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Abstract

In the paper a method for investigation of some functionals of branching
stochastic processes related to their genealogy will be discussed. The method
is based on the construction and study of a special form of random sum of
independent vectors of indicator functions. Using the results obtained for the
random sum, limit distributions for the number of large families (generalized
reduced processes) and for the number of excesses generated by productive
ancestors in large populations have been found. This problem is considered
for discrete time single and multi-type processes in critical, subcritical and
supercritical cases. Possibilities of applications of the method in more general
models of branching processes will also be discussed.
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1 Introduction

We consider a sequence of random vectors which is defined as following. Let
{&ij(k,m), j > 1}, i =1,2,...,n, for any pair (k,m) € N2, N={1,2,...}, Ng =
{0} UN, be n independent sequences of random variables and {v;, k € No}, i =
1,2,...,n, be n sequences of (not necessarily independent) random variables taking
values 0,1,... and independent of the family {&;;(k,m)}. We consider the family
of random vectors

Vik

W (k,m) = (Wi(k,m),...,Wy(k,m)), Wi(k,m)= Zgij(k,m). (1)
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Assume that §ij(/<:,m), j=1,2,..., for any fixed k,m and ¢ are independent and
identically distributed Bernoulli random variables with parameter P,g:t (i.e., have
distribution b(1, P,E;)l))

We shall study the asymptotic behavior of W(k, m) as k,m — oo under some

assumptions on the random variables v;; and fij(k, m) in different cases of relation-
ship between the parameters k£ and m.

Random sums of independent random variables or random vectors have been
considered by many authors. First it is because of the interest in extending classic
limit theorems of the probability theory to a more general situation and to discover
new properties of the random sums caused by “randomness” of the number of
summands. On the other hand, many problems in different areas of probability can
be connected with a sum of random number of random variables. A rather full list
of publications on random sums can be found in the recent monograph by Gnedenko
and Korolev (1996). Transfer theorems for the random sum of independent random
variables can also be seen in Gnedenko (1997).

The relationship between random sums and branching stochastic processes is
well known. Starting from early studies (see Harris (1966), for example) including
the recent publications, the fact that the number of particles in a model of branch-
ing process can be represented as a random sum has been mentioned. Some of the
investigations show that using this relationship in the study of branching models
makes it possible to investigate new variables related to the genealogy of the process,
to study more general modifications of branching processes and to consider different
characteristics of the process from a unique point of view. So, limit distributions for
the number of pairs of individuals at time 7 having the same number of descendants
at time ¢, ¢ > 7 are found in [7]. A more general variable of this kind, describing the
number of individual pairs having “relatively close” number of descendants was con-
sidered in the paper [8] (see also [9, Ch. IV]). Using this relationship limit theorems
for different models of branching processes with immigration which may depend on
the reproduction processes of particles are also proved. This kind of problems are
systematically studied in the above mentioned monograph [9]. Investigations of the
maximum family size in a population by Arnold and Villasenor (1996), Rahimov
and Yanev (1999) and by Yanev and Tsokos (2000) are also based on this kind of
a relationship.

Here we consider the relationship of the random sum of random vectors and
multitype branching processes. Although X(¢), the number of individuals of differ-
ent types at time ¢, is the main object of investigation in the theory of multitype
branching processes, there are many other variables related to the population which
are of interest as well. One example of such a variable is the time to the closest
common ancestor of the entire population observed at certain time. For a single-
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type Galton-Watson process this variable was considered by Zubkov (1975), who
proved that, if the process is critical, the time is asymptotically uniformly distrib-
uted. Later, it turned out that the time to the closest common ancestor may be
treated as a functional of the so called reduced branching processes. This process
was introduced by Fleischmann and Siegmund-Schultze (1977) as a process that
counts only individuals at a given time 7 having descendants at time ¢, ¢ > 7. They
demonstrated that in the critical single-type case the reduced process can well be
approximated by a nonhomogeneous pure birth process. Later a number of studies
extended their results to general single and multitype models of branching processes
(see [14, 15] and [12], for example).

It turned out that, if one uses theorems proved for the random sums defined
in (1), one may study a generalized model of multitype reduced processes. Let
0(t) = (01(t),...,0,(t)) be a vector of nonnegative functions, 7 and ¢, 7 < ¢t be two
times of observation. We define process X(7,t) = (Xi(7,t),...,X,(7,t)), where
X;(7,t) is the number of type 7; individuals at time 7, whose number of descendants
at time ¢ of at least one type is greater than corresponding level, given by vector
O(t — 7). It is clear that X(7,t) counts only “relatively productive” individuals at
time 7. We also note that X(7,%) is a usual n-type reduced process if 8(t) = 0
for all t € Ny. In the project limit distributions for process X(7,t) as t,7 — oo in
different cases of relationship between observation times 7 and ¢ for critical processes
have been obtained. For single type processes limit theorems are also proved in
subcritical and supercritical cases. Asymptotic behavior of expected number of
individuals counted in generalized reduced process is also studied. Possibilities of
applications in more general models branching processes and in other processes are
investigated.

Here we consider as a large family one, whose number of members of at least
one type is greater than a given level. One may consider the reduced processes
with different sets of types effecting productivity of the individuals. For instance,
a family is large, if the number of its members of types T;, i € V, is greater than a
given level. Here V is a subset of {1,2,...,n}. Another example is the case when
the sum of the numbers of its members of some types is large. Further investigations
in this direction are in the progress. Below we provide main results obtained in this
work without a proof. The proofs will be published elsewhere.

2 Results and discussion

2.1 Convergence of the random sum

For n-dimensional vectors x = (z1,...,%,), ¥ = (Y1,...,Yn) we denote x by =
Y1 In

($1y1>---axnyn)7 x¥ = (:Bl 7"'ax%n)7 X/y: (%7 7y_n)7 (X7Y) =1+ +
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TnYn, VX = (\/T1,...,1/Tn), and X >y or x >y if z; > y; or x; > y; respectively.
The first theorem obtained in the paper concerning the vector (1) covers the case

when normalized vector vy = (v, ¢ = 1,...,n) has a limit distribution. Namely
we assume that there exists a sequence of positive vectors Ay = (A, i =1,...,n)
such that A;;, — 0o,k — o0,
vk
k
in distribution and for the vector P(k,m) = (PISBL, i=1,...,n)
P(k,m)® Ax — a=(a1,...,a,), (3)

where the components of the vector a may be +oc.

Theorem 1 If conditions (2) and (3) are satisfied, then

W (k,m)
)
in distribution and EeMW) = o(X*), where ¢(\) is the Laplace transform of the

vector Y, X = (A\},...,\%) and X! = X\; if a; = oo, and \f = a;(1 — e~ N/%) if
a; < 00.

The family of vectors (1) is eventually a sum of independent vectors if the
vectors v = (Vik, © = 1,...,n) have degenerate distributions. Therefore one may
expect to obtain a normal limit distribution under some natural assumptions. The
next theorem obtains the conditions under which the limit of vector W (k,m) is a
mixture of the normal and a given distribution. Assume
C1. For a given sequence of positive vectors Aj there exists a sequence l; =
(lig, ©=1,...,n), k> 1such that A/l — o0, k — 00, i=1,...,n, and

I, @ P(k,m)® (1 —P(k,m)) — C
as k,m — oo, where C = (Cj, i = 1,...,n) is a positive vector of constants.
Theorem 2 If conditions (2) and C1 are satisfied, then

{W(kz, m) — v © P(k,m)

VAR ® C/l

l/k?éO}—>W
as k,m — oo , where

P{WSX}Z/OOO"-/OOOf[l‘P(%)dT(yl,---,yn),

®(x) is the standard normal distribution and T'(x1,...,xy) is the distribution of the
vector Y in (2).
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2.2 Construction of the generalized reduced process

Now we give a rigorous definition of the generalized reduced process X(7,t). We use
the following notation for individuals participating in the process. Let the process
start with a single ancestor at time ¢ = 0 of type T;, ¢ = 1,...,n. We denote it by
T; and consider as zero-th generation. The direct offspring of the initial ancestor we
denote as (T;,Tj,m;j), where T;, j = 1,...,n is the type of the direct descendant
and m; € N, N = {1,2,...} is the label (the number) of the descendant in the
set of all immediate descendants of 7;. Thus the myy;-st direct descendant of
the type T;,,, of the individual o = (T3, T5,,m1, ..., T;,,mi) will be denoted as
o = (a,T;,,,,mpy1). Here and later on for any two vectors o = (i1,...,%;) and
B = (ji,---,Jm) we will understand the ordered pair (a, ) as the k+m dimensional
vector (i1, ... 0k, J1y---»Jm)-

If we use the above notation, the set i; € E, where E is the space of all finite
subsets of

k+1

UNENF =N x Ny, M= {1} x {Th,..., T} x N,
k=1

corresponds to the population of the t-th generation. It is clear that R; can be
decomposed as R; = U;‘:ﬂﬁgi), where ?R,gi) is the population of the type T; individuals
of the ¢-th generation. Consequently, the components of the process X(¢) are found
as X;(t) = card {?Rgi)}, t € Np, and for any 7 and ¢ such that 7 < ¢ we have

XH=% Y X@@-q),

=1 enl®

where X(®(t) = (Xfa) (t),.. .,Xfla) (t)) is the n-type branching process generated
by the individual a.

Let 3;([0],7,t) be the set of individuals in R having at least one type of
descendants at time ¢ more than the corresponding component of (¢ — 7). It is not
difficult to see that it can be described as follows:

3i(10],7,t) = {a € R : for at least one j I more than 0;(t —7)

B -sets such that (a, ) € %g‘j)},

where o € N, 8 € Nlt*T. Thus the generalized reduced process is defined as
X(7,t) = (Xi(1,t),1 =1,...,n) with X;(7,t) = card{3;([0], T,1)}.

In particular, if 6(¢t) = 0 for all ¢, then 3;([0], 7,¢) contains all individuals of
type T; only living in the 7-th generation and having descendants (at least of one
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type) in generations 7+1,742,...,t. Consequently, in this case X(7,t), 0 < 7 < ¢,
is the n-type usual reduced branching process.

It follows from the definition of the reduced process that X(7,t), 0 < 7 < t,
is the number of productive individuals at time 7 who have a large number of
descendants at time t. Let us now consider families in the population ¥; at time
t. A family is the set of individuals (of all types) at time ¢ who have a common
ancestor at time 7. The family is large, if the number of its members of at least
one type is greater than the value of corresponding function in the “level vector”
0(t — 7). Then, it is clear that X(7,t) is the vector describing the number of “large
families” in R; where X;(7,t) being generated by an individual of type 7; in R, .

2.3 Limit behavior of the reduced process

We denote by P o = (ay,...,a,) € NB, the offspring distribution of the process
X(t), i.e.,
P, = P{X(1) = a[X(0) = ;}
is the probability that an individual of type T; generates the total number o of new
individuals. Here §; = (35, j = 1,...,n), 0;; = 0 if ¢ # j and J§; = 1. We also
denote
Fi(S)= Y Pis{t---San, F(S)=(F'(S),...,F"(8)),

aeNy

Q'(t) = P{X(t) # 01X(0) = 6;}, Q(t) = (Q'(1),---,Q"(1))-
Let for i,5,k=1,2,...,n,

. J
L _OFi(S)

|  2Fi(S)
4 851 S=1,

7
bik = 95,05}, ls=1,

A= Haz H be the matrix of expectations, p be its Perron root and the right and the

left eigenvectors U = (uy,us,...,u,) and V = (v1,ve,...,v,) corresponding to the
Perron root be such that

AU=)pU, VA=,V, (UV)=1, (U1)=1L.

If A is indecomposable, aperiodic and p = 1, the process X(¢) is called criti-
cal indecomposable multitype branching process. We assume that the generating
function F(S) satisfies the following representation

z— Z vj(1 = FI(1 - Uz)) = 2" L(z), (4)
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where 0 < z < 1, a € (0,1], and L(x) is a slowly varying function as = | 0.
Note that in this case p = 1, i.e., the process is critical and the second moments
of the offspring distribution b/, i,j,k = 1,...,n, may not be finite. Under this
assumption the following limit theorem for the process X(¢) holds (see Vatutin
(1977)).

Proposition 1 If the offspring generating function F(S) satisfies representation
(4), then we have

a)
Q' (t) ~ ujt ™YLy (t)

as t — oo, where L1(t) is a slowly varying as t — oo function;
b)
Jim P{X(t)q(t) <x &V [ X(t) # 0,X(0) = §;} = 7(x),

where q(t) =37, v;Q7(t) and w(x) = w(x1, T2, ..., 2p) is a distribution having the
Laplace transform

o= [ Vi =1- e K= )
RY
Now we are in a position to state our first result about X(7,t). Let 8 =

(01,...,0,) € R}, Ry = [0,00), C = (C1,...,Cy) € R be some nonnegative
vectors.

Theorem 3 If condition (4) is satisfied, 0(t) = 0V /q(t) and t, T — o0, t—T — 0
so that Q(t — 7)/Q(1) — C, then

P{X(r,t) =k[X () # 0, X(0) =;} — P,

where k = (k1,...,kn) € Ny and the probability distribution {P, k € Ny} has the
generating function ¢*(S) = ¢(a) witha=bCOUBVH(1-S), b=1-7n(0), S =
(S1,-..,5n) and ¢(N) is the Laplace transform defined in (5).

Remark It is clear that the vector C in the condition Q(t — 7)/Q(7) — C neces-
sarily has the form C = C1, where C > 0 is some constant.

Example 1 Let F(S) satisfy condition (4) with o = 1. We shall note here that in
this case the second moments of the offspring distribution still may be infinite. For
this kind of a process the limit distribution 7(6) is exponential and the generating
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function ¢*(S) has the form ¢*(S) = (1+d) ™!, where d = bC' > o1 uvi(1=155), b=
0" 0* =min{fy,...,0,}. We represent it as follows

-1
1 e &
*S T 1-— ey .
9"(S) 1+ Ce? ( 1+ Ce Zuv ) (6)

What is the distribution having the last probability generating function? To an-
swer this question we consider a sequence of independent random variables X7, Xo, ...
such that P{X; = j} = p;, Jj = 0,1,2,...,n, Z?:opj = 1, where pg =
(1+Ce )L, pj = Ce P uju; /(1 + Ce ), j = 1,2,...,n. Let A; be the
number of 1’s, Ay be the number of 2’'s and so on A, be the number of n's ob-
served in the sequence X1, Xo, ... before the first zero is obtained. Then it follows
from the formula for the generating function of generalized multivariate geometric
distribution in Ch. 36.9 of Johnson et al. (1997) that the vector (Aq,...,A,) has
the probability generating function given by (6), i. e.,

B (sfrsfeosi) = o°(s).
Hence we have the following result.

Corollary 1 If the assumptions of Theorem & are satisfied with o = 1, then the
probability distribution {Pf, k € N§} is a multivariate geometric distribution de-
fined by the generating function (5) such that

Pﬁ:P{Ai:ki, iZl,...,TL}.

It is clear that, if n = 1, the distribution is geometric, i.e., P, = pd*, k=0,1,...
with p = (14 Ce ™ 91)71 g = Ce %1 (1 + Ce=%)~!

Example 2 Let the assumptions of Theorem 3 be satisfied and 7 = [¢t], 0 < e < 1.
Using the asymptotic behavior of Q(t) and the uniform convergence theorem for
the slowly varying functions we obtain that as t — oo

Qg@)ﬂ - <1 ;)wl

Consequently, in this case the limit distribution has the generating function ¢*(S)
with C = (¢/(1 +¢))". In particular, we have the following result.

Corollary 2 If the assumptions of Theorem 3 are satisfied and T = o(t), then
2‘/lirn P{X(r,t) =k|X(7) #0,X(0) =§;} =0

for allk € N§ and k # 0.
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It is known that in the critical case the process X(¢) goes to extinction with
probability 1. Corollary 2 shows that, if 7 = o(t), even a conditioned process
X(7,t) given X(7) # 0 vanishes with a probability approaching 1.

Theorem 3 gives a limit distribution for X(7,¢) when the times of observation
T — oo and t — oo so that Q(t — 7)/Q(7) has a finite limit. Now we consider
the case when this limit is not finite. Let T}(7,t) = Q'(t — 7)/Q*(7) and T(7,t) =
(T (7,t), ..., Tn(T,t)).

Theorem 4 If condition (4) holds, 6(t) =0 ®V /q(t) and t,7 — 00, t —T — 00 50
that Ti(1,t) — o0, i =1,2,...,n, then

P {}T(EIZB < x|X(1) # 0,X(0) = 61} — m(=x),

where m(x), x € R}, is the distribution from Proposition 2 and b =1 — m(8).

Remark It follows from the asymptotic behavior of Q'(t) that, if T;(7,t) — oo
for at least one 4, then it holds for each i =1,2,...,n.

Example 3 If the matrix A is indecomposable, aperiodic, p = 1 and bj-k < o0, 1,4,k
= 1,...,n, then (4) is satisfied with @ = 1, L(xz) — const, z — 0. In this case
Q' (t) ~ 2u;/o*t, i=1,...,n ast — oo, where 02 = > k=1 vjbf;lkumuk. Con-
sequently,

L 2
g(t) => Q@ (t); ~ =y o
j=1

and 0(t) ~ ¢%t@ ® V /2. On the other hand, b = ¢~ ,0* = min{fy,...,0,} and
Tij(r,t) ~7/(t—7), 5 =1,...,n. Thus Tj(7,t) — oo if, for example, 7 ~ ¢ and we
obtain the following result from Theorem 4.

Corollary 3 Ifp=1, 0< 0% < o0 and t,7 — 00, t — T — 00 s0 that T ~ t, then

*

P{t;TX(T,t) <x|X(7) # 0,X(0) = (51} — 1 —exp{—?j—}iF ,

where x € R}, x* = min{xy,...,2,}, 0" =exp{—min{fy,...,0,}}.

The above two theorems describe the asymptotic behavior of X(7,t) when ¢ —
T — 00. Now we consider the case 7 =t — A, where A € (0,00) is a constant.
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Theorem 5 If condition (4) is satisfied, t,7 — oo so that t—71 = A € (0,00)
and 6(t) =0 = (01, ...,0,) € R, then

X

P{X(7,t) © Q(7) <x[X(7) # 0,X(0) = 6;} — =(

where x € R} and
R(A) = (RY(A),...,R"(A)), R'(A) = P{U{Xj(A) > 0;}X(0) = di}-

Remark It follows from Proposition 1 that

Q) ([t \V'Li(t-4)
Q'(1) <t—A> Li(t)

which shows that Q'(7) ~ Q'(t) as t,7 — oo, t — 7 = A, for each i = 1,...,n.
Therefore the vector of normalizing functions Q(7) in Theorem 5 can be replaced

by Q(t).

2.4 The number of productive ancestors

Now we consider a population containing at time ¢ = 0 a random number v;(t), i =
1,...,m, t € Ny, of individuals (ancestors) of n different types T1,...,7T,. Each of
these individuals generates a discrete time indecomposable n-type branching sto-
chastic process. Let 0(t) = (01(t),...,0,(t)) be a vector of nonnegative functions.
In how many processes generated by these ancestors the number of descendants at
time ¢ of at least one type will exceed the corresponding level given by 6(¢)? To
answer the question we investigate the process Y (t) = Y ([0],t) = (Y1(t), ..., Ya(?)),
where Y;(t) is the number of initial individuals of type 7; whose number of descen-
dants at time ¢ of at least one type is greater than the corresponding component of
the vector 0(t). It is clear that Y (¢) takes into account only “relatively productive”
ancestors regulated by the family of levels (¢), t € Np.

A process Y (t) may be associated with the following scheme describing the
growth of n-type trees in a forest. Suppose at time zero we have v;(t), i =1,...,n,
one-branch trees of types T;. Each of these trees will grow and give new branches
of types T11,...,T, according to independent, indecomposable n-type branching
processes. Then the process Y(¢) = (Yi(¢),...,Y,(t)) will count the number of
“big trees”: Y;(t) is the number of big trees of type T; having more than 6;(¢) new
branches at time ¢ for at least one 5, j =1,...,n.
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It is not difficult to see that the components of the process Y;(t) can be presented

as
17 (t)

Yi(t) = Z &i;(1), (7)

where &;;(t) = X(U?:l{Xijl (t) > 0;(t)}) and Xfl(t) is, as before, the number of
individuals of type 1} at time ¢ in the process initiated by the j-th ancestor of type
T;. Consequently, theorems proved for the random sum (1) may be applied to this
process.

Let all assumptions from Part §2.3 on n-type branching process X(t), t € Ny, be
satisfied and the generating function corresponding to the probability distribution
P!, o € N2, satisfy equation (4).

Theorem 6 Let condition (4) be satisfied and 6(t) = 6 & V/q(t), § € RY}. If
condition (2) is satisfied and for the normalizing coefficients in (2)

A QU (t) — 0o (8)

ast — oo fori=1,...,n, then

<z t=1,...,n

P {Ym — viai(t)
VitQyg (t)

v# 0} — L(x),

where x € R", a;(t) = bQ'(t), b=1—n(0), 0 € R" and L(x) defined in Theorem
2.

2.5 Noncritical processes

We now assume that the initial branching process X(t) is single-type, i.e., there
are individuals of one type. Let the offspring distribution of a single individual be
pr=P(X(1) =k | X(0)=1) and

fs) = Bs*W [ X() =11, fina(s) = f(£il5), fals) = f(5), A= F(1).
It is not difficult to see from the definition of the process X (7,t) that it can be

written as follows

X(7)

X(rt) = > XVt —7) > 00t - 1)}, (9)

J=1
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where x(A) is the indicator of the event A and X J(T) (t) is the process generated by
the j-th individual existing at time 7. Hence we can apply theorems on the random
sum W,gn) to process X (7,t) with v, = X(7) and

e =XVt —7) > 00t — 1)}

The generating function f(s) is strictly increasing, so it has an inverse g(s). Let
gt(s), t € N, be the ¢t-th functional iteration of g(s). Then for ¢ < s < 1 we put
ki(s) = —Ingi(s). It is well known that when A > 1, the following limit theorem
holds for X (t) (see Jagers (1975), pp. 31-34, for example).

Theorem A Let X (t) be a supercritical process, i.e., A > 1.

a) There exists a sequence {ki} of positive numbers, which can be chosen as ki =
ki(s), g < s <1, so that kX (t) converges almost surely as t — oo to a nondegen-
erate, finite and nonnegative random variable W (s).

b) If EX(1)In X (1) < oo, then ki can be chosen as ky = A"

¢) The Laplace transform of the limit random variable B(\) = Ee "W)X > 0,
satisfies the equation B(AX) = f(B(\)).

Using limit theorems for W,,, we obtained the following results for supercritical
single type processes.

Theorem 7 Let A > 1, 0(t) = 0/ky, 0 € (0,00), kr — 0. Ift,7 — oo so that
t— 71— 00, then

P{X(r,t)k; <z | X(1) >0} -« <m>,

where the distribution w(x) has the Laplace transform (B(\) —q)/(1 —q) and B()\)
satisfies the equation B(AX) = f(B(\)).

Now we consider the case when ¢,7 — oo but £ — 7 = constant.
Theorem 8 Let A > 1, 6(t) =6 € (0,00). Ift,7 — o0 so that t — T =ty € (0,00),

then

P{X(r, 0k, <z | X(7) >0} -7 <%> ,

where R(0,ty) = P(X(to) > 0).
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Example 1 Let the offspring distribution be positive geometric, i.e., pr = p(1 —
p)k_l, k>1, 0<p<1andpyg=0. Itis clear that in this case the process is
supercritical with

B Sp -
f(S)_l—S(l—p)’ A_p1>1'

The equation for the Laplace transform in Theorem A will have the form
pB(}A)

BN == B0y

It is not difficult to see that the function B(A) = p/(p + \) satisfies the above
equation. On the other hand, ¢ = 0, k; = A™7 and the distribution 7(z) is
exponential of the parameter p. Thus we have from Theorem 3 the following result
in this case.

Corollary 1 If the offspring distribution is positive geometric with parameter p, 0 <
p<1,0(t)=0p ", 0 € (0,00), then

P{X(r,t)p" <z |X(t)>0} - 1— exp{—peepx}, x> 0.

Now we consider the subcritical case. In this case we use the following result
which is known as Yaglom’s theorem (see Jagers(1975), p. 29, for example).

Theorem B If A < 1, then there exists

lim P(X() =k | X(t)>0) =P, keN,

t—o0

the probability generating function F*(s) of {Py, k € N} satisfies the functional
equation

1—F*(f(s)) = A(L = F*(s)). (10)
In this case limit theorems for random sums give the following result.

Theorem 9 Let A <1 and 0(t) =0 € [0,00).
a) If t, 7 — o0 so that t — T — o0, then

P{X(r,t) =k | X(r) >0} —0

for each k > 1.
b) If t, 7 — o0 so thatt — T =ty € (0,00), then

P{X(1,t) =k | X(1) >0} —q;, keNp

and {q;, k € No} has the probability generating function F*(1 — R(0,to)(1 — s)).
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2.6 Behavior of the expected number of particles

Let X(7,t) be a single-type generalized reduced process. Using identity (9) we
obtained the following exact formula for the expected number of particles.

EX(1,t) = EX(1)P{X(t—7) > 6(t—71)}. (11)
The assumption (4) will have the following form in this case
f(s)=s+(1—s)'"L(1-s), (12)
The following results give the asymptotic behavior of the expectation.

Proposition 1 If (12) is satisfied, 0(t) = 0/Q(t), 6 € [0,00), and t,7 — o0,
t—7 — 00 so that Q(t —7)/Q(1) — C € [0,00), then

N(r)
71/a

EX(r,t) ~ (1 - (0))C

where N(t) is a slowly varying function such that N®(t)L(N(t)/t'/*) — a1

The next proposition gives the asymptotic behavior of the expectation in the case
of supercritical processes.

Proposition 2 Let A > 1, 6(t) = 0/ky, 0 € [0,00), where k; is the same sequence
of normalizing constants from Theorem A.
a) If t, 7 — 00, t — T — 00, then

EX(r,t) ~ ATP{W > 0}.
b) If t,7 — o0, t — T =A € (0,00), then
EX(71,t) ~ ATR(A,0).

Asymptotic formulas for the expectation in the subcritical case have been also
obtained.

3 Applications

3.1 More general models of branching processes

So far we considered the subpopulation of productive individuals in a single or
n-type Galton-Watson processes. It turned out that the methods developed here
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could be used in the study of more general models of branching processes. It
can be seen from the proofs of the main theorems that the assumptions on the
initial branching process lead us to use known results about asymptotic behavior
of the “non-extinction” probability and limit theorems for the initial process. For
branching models such as continuous-time Markov branching processes, Bellman-
Harris processes, the Sevastyanov model and Crump-Mode-Jagers processes this
kind of results are well known. So to study the generalized reduced processes for
these models one needs slightly modify Theorems 1 and 2 and use known limit
theorems for one or another model of branching processes. Thus we can conclude
that our approach developed here allows to consider different models of branching
processes from a unique point of view.

3.2 Other stochastic processes

The theorems obtained for random sums of indicators may also be used in other
stochastic processes, when one needs to count the number of some events related
to the process in a time interval. Let us consider a single server queue system in
which the arrival and service times are independent and the queue discipline is first
come first served. Let X(¢) be the number of customers in the queue at time ¢,

&y 1 =1,2,..., be the service times of these X (¢) customers. Then
X(t)
v(t) =) x(& > 0(1)
i=1

is the number of customers which need a “long time” service, 0(t) is the minimum
time required to serve each of those customers. It is clear that the results obtained
here for random sums of indicators allow to study the process v(t). It can be done
in the cases of stationary and nonstationary service times.
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