5–10 July 2004, Antalya, Turkey — Dynamical Systems and Applications, Proceedings, pp. 577–581

Boundedness of Weighted Composition Operators between Two Different L^p Spaces

E. Pourreza Department of Mathematics, University of Tabriz, Tabriz, IRAN E-mail: pourreza@tabrizu.ac.ir

Abstract

In this paper we will consider the weighted composition operators uC_{φ} between two different $L^p(X, \Sigma, \mu)$ spaces and the boundedness of the weighted composition operators has been investigated in the $1 \le p \le q < \infty$ case.

AMS Subject Classification: Primary 47B20; Secondary 47B38.

Key words: Weighted composition operator, Conditional expectation, Multiplication operator.

1 Preliminaries and notation

Let (X, Σ, μ) be a sigma finite measure space. By L(X), we denote the linear space of all Σ -measurable functions on X. When we consider any subsigma algebra \mathcal{A} of Σ , we assume they are completed; *i.e.*, $\mu(A) = 0$ implies $B \in \mathcal{A}$ for any $B \subset A$. For any sigma finite algebra $\mathcal{A} \subseteq \Sigma$ and $1 \leq p \leq \infty$ we abbreviate the L^p -space $L^p(X, \mathcal{A}, \mu|_{\mathcal{A}})$ to $L^p(\mathcal{A})$, and denote its norm by $\|\cdot\|_p$. We define the support of a measurable function f as $\sigma(f) = \{x \in X; f(x) \neq 0\}$. We understand $L^p(\mathcal{A})$ as a subspace of $L^p(\Sigma)$ and as a Banach space. Here functions which are equal μ -almost everywhere are identical. An atom of the measure μ is an element $A \in \Sigma$ with $\mu(A) > 0$ such that for each $F \in \Sigma$, if $F \subset A$ then either $\mu(F) = 0$ or $\mu(F) = \mu(A)$. It is easy to see that every \mathcal{A} - measurable function $f \in L(X)$ is constant μ - almost everywhere on A. So for each $f \in L(X)$ and each atom A we have

$$\int_A f \, d\mu = f(A)\mu(A)$$

A measure with no atoms is called *non-atomic*. We can easily check the following well known facts (see [14]):

(a) Every sigma finite measure space (X, Σ, μ) can be decomposed into two disjoint sets B and Z, such that μ is non-atomic over B and Z is a countable union of atoms of finite measure. So we can write X as follows:

$$X = B \cup \left(\cup_{n \in \mathbb{N}} A_n \right)$$

where $\{A_n\}_{n\in\mathbb{N}}$ is a countable collection of disjoint atoms and B is a nonatomic set.

- (b) Suppose that an \mathcal{A} measurable set K is non-atomic and that $\mu(K) > 0$. Then, for any number a with $0 < a < \mu(K)$, there is an \mathcal{A} - measurable subset K_a of K such that $\mu(K_a) = a$.
- (c) Suppose $1 \le p < q < \infty$. If an \mathcal{A} measurable set K is non-atomic and such that $\mu(K) > 0$, there exists a function $f_0 \in L^p(\mathcal{A})$ such that $\int_K |f_0|^q d\mu = \infty$.

Associated with each sigma algebra $\mathcal{A} \subseteq \Sigma$, there exists an operator $E(\cdot|\mathcal{A}) = E^{\mathcal{A}}(\cdot)$, which is called *conditional expectation* operator, on the set of all non-negative measurable functions f or for each $f \in L^p$ for any $p, 1 \leq p \leq \infty$, and is uniquely determined by the conditions

- (i) $E^{\mathcal{A}}(f)$ is \mathcal{A} measurable, and
- (ii) if A is any \mathcal{A} measurable set for which $\int_A f \, d\mu$ exists, we have $\int_A f \, d\mu = \int_A E^{\mathcal{A}}(f) \, d\mu$.

This operator is at the central idea of our work, and we list here some of its useful properties:

- E1. $E^{\mathcal{A}}(f \cdot g) = f \cdot E^{\mathcal{A}}(g)$, for all $f \in L^p(\mathcal{A})$.
- E2. $E^{\mathcal{A}}(1) = 1.$
- E3. $|E^{\mathcal{A}}(fg)|^2 \le E^{\mathcal{A}}(|f|^2)E^{\mathcal{A}}(|g|^2).$
- E4. If f > 0 then $E^{\mathcal{A}}(f) > 0$.

Properties E1. and E2. imply that $E^{\mathcal{A}}(\cdot)$ is idempotent and $E^{\mathcal{A}}(L^{p}(\Sigma)) = L^{p}(\mathcal{A})$. Suppose that φ is a mapping from X into X which is measurable, $(i.e., \varphi^{-1}(\Sigma) \subseteq \Sigma)$ such that $\mu \circ \varphi^{-1}$ is absolutely continuous with respect to μ (we write $\mu \circ \varphi^{-1} \ll \mu$, as usual). Let h be the Radon-Nikodym derivative $h = \frac{d\mu \circ \varphi^{-1}}{d\mu}$. If we put $\mathcal{A} = \varphi^{-1}(\Sigma)$, it is easy to show that for each non-negative Σ -measurable function f or for each $f \in L^{p}(\Sigma)$ ($p \geq 1$), there exists a Σ -measurable function g such that $E^{\varphi^{-1}(\Sigma)}(f) = g \circ \varphi$. We can assume that the support of g lies in the support of h, and there exists only one g with this property. We then write $g = E^{\varphi^{-1}(\Sigma)}(f) \circ \varphi^{-1}$, though we make no assumptions regarding the invertibility of φ (see [3]). For a deeper study of the properties of E see the paper [8].

2 Some results on weighted composition operators between two L^p -spaces

In this section we characterize the functions u and transformations φ that induce weighted composition operators between L^p -spaces by using some properties of the conditional expectation operator, the pair (u, φ) and the measure space (X, Σ, μ) . The results in the case $1 \le p \le q < \infty$ are apparently new.

Theorem 1 Suppose $1 \leq p < q < \infty$, $u \in L(X)$ and $\mathcal{K}_{p,q} = \mathcal{K}_{p,q}(\mathcal{A}, \Sigma) = \{u \in L(X) : uL^p(\mathcal{A}) \subseteq L^q(\Sigma)\}$. Then $u \in \mathcal{K}_{p,q}$ if and only if u satisfies the following two conditions:

(i)
$$E^{\mathcal{A}}(|u|^q) = 0 \text{ on } B.$$

(ii)
$$\sup_{n \in \mathbb{N}} \frac{\left(E^{\mathcal{A}}(|u(A_n)|^q)\right)^{\frac{s}{q}}}{\mu(A_n)} < \infty, \text{ where } \frac{1}{q} + \frac{1}{s} = \frac{1}{p}$$

Proof. Suppose that both (i) and (ii) hold. Put $b = \sup_{n \in \mathbb{N}} \frac{\left(E^{\mathcal{A}}(|u(A_n)|^q)\right)^{\frac{q}{q}}}{\mu(A_n)}$. Then, for each $f \in L^p(\mathcal{A})$, we have

$$\begin{aligned} \|u \cdot f\|_{q}^{q} &= \int_{X} E^{\mathcal{A}}(|u|^{q})|f|^{q} \, d\mu = \sum_{n \in \mathbb{N}} \int_{A_{n}} E^{\mathcal{A}}(|u|^{q})|f|^{q} \, d\mu \\ &= \sum_{n \in \mathbb{N}} \left(\frac{\left(E^{\mathcal{A}}(|u(A_{n})|^{q})\right)^{\frac{s}{q}}}{\mu(A_{n})} \right)^{\frac{q}{s}} (|f(A_{n})|^{p} \mu(A_{n}))^{\frac{q}{p}} \le b^{\frac{q}{s}} \sum_{n \in \mathbb{N}} (|f(A_{n})|^{p} \mu(A_{n})) \\ &= b^{\frac{q}{s}} \sum_{n \in \mathbb{N}} \int_{A_{n}} |f|^{p} \, d\mu \le b^{\frac{q}{s}} \int_{X} |f|^{p} \, d\mu \le b^{\frac{q}{s}} \|f\|_{p}^{p}. \end{aligned}$$

Hence $u \in \mathcal{K}_{p,q}$. Now suppose that $u \in \mathcal{K}_{p,q}$. So the operator $M_u : L^p(\mathcal{A}) \to L^q(\Sigma)$ given by $M_u f = u \cdot f$ is a bounded linear operator. Assume that $\mu(\{x \in B : E^{\mathcal{A}}(|u(x)|^q) \neq 0\}) > 0$. Then there exists a positive number δ such that $\mu(\{x \in B : E^{\mathcal{A}}(|u(x)|^q) \geq \delta\}) > 0$. Put $K = \{x \in B : E^{\mathcal{A}}(|u(x)|^q) \geq \delta\}$. Since K is non-atomic, by (c) we can find $f_0 \in L^p(\mathcal{A})$ such that $\int_K |f_0|^q d\mu = \infty$. Then we have

$$\infty > \|M_u f_0\|_q^q \ge \int_K E^{\mathcal{A}}(|u|^q) |f_0|^q \, d\mu \ge \delta \int_K |f_0|^q \, d\mu = \infty \,,$$

which is a contradiction. In other words, $E^{\mathcal{A}}(|u|^q) = 0$ on B. Now we prove that (ii) also holds. For any $n \in \mathbb{N}$ put $f_n = \frac{1}{\mu(A_n)^{\frac{1}{p}}}\chi_{A_n}$. It is clear that $f_n \in L^p(\mathcal{A})$ and $||f_n||_p = 1$. Hence we have

$$\frac{\left(E^{\mathcal{A}}(|u(A_{n})|^{q})\right)^{\frac{1}{q}}}{\mu(A_{n})^{\frac{1}{s}}} = \left\{\frac{1}{\mu(A_{n})^{\frac{q}{p}}}E^{\mathcal{A}}(|u(A_{n})|^{q})\mu(A_{n})\right\}^{\frac{1}{q}}$$
$$= \left\{\frac{1}{\mu(A_{n})^{\frac{q}{p}}}\int_{A_{n}}E^{\mathcal{A}}(|u|^{q})\,d\mu\right\}^{\frac{1}{q}} = \left\{\int_{X}E^{\mathcal{A}}(|uf_{n}|^{q})\,d\mu\right\}^{\frac{1}{q}} = \|M_{u}f_{n}\|_{q} \le \|M_{u}\| .$$

Since this holds for any $n \in \mathbb{N}$, it follows that $b \leq ||M_u||^s < \infty$.

Corollary 2 Suppose $1 \leq p < q < \infty$ and $u \in L(X)$. Then M_u from $L^p(\Sigma)$ into $L^q(\Sigma)$ is a bounded linear operator if and only if u satisfies the following two conditions:

- (i) u = 0 on *B*.
- (ii) $\sup_{n \in \mathbb{N}} \frac{|u(A_n)|^s}{\mu(A_n)} < \infty$, where $\frac{1}{q} + \frac{1}{s} = \frac{1}{p}$.

Theorem 3 Suppose $1 \le p < q < \infty$, $u \in L(X)$ and $\varphi : X \to X$ is a non-singular measurable transformation. Then the pair (u, φ) induces a weighted composition operator uC_{φ} from $L^{p}(\Sigma)$ into $L^{q}(\Sigma)$ if and only if the following conditions hold:

- (i) J = 0 on B, where $J = hE^{\varphi^{-1}(\Sigma)}(|u|^q) \circ \varphi^{-1}$.
- (ii) $\sup_{n \in \mathbb{N}} \frac{|J(A_n)|^{\frac{s}{q}}}{\mu(A_n)} < \infty$, where $\frac{1}{q} + \frac{1}{s} = \frac{1}{p}$.

Proof. Since $||uC_{\varphi}f||_q = ||M_{\sqrt[q]{J}}f||_q$ for all $f \in L^p(\Sigma)$, so by Corollary 2 the theorem holds.

Corollary 4 Under the same assumptions as in Theorem 3, φ induces a composition operator $C_{\varphi}: L^p(\Sigma) \to L^q(\Sigma)$ if and only if the following conditions hold:

- (i) h = 0 on *B*.
- (ii) $\sup_{n \in \mathbb{N}} \frac{|h(A_n)|^{\frac{s}{q}}}{\mu(A_n)} < \infty$, where $\frac{1}{q} + \frac{1}{s} = \frac{1}{p}$.

Acknowledgment. The author would like to thank to the Prof. Jabbarzadeh for his comments and suggestions improving the contents of the paper.

References

- AXLER S., Zero multipliers of Bergman spaces, Canad. Math. Bull., 28 (1985), 237– 242.
- [2] DING J., A closed range theorem for the Frobenius-Perron operator and its application to the spectral analysis, J. Math. Anal. Appl., 184 (1994), 156–167.
- [3] DING J. AND HORNOR W. E., A new approach to Frobenius-Perron operators, J. Math. Anal. Appl., 187 (1994), 1047–1058.
- [4] HALMOS P. R., A Hilbert Space Problem Book, Van Nostrand, Princeton, New Jersey — Toronto — London, 1967.
- [5] HOOVER T., LAMBERT A. AND QUINN J., The Markov process determined by a weighted composition operator, Studia Math. (Poland), LXXII (1982), 225–235.
- [6] JABBARZADEH M. R. AND POURREZA E., A note on weighted composition operators on L^p-spaces, Bulletin of the Iranian Math. Soc., 29 (2003), 46–52.
- [7] KUMAR A., Fredholm composition operators, Proc. Amer. Math. Soc., 79 (1980), 233– 236.
- [8] LAMBERT A., Localising sets for sigma-algebras and related point transformations, Proc. Royal Soc. of Edinburgh Ser. A, 118 (1991), 111–118.
- [9] SINGH R. K. AND MANHAS J. S., Composition Operators on Function Spaces, North-Holland, Amsterdam, 1993.
- [10] SINGH R. K., Composition operators induced by rational functions, Proc. Amer. Math. Soc., 59 (1976), 329–333.
- [11] SINGH R. K. AND KUMAR A., Multiplication operators and composition operators with closed range, Bull. Austral. Math. Soc., 16 (1977), 247–252.
- [12] TAKAGI H. AND YOKOUCHI K., Multiplication and composition operators between two L^p-spaces, Contemporary Math., 232 (1999), 321–338.
- [13] TAYLOR A. E. AND LAY D. C., Introduction to Functional Analysis, 2nd ed., Wiley, 1980.
- [14] ZAANEN A. C., Integration, 2nd ed., North-Holland, Amsterdam, 1967.