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Abstract

In this work, we study the blow up of solutions to the initial boundary value
problem for a class of nonlinear wave equations with a damping term.

1 Introduction

In this work, we study the blow up of solutions of initial boundary value problem
for a class of nonlinear wave equations with a damping term:

utt = div σ(∇u) +∆ut −∆2u in Ω× (0,+∞), (1)

u|∂Ω = 0,
∂u

∂ν

¯̄̄̄
∂Ω

= 0 on (0,+∞), (2)

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω, (3)

where Ω is a bounded domain in Rn with a sufficiently smooth boundary ∂Ω, ν is
the outward normal to the boundary and σ(s) are given nonlinear functions.

The study of nonlinear evolution equations with linear damping or dissipative
term has been considered by many authors; see [1]—[7]. In our study, we establish
a blow up result for solutions with negative energy. The proof of our technique is
similar to the one in [7].

2 Blow up of solution

For this purpose, we define

E(t) =
1

2
kut(t)k22 +

1

2
k∆u(t)k22 +

Z
Ω

Z
[0,∇u]

σ(s) · ds dx, t ≥ 0, (4)
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where

σ(s) = ∇ω(s), ω(s) ∈ C1(Rn), s ∈ Rn, σ(s) · s ≤ k

Z
[0,s]

σ(τ) · dτ ≤ −kβ|s|m+1,
(5)

· denotes the dot product in Rn, the integrals in (4) and (5) are line integrals along
arbitrary curves connecting 0 and ∇u (respectively 0 and s) in Rn, k > 2 and β > 0
are constants, also 1 < m ≤ 3.
Theorem 1 Let u be the solution of problem (1)− (3). Assume that the following
conditions are valid:

u0 ∈ H2
0 (Ω), u1 ∈ L2(Ω),

E(0) =
1

2
ku1k22 +

1

2
k∆u0k22 +

Z
Ω

Z
[0,∇u0]

σ(s) · ds dx < 0. (6)

Then the solution u blows up in finite time

T ≤


·
t
3−m
2

1 + 3−m
2C8(α−1)yα−1(t1)

¸ 2
3−m

, m < 3,

t1 · exp 1
C8(α−1)yα−1(t1) , m = 3,

where t1 and y will be defined respectively by (17) and (18), C8 and α > 1 are
constants to be defined later.

Proof. By multiplying equation (1) by ut and integrating the new equation
over Ω, we obtain

E0(t) + k∇ut(t)k22 = 0, (7)

E(t) ≤ E(0) < 0, t ≥ 0.
Let

F (t) = ku(t)k22 +
Z t

0
k∇u(τ)k22 dτ, (8)

then
F 0(t) = 2(u, ut) + k∇u(t)k22, (9)

F 00(t) = 2

µ
kut(t)k22 − k∆u(t)k22 −

Z
Ω
σ(∇u) ·∇udx

¶
≥ 2

Ã
kut(t)k22 − k∆u(t)k22 − k

Z
Ω

Z
[0,∇u]

σ(s) · ds dx
!

≥ 2

Ã
2kut(t)k22 − (k − 2)

Z
Ω

Z
[0,∇u]

σ(s) · ds dx− 2E(0)
!

≥ 2
¡
2kut(t)k22 + (k − 2)βk∇u(t)km+1m+1 − 2E(0)

¢
, t > 0, (10)
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where the assumption (5) and the fact that

k

Z
Ω

Z
[0,∇u]

σ(s) · ds dx ≤ 2E(0)− kut(t)k22 + k∆u(t)k22 + (k−2)
Z
Ω

Z
[0,∇u]

σ(s) · ds dx

have been used. Taking the inequality (10) and integrating this, we obtain

F 0(t) ≥ 2(k − 2)β
Z t

0
k∇u(τ)km+1m+1 dτ − 4E(0)t+ F 0(0), t > 0. (11)

After this calculation, we could add the inequalities (10) with (11), then we get

F 00(t) + F 0(t) ≥ 4kut(t)k22 + 2(k − 2)β
µ
k∇u(t)km+1m+1 +

Z t

0
k∇u(τ)km+1m+1 dτ

¶
−4E(0)(1 + t) + F 0(0) = g(t), t > 0. (12)

Take p = m+3
2 , obviously 2 < p < m+ 1 and p0 = m+3

m+1 (< 2). By using the Young
inequality and the Sobolev-Poincaré inequality,

|(u, ut)| ≤ 1

p
ku(t)kpp +

1

p0
kut(t)kp

0
p0

≤ C1

h¡k∇u(t)km+1m+1

¢µ
+
¡kut(t)k22¢µi ,

|(u, ut)|1/µ ≤ C2
£k∇u(t)km+1m+1 + kut(t)k22

¤
, t > 0, (13)

where in this inequality and in the sequel Ci (i = 1, 2, . . .) denote positive constants
independent of t, µ = m+3

2(m+1) (< 1). By the Sobolev-Poincaré inequality and the
Hölder inequality

k∇u(t)km+1m+1 ≥ C3
¡ku(t)k22¢m+12 , t > 0, (14)Z t

0
k∇u(τ)km+1m+1 dτ ≥ C4t

1−m
2

µZ t

0
k∇u(τ)k22 dτ

¶m+1
2

. (15)

By using the inequalities (13)—(15), we obtain

g(t) ≥ C5

µ
3k∇u(t)km+1m+1 + kut(t)k22 +

Z t

0
k∇u(τ)km+1m+1 dτ

¶
− 4E(0)t+ F 0(0)

≥ C6

Ã
|(u, ut)|1/µ+

¡ku(t)k22¢m+12 +
¡k∇u(t)k22¢m+12 +t

1−m
2

µZ t

0
k∇u(τ)k22 dτ

¶m+1
2

!
−4E(0)t+ F 0(0)
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≥ C7t
1−m
2

µ
|(u, ut)|α +

¡ku(t)k22¢α + ¡k∇u(t)k22¢α +µZ t

0
k∇u(τ)k22 dτ

¶α¶
−4E(0)t+ F 0(0)− C7t

1−m
2 , t ≥ 1, (16)

where in this inequality and in the sequel α = 1
µ > 1. Since −4E(0)t + F 0(0) −

C7t
1−m
2 →∞ as t→∞, there must be a t1 ≥ 1 such that

−4E(0)t+ F 0(0)− C7t
1−m
2 ≥ 0 as t ≥ t1. (17)

Let
y(t) = F 0(t) + F (t), (18)

then from the inequality (11) and the equality (8) we obtain y(t) > 0 as t ≥ t1. By
using the inequality

(a1 + · · ·+ a )n ≤ 2(n−1)( −1)(an1 + · · ·+ an),

where ai ≥ 0 (i = 1, . . . , ) and n > 1 are real numbers, by virtue of (17) and using
the inequality (16), we get

g(t) ≥ C8t
1−m
2 yα(t), t ≥ t1. (19)

So combining (12) with (19) gives

y0(t) ≥ C8t
1−m
2 yα(t), t ≥ t1. (20)

Therefore, there exists a positive constant

T =


·
t
3−m
2

1 + 3−m
2C8(α−1)yα−1(t1)

¸ 2
3−m

, m < 3,

t1 · exp 1
C8(α−1)yα−1(t1) , m = 3,

(21)

such that
y(t)→∞ as t→ T−. (22)

By using (8), (9) and (22), we obtain

2ku(t)k22+ kut(t)k22+ k∇u(t)k22+
Z t

0
k∇u(τ)k22 dτ ≥ F 0(t)+F (t)→∞ as t→ T−.

(23)
So (23) implies

ku(t)k22 + kut(t)k22 + k∇u(t)k22 +
Z t

0
k∇u(τ)k22 dτ →∞ as t→ T−.

This completes the proof.
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Example 1 Take σ(s) = a|s|m−1s, where a < 0, 1 < m < 3 are real numbers.
Obviously σ(s) = ∇ω(s), where ω(s) = a

m+1 |s|m+1 ∈ C1(Rn), s ∈ Rn. A simple
verification shows that

σ(s) · s = k

Z
[0,s]

σ(τ) · dτ = −kβ|s|m+1,

where k = m + 1 > 2, β = − a
m+1 > 0. If u0 ∈ H2

0 (Ω), u1 ∈ L2(Ω) are such that
E(0) < 0, then by Theorem 1 the solution of the corresponding problem (1) — (3)
blows up in finite time.
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