A is the transition matrix, then the matrix Qβ is the m×m weighted transition
matrix defined by

Qβ := ADβ = [qij ], where qij :=
aij¯̄̄
F 0j
¯̄̄β . (2.2)

The matrix Qβ allows us to consider a weighted subshift of finite type naturally
generated by (ΣA, σ) . See [4] for the similar weighted incidence matrix associated
with a graph directed construction.

Theorem 1 Let (ΣA, σ) be the subshift of finite type associated with F . If β is the
unique positive real number for which the spectral radius of the matrix Qβ is equal
to one, then

dimH (E) = β.

This result is equivalent to the Bowen’s equation. See [11] for the proof and for
the connection with a weighted kneading determinant. Now, we define the trace of
the transfer operator by

TrLφ :=
X

x∈Fix(F )
expφ (x) ,

where Fix(F ) denotes the set of fixed points of F.We consider the pressure function
of φ (x) = log |F 0 (x)|−β as β varies, Pβ (φ), defined by

Pβ (φ) := lim
k→∞

1
k log

P
x∈Fix(Fk)

¯̄̄¡
F k
¢0
(x)
¯̄̄−β

= lim
k→∞

1
k log

³
TrQk

β

´
= log (λβ) ,

(2.3)
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where Fix (F k) denotes the set of fixed points of F k, see [5, 18] and [19]. Thus,
expPβ (φ) is the largest eigenvalue λβ of the transfer operator Lφ, and is equal to
the spectral radius of the matrix Qβ [18].

3 Maximum entropy measure

It is well known that the subshift of finite type (ΣA, σ) has an invariant probabil-
ity measure of maximal entropy, [3] and [17]. In this section, we will present an
algorithm to define a fractal Markov measure, considering β = dimH (E).

By the Ruelle-Perron-Frobenius Theorem there exist λβ > 0 and vβ ∈ C, with
vβ (Ji) > 0 for all 1 ≤ i ≤ m, such that vβ is the eigenvector of Qβ with largest
eigenvalue λβ, i.e., Qβ vβ = λβ vβ. This eigenvector is used to construct a transition
probability matrix. Now we present a simple algorithm to compute this matrix.
Let µ be a measure with support in P 0I . We denote the adjoint operator of Lφ by
L∗φ, which is defined by a bounded linear map on measures, i.e.,¡

L∗φ µ
¢
(g) := µ (Lφ g) .

Note that the adjoint operator L∗φ is represented by the matrix Q
T
β [12]. The eigen-

values of the matrices Qβ and QT
β are equal. If vβ and rβ are the right eigenvectors

associated with λβ of the matrices Qβ and QT
β , respectively, then we have

mX
i=1

qij vj = λβ vi and
mX
i=1

qij ri = λβ rj . (3.1)

Let uβ := (u1, . . . , um) be the left eigenvector and vβ := (v1, . . . , vm) be the right
eigenvector, strictly positive, of the matrix Qβ. Thus, there exists a unique λβ > 0
and a unique probability measure uβ such that QT

β uβ = λβ uβ. Furthermore, the
measure given by (u1v1, . . . , umvm), up to a multiplicative constant, is F -invariant,
ergodic, positive on non-empty open sets, see [3, 18] and [19].

For the m-dimensional vector space P 0I , we consider two bases
B := {e1, . . . , em} and B0 :=

©
e01, . . . , e

0
m

ª
.

The set of vectors in B are defined by the column vector ej := (0, . . . , 0, 1, 0, . . . , 0)T ,
where 1 is in the j−th position. These vectors correspond to the intervals of the
Markov partition. On the other hand, the set of vectors in B0 are defined by
e0j := (0, . . . , 0, vj , 0, . . . , 0)

T , which correspond to the coordinates of the vector vβ.
If Mβ is the matrix which describes the change from the basis B0 to the basis B,
then we define a new matrix, the m×m matrix

Rβ :=M−1
β Qβ Mβ = [rij ], where rij := qij

vj
vi
with rij ≥ 0.
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The matrix Rβ is the matrix representation of Lφ, with respect to the basis B0. As
the matrices Qβ and Rβ are similar, the largest eigenvalue λβ of these matrices is
the same.

We define an m×m stochastic matrix Sβ := [sij ], where

sij :=
rij
λβ

with sij ≥ 0 and
mX
j=1

sij = 1. (3.2)

We note that the transpose matrix ST
β corresponds to the modified or normalized

transfer operator, with respect to the basis B0 [12].
Let u0β := (u01, . . . , u0m) be the left eigenvector and v0β := (v01, . . . , v0m) be the

right eigenvector, strictly positive, of the matrix Rβ. The probability vector pβ :=
(p1, . . . , pm) is defined by

pi :=
u0i v

0
i

mP
i=1

u0i v
0
i

, such that
mX
i=1

pi sij = pj and
mX
i=1

pi = 1. (3.3)

This vector defines the unique F -invariant equilibrium state for φ = −β log |F 0 (x)|.
Note that, if we consider µ∗ = (u1v1, . . . , umvm), up to a multiplicative constant,
then µ∗ = pβ, compare with [3, 17] and [19]. We will call the pair (pβ, Sβ) weighted
one-sided Markov subshift, associated with the subshift of finite type (ΣA, σ) .

The stochastic matrix Sβ and the probability vector pβ allow us to define an
invariant probability measure µβ on the repeller, depending on the parameter β.
Let ΣA and Σm be as above. We define µβ on the semi-algebra of measurable
intervals by

µβ
¡©
(xi)i∈N ∈ ΣA : xq = a1, . . . , xq+k−1 = ak, with ak ∈ Σm and k ∈ Nª¢
= pa1sa1a2sa2a3 . . . sak−1ak . (3.4)

We call this measure the weighted Markov measure, associated with the weighted
one-sided (pβ, Sβ)-Markov subshift, supported by the subshift of finite type (ΣA, σ),
compare with [7] and [19]. This invariant measure gives nonvanishing probabilities
only for the trajectories staying in the repeller. In particular, the measure of maxi-
mal entropy or Parry measure to the subshift of finite type (ΣA, σ) is obtained with
β = 0. When β = dimH (E), we call this measure fractal Markov measure. The
fractal Markov measure is the measure of maximal entropy to the fractal one-sided¡
pdimH(E), SdimH(E)

¢
-Markov subshift.

Lemma 1 The weighted one-sided (pβ, Sβ)-Markov subshift has metric entropy
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hµβ (F ) and Lyapunov exponent χµβ (F ) with respect to the measure µβ, given by

hµβ (F ) = −
mX

i,j=1

pi sij log (sij) , (3.5)

χµβ (F ) =
mX
i=1

pi log
¡¯̄
F 0i
¯̄¢
,

where the derivative F 0i is evaluated on the interval Ji of the partition P 0I .

Proof. The proof of (3.5) is similar to Theorem 4.27 of [19] (see also [13])
considering the next adaptations. Let Γ = {C1, . . . , Cm} be a partition of ΣNm,
defined by

Ci = {(xk) : x0 = ai with 1 ≤ i ≤ m, k ∈ N} .
Let B be a σ-algebra of I and A be a finite subalgebra of B. The elements of the
partition Γ

¡Wm
i=1 σ

−iA¢ are
Ci1 ∩ σ−1Ci2 ∩ · · · ∩ σ−(m−1)Cim = {(xk) : x1 = a1, . . . , xm = am, k ∈ N}

where the measure is given by (3.4). Thus, according to the conditions of (3.2) and
(3.3), the definition of product σ-algebra and by Kolmogorov-Sinai Theorem, we
have (3.5).

We consider the Lyapunov exponent of F at x defined by

χµβ (F (x)) := lim
n→∞

1

n
log
¯̄
(Fn)0 (x)

¯̄
= lim

n→∞
1

n

n−1X
j=0

log
¯̄
F 0
¡
F j (x)

¢¯̄
.

According to the strong law of large numbers and [16], we have

χµβ (F (x)) = lim
n→∞

1

n
log

nY
k=1

¯̄
F 0ik (x)

¯̄
=

mX
i=1

pi log
¡¯̄
F 0i (x)

¯̄¢
.

Next we will show that the Hausdorff dimension is related with the metric en-
tropy and with the Lyapunov exponent, with respect to the fractal Markov measure
µdimH(E).

Theorem 2 Let
¡
pdimH(E), SdimH(E)

¢
be the fractal one-sided Markov subshift above

defined, then

dimH (E) =
hµdimH (E)

(F )

χµdimH (E)
(F )

.
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Proof. The statement follows from Lemma 1, definition (3.4) with β = dimH (E),
the variational principle for the topological pressure and by the expansiveness of
the map F . Thus, there exists a probability F -invariant measure. This measure is
an equilibrium state for φ, [8] and [19]. According to the variational principle for
the Hausdorff dimension, [5], we have that the Hausdorff dimension is the unique
real number such that hµβ − β χµβ = 0.

If the IFS has the same contraction ratios in modulus, we verify the next result.
See [7] to similar result with respect to the Parry measure.

Proposition 1 If ϕi (x) = log |F 0i (x)| is constant on each interval Ji of the parti-
tion P 0I , then the metric entropy of the weighted one-sided (pβ, Sβ)-Markov subshift,
with respect to the measure µβ, is equal to the topological entropy of the subshift of
finite type (ΣA, σ).

Proof. If ϕi (x) = log |F 0i (x)| is constant on each Ji of P 0I , then the entries of Qβ

are qij = aij |F 0|−β . The largest eigenvalue of Qβ satisfies λβ = λA

¯̄̄
F 0j
¯̄̄−β
, where

λA is the spectral radius of the transition matrix A. Substituting (3.2) and (3.3)
into the formula (3.5) for the metric entropy, we have

hµβ (F ) = − mP
i,j=1

ui
qij
λβ

vj log

µ
aij vj

|F 0j|β λβ vi
¶

=
mP

i,j=1
ui

qij
λβ

vj log

µ¯̄̄
F 0j
¯̄̄β

λβ

¶
+

mP
i,j=1

ui
qij
λβ

vj (log vi − log (aij vj)) .

It follows from (3.1) and (3.3) that the first sum is equal to logλA, i.e., the topo-
logical entropy, [9]. On the other hand, according to (3.1) and to the definition of
the transition matrix, the second sum is equal to zero.

4 Family of fractal sets

In this section, we consider a three-parameter family of expanding discontinuous
maps with holes on the unit interval parametrized by a, b and c, defined by

Fa,b,c (x) =



x
a if x ∈ [0, y1] ,

x−y1
b if x ∈ ]y1, y2] ,

x−y3
c if x ∈ [y3, 1] ,
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where y2−y1
b = 1−y3

c = 1, z−y1
b = z with y1 < z < y2 and z y−11 ≤ a−1 ≤ y−11 . Note

that, if 1 < a−1 ≤ z y−11 , then the transition matrices are reducibles with topological
entropy log 2 . According to the value of the parameter a−1, the orbit o

¡
y−1
¢
can

be periodic, eventually periodic, aperiodic or lie in the hole. To the point y1, we
consider the orbits of the lateral limit points o

¡
y−1
¢
and o

¡
y+1
¢
. Set©

y−1 , y
+
1 , y2, y3

ª
:= {b1, b2, b3, b4} .

We associate with the orbit of each point bi, with 1 ≤ i ≤ 4, a sequence of symbols
S(i) given by

S(i) := S
(i)
0 S

(i)
1 . . . S

(i)
k . . . ,

where

S
(i)
k :=



L if F k
a,b,c (bi) ∈ [0, y1] ,

M if F k
a,b,c (bi) ∈ ]y1, y2] ,

H if F k
a,b,c (bi) ∈ ]y2, y3[ ,

R if F k
a,b,c (bi) ∈ [y3, 1] .

We denote by A the ordered set of symbols corresponding to the laps and the hole
of Fa,b,c and according to the real line order, i.e.,

A = {L, M, H, R} and L ≺M ≺ H ≺ R.

If we consider values of a−1 for which the orbits are periodic, and denote these
orbits by ((L)S(1)1 . . . S

(1)
p−1)

∞ with period p, then the kneading data to Fa,b,c are

(((L)S
(1)
1 . . . S

(1)
p−1)

∞, (M)L∞, (M)R∞, (R)L∞).

The weighted kneading increment for the point a1 is

νy1 (t, β) = θy+1
(t, β)− θy−1

(t, β) = θb2 (t, β)− θb1 (t, β) ,

where

θy±1
(t, β) := lim

x→y±1
θx (t, β) =

∞X
k=0

τk
¡
y±1
¢
S
(i)
k tk

with τ0
¡
y±1
¢
:= 1 and for k > 0

τk
¡
y±1
¢
:=

k−1Y
l=0

ε
³
S
(i)
l

´ ¯̄̄
F 0a,b,c

³
F l
a,b,c

¡
y±1
¢´¯̄̄−β

.
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For more details see [11], where we develop a weighted kneading theory for expand-
ing discontinuous maps with holes. Thus, we have

θy−1
(t, β) =

L+τ1(y−1 )S
(1)
1 t+...+τp−1(y−1 )S

(1)
p−1 t

p−1

1−τp(y−1 ) tp
,

θy+1
(t, β) = bβ t

1−aβ tL+M.

After separating the terms associated with the different symbols {L, M, R}, if we
write

Lp :=

p−1X
i=1

S
(1)
i =L

τ i
¡
y−1
¢
ti

and analogously for Mp and Rp, then we have

θy−1
(t, β) =

1 + Lp

1− τp
¡
y−1
¢
tp
L+

Mp

1− τp
¡
y−1
¢
tp
M +

Rp

1− τp
¡
y−1
¢
tp
R.

Consequently, the weighted kneading increment for the point y1 is

νy1 (t, β) =

µ
bβ t
1−aβ t −

1+Lp
1−τp(y−1 ) tp

¶
L

+

µ
1− Mp

1−τp(y−1 ) tp

¶
M − Rp

1−τp(y−1 ) tp
R.

The weighted kneading increments for the points y2 and y3 are

νy2 (t, β) =M +
bβ t

1− cβ t
R and νy3 (t, β) =

cβ t

1− aβ t
L+R.

The weighted kneading matrix of these kneading data is

N (t, β) =


bβ t
1−aβ t −

1+Lp
1−τp(y−1 ) tp

1− Mp

1−τp(y−1 ) tp
−Rp

1−τp(y−1 ) tp
0 1 bβ t

1−cβ t
cβ t
1−aβ t 0 1

 .
The weighted kneading determinant is given by

D (t, β) = 1

(1−aβ t) (1−cβ t) (1−τp(y−1 ) tp)
£
1− ¡aβ + bβ + cβ

¢
t+ aβcβt2

+
¡
1− aβt− cβt+ aβcβt2

¢
Lp + bβcβt2Mp

− ¡cβt− c2βt2
¢
Rp + bβτp

¡
y−1
¢
tp+1

¤
.

(4.1)
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Note that, the weighted kneading determinant associated with an orbit that
lies in the hole is the same, by removing the weighted cyclotomic polynomial 1 −
τp
¡
y−1
¢
tp. The next theorem relates the weighted kneading determinant with the

characteristic polynomial of the matrix Qβ, which we will be denoted by PQβ
(t)

[11].

Theorem 3 If the kneading data associated with an expanding discontinuous map
with holes F corresponds to periodic, eventually periodic orbits or to orbits that lie
in the hole, then the weighted kneading determinant is given by

D (t, β) =
PQβ

(t)

R (t)
,

where R (t) is a product of weighted cyclotomic polynomials corresponding to those
periodic or eventually periodic orbits.

The following statement will allows us to compute explicitly the Hausdorff di-
mension, the escape rate and the topological entropy.

Theorem 4 Let D (t, β) be the weighted kneading determinant, under the condi-
tions of the previous theorem.

(i) If β is the unique solution of D (1, β) = 0, then β is the Hausdorff dimension
of the attractor E.

(ii) If t1 is the least real positive solution of D (t, 1) = 0, then log (t1) is the
escape rate of the pair (E,F ).

(iii) If t0 is the least real positive solution of D (t, 0) = 0, then log
¡
t−10
¢
is the

topological entropy of the map F .

Proof. Considering the transfer operator given in (2.1), we have³
Lφj g

´
(x) =

mX
j=1

¯̄
F 0j (x)

¯̄−β
g (fj (x)) χF (int Jj).

Let aij be the entries of the transition matrix A. For each Ji ∈ P 0I , with 1 ≤ i ≤ m,
and β ∈ R the eigenvalue equation corresponding to an eigenvalue λβ is

mX
j=1

aij¯̄̄
F 0j (x)

¯̄̄β vj = λβ vi

for the operator Lφ characterized by the matrix Qβ. According to [18] and using
(2.3), the largest eigenvalue of the transfer operator is expPβ (φ). Hence, expPβ (φ)
is the spectral radius λβ of the matrix Qβ.



Computing topological and metrical invariants 609

If β is the unique solution of D (1, β) = 0, then by Theorem 1 and (2.3), we get
Pβ (φ) = 0. By [5] and [10], we can conclude that β = dimH (E).

On the other hand, considering the parameter β = 1, we have that λ1 =
expP1 (φ) is the largest eigenvalue of the matrix Q1. The second statement fol-
lows from [1], where the escape rate γ is given by γ = −P1 (φ). Thus, the escape
rate is γ = log

¡
λ−11

¢
, where λ−11 = t1 is the least real positive solution of PQ1 (t) = 0.

If β = 0, then the determinant D (t, 0) corresponds to the kneading determinant
described in [9], where t−10 = λ0 is the growth number of F , i.e., the spectral radius
of the transition matrix A. Consequently, log (λ0) is the topological entropy of the
map F .

Relative to this family of IFS’s, the next statement give us a rule of construction
of the characteristic polynomials between the periodic symbolic sequences of periods
p and p+ 1, with p ≥ 2.

Theorem 5 Given a periodic sequence of period p whose polynomial PQβ
(t) has

degree n = p + 1, then the polynomials corresponding to the periodic sequences of
period p+1 and to the sequence that lies in the hole, level p+1, have the following
rule of construction

PQβ
(t)

L−→ PQβ
(t) + τp t

p − ¡aβ + bβ + cβ
¢
τp t

p+1 +
¡
aβcβτp + bβτp+1

¢
tp+2,

PQβ
(t)

M−→ PQβ
(t)− bβτp t

p+1 +
¡
bβcβτp + bβτp+1

¢
tp+2,

PQβ
(t)

H−→ PQβ
(t)− bβτp t

p+1,

PQβ
(t)

R−→ PQβ
(t)− ¡bβ + cβ

¢
τp t

p+1 +
¡
c2βτp + bβτp+1

¢
tp+2.

The proof is a consequence of Theorems 3 and 4, Eq. (4.1) and by analysis
of the lexicographical order. The above theorem allows us to construct a tree of
characteristic polynomials order with the variation of the parameter a.

Remark 1 According to Theorem 1, we have dimH (E) = β, where β is the unique
solution of PQβ

(1) = 0. As a consequence of Theorems 1 and 5, we obtain the
behavior of the Hausdorff dimension to the attractors of this family of IFS’s, which
is dependent on the contraction ratios, compare with [6] and [15]. We note that,
the precise behavior is just obtained for periodic, eventually periodic orbits or for
the orbits that lie in the hole. On the other hand, we also have the behavior of
the topological entropy and the escape rate. The graph of the topological entropy
depending on the parameters has a structure of a Cantor function.
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Remark 2 The theory presented in this paper with respect to periodic, eventually
periodic orbits or to the orbits that lie in the holes is also valid for aperiodic orbits.
In this case, the invariant coordinates associated with the turning points and with
the discontinuity points are formal power series. The computation of the topological
entropy, the Hausdorff dimension and the escape rate is done by approximation
using: periodic, eventually periodic orbits or the orbits that lie in the holes.

Note that the parameter a associated to each periodic sequence ((L)S(1)1 . . . S
(1)
p−1)

∞

of period p is given by F p
a,b,c (y1) = y1. To the sequence (L)S

(1)
1 . . . S

(1)
p−1H, which

lie in the hole, the interval of variation of the parameter a is given by the condition

y2 < F p
a,b,c (y1) < y3.

Relative to the eventually periodic orbits, we obtain the topological entropy, the
Hausdorff dimension and the escape rate using finite matrices. The next table shows
examples of eventually periodic sequences to this family and the correspondent
parameter a−1, with b−1 = 9 and c−1 = 3, the topological entropy, the Hausdorff
dimension and the escape rate.

a−1 seq. event. perdc. htop (Fa,b,c) dimH (E) γ (E,F )

1.125 (L)M∞ log (2) 1 0

2.25 (L)RL∞ log (2.61803...) 0.681446... 0.405465...

3.0 (L)RRL∞ log (2.87939...) 0.736918... 0.352695...

3.375 (L)R∞ log (3) 0.773916... 0.300105...

The next matrices are the weighted transition matrices associated with each even-
tually periodic sequence

Qβ ((L)M
∞) =


aβ bβ 0 cβ

aβ bβ 0 cβ

0 0 bβ cβ

0 0 bβ cβ

 , Qβ ((L)RL
∞) =


aβ bβ 0 cβ

aβ bβ 0 cβ

aβ bβ 0 cβ

0 bβ 0 cβ

 ,

Qβ ((L)RRL
∞) =


aβ bβ 0 cβ 0
aβ bβ 0 cβ 0
aβ bβ 0 cβ 0
aβ bβ 0 0 cβ

0 bβ 0 0 cβ

 , Qβ ((L)R
∞) =


aβ bβ 0 cβ

aβ bβ 0 cβ

aβ bβ 0 cβ

aβ bβ 0 cβ

 .
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The next figures show the behavior of the growth rate of Fa,b,c, which is given
by exp (htop (Fa,b,c)), the Hausdorff dimension and the escape rate to this family,
with

9

8
≤ a−1 ≤ 27

8
, b−1 = 9 and c−1 = 3.

Figure 1: Growth rate of the map Fa,b,c depending on the parameter a

Figure 2: Hausdorff dimension of E depending on the parameter a.
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Figure 3: Escape rate of (E,F ) depending on the parameter a.
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