5-10 July 2004, Antalya, Turkey - Dynamical Systems and Applications, Proceedings, pp. 572-576

Blow up of Solutions for a Class of Nonlinear Wave Equations

Necat Polat ${ }^{1}$, Doğan Kaya ${ }^{2}$ and H. İlhan Tutalar ${ }^{1}$
${ }^{1}$ Dicle University, Department of Mathematics, 21280 Diyarbakir, Turkey
${ }^{2}$ Firat University, Department of Mathematics, 23119 Elaziğ, Turkey

Abstract

In this work, we study the blow up of solutions to the initial boundary value problem for a class of nonlinear wave equations with a damping term.

1 Introduction

In this work, we study the blow up of solutions of initial boundary value problem for a class of nonlinear wave equations with a damping term:

$$
\begin{gather*}
u_{t t}=\operatorname{div} \sigma(\nabla u)+\Delta u_{t}-\Delta^{2} u \quad \text { in } \quad \Omega \times(0,+\infty), \tag{1}\\
\left.u\right|_{\partial \Omega}=0,\left.\quad \frac{\partial u}{\partial \nu}\right|_{\partial \Omega}=0 \quad \text { on } \quad(0,+\infty), \tag{2}\\
u(x, 0)=u_{0}(x), \quad u_{t}(x, 0)=u_{1}(x), \quad x \in \Omega, \tag{3}
\end{gather*}
$$

where Ω is a bounded domain in \mathbb{R}^{n} with a sufficiently smooth boundary $\partial \Omega, \nu$ is the outward normal to the boundary and $\sigma(s)$ are given nonlinear functions.

The study of nonlinear evolution equations with linear damping or dissipative term has been considered by many authors; see [1]-[7]. In our study, we establish a blow up result for solutions with negative energy. The proof of our technique is similar to the one in [7].

2 Blow up of solution

For this purpose, we define

$$
\begin{equation*}
E(t)=\frac{1}{2}\left\|u_{t}(t)\right\|_{2}^{2}+\frac{1}{2}\|\Delta u(t)\|_{2}^{2}+\int_{\Omega} \int_{[0, \nabla u]} \sigma(s) \cdot d s d x, \quad t \geq 0, \tag{4}
\end{equation*}
$$

where
$\sigma(s)=\nabla \omega(s), \omega(s) \in C^{1}\left(\mathbb{R}^{n}\right), \quad s \in \mathbb{R}^{n}, \quad \sigma(s) \cdot s \leq k \int_{[0, s]} \sigma(\tau) \cdot d \tau \leq-k \beta|s|^{m+1}$,

- denotes the dot product in \mathbb{R}^{n}, the integrals in (4) and (5) are line integrals along arbitrary curves connecting 0 and ∇u (respectively 0 and s) in $\mathbb{R}^{n}, k>2$ and $\beta>0$ are constants, also $1<m \leq 3$.
Theorem 1 Let u be the solution of problem (1) - (3). Assume that the following conditions are valid:

$$
\begin{gather*}
u_{0} \in H_{0}^{2}(\Omega), \quad u_{1} \in L_{2}(\Omega), \\
E(0)=\frac{1}{2}\left\|u_{1}\right\|_{2}^{2}+\frac{1}{2}\left\|\Delta u_{0}\right\|_{2}^{2}+\int_{\Omega} \int_{\left[0, \nabla u_{0}\right]} \sigma(s) \cdot d s d x<0 . \tag{6}
\end{gather*}
$$

Then the solution u blows up in finite time

$$
T \leq \begin{cases}{\left[t_{1}^{\frac{3-m}{2}}+\frac{3-m}{2 C_{8}(\alpha-1) y^{\alpha-1}\left(t_{1}\right)}\right]^{\frac{2}{3-m}},} & m<3 \\ t_{1} \cdot \exp \frac{1}{C_{8}(\alpha-1) y^{\alpha-1}\left(t_{1}\right)}, & m=3\end{cases}
$$

where t_{1} and y will be defined respectively by (17) and (18), C_{8} and $\alpha>1$ are constants to be defined later.

Proof. By multiplying equation (1) by u_{t} and integrating the new equation over Ω, we obtain

$$
\begin{gather*}
E^{\prime}(t)+\left\|\nabla u_{t}(t)\right\|_{2}^{2}=0 \tag{7}\\
E(t) \leq E(0)<0, \quad t \geq 0
\end{gather*}
$$

Let

$$
\begin{equation*}
F(t)=\|u(t)\|_{2}^{2}+\int_{0}^{t}\|\nabla u(\tau)\|_{2}^{2} d \tau \tag{8}
\end{equation*}
$$

then

$$
\begin{align*}
& F^{\prime}(t)=2\left(u, u_{t}\right)+\|\nabla u(t)\|_{2}^{2} \tag{9}\\
& F^{\prime \prime}(t)=2\left(\left\|u_{t}(t)\right\|_{2}^{2}-\|\Delta u(t)\|_{2}^{2}-\int_{\Omega} \sigma(\nabla u) \cdot \nabla u d x\right) \\
& \geq 2\left(\left\|u_{t}(t)\right\|_{2}^{2}-\|\Delta u(t)\|_{2}^{2}-k \int_{\Omega} \int_{[0, \nabla u]} \sigma(s) \cdot d s d x\right) \\
& \geq 2\left(2\left\|u_{t}(t)\right\|_{2}^{2}-(k-2) \int_{\Omega} \int_{[0, \nabla u]} \sigma(s) \cdot d s d x-2 E(0)\right) \\
& \geq 2\left(2\left\|u_{t}(t)\right\|_{2}^{2}+(k-2) \beta\|\nabla u(t)\|_{m+1}^{m+1}-2 E(0)\right), \quad t>0, \tag{10}
\end{align*}
$$

where the assumption (5) and the fact that
$k \int_{\Omega} \int_{[0, \nabla u]} \sigma(s) \cdot d s d x \leq 2 E(0)-\left\|u_{t}(t)\right\|_{2}^{2}+\|\Delta u(t)\|_{2}^{2}+(k-2) \int_{\Omega} \int_{[0, \nabla u]} \sigma(s) \cdot d s d x$
have been used. Taking the inequality (10) and integrating this, we obtain

$$
\begin{equation*}
F^{\prime}(t) \geq 2(k-2) \beta \int_{0}^{t}\|\nabla u(\tau)\|_{m+1}^{m+1} d \tau-4 E(0) t+F^{\prime}(0), \quad t>0 \tag{11}
\end{equation*}
$$

After this calculation, we could add the inequalities (10) with (11), then we get

$$
\begin{gather*}
F^{\prime \prime}(t)+F^{\prime}(t) \geq 4\left\|u_{t}(t)\right\|_{2}^{2}+2(k-2) \beta\left(\|\nabla u(t)\|_{m+1}^{m+1}+\int_{0}^{t}\|\nabla u(\tau)\|_{m+1}^{m+1} d \tau\right) \\
-4 E(0)(1+t)+F^{\prime}(0)=g(t), \quad t>0 \tag{12}
\end{gather*}
$$

Take $p=\frac{m+3}{2}$, obviously $2<p<m+1$ and $p^{\prime}=\frac{m+3}{m+1}(<2)$. By using the Young inequality and the Sobolev-Poincaré inequality,

$$
\begin{align*}
\left|\left(u, u_{t}\right)\right| & \leq \frac{1}{p}\|u(t)\|_{p}^{p}+\frac{1}{p^{\prime}}\left\|u_{t}(t)\right\|_{p^{\prime}}^{p^{\prime}} \\
& \leq C_{1}\left[\left(\|\nabla u(t)\|_{m+1}^{m+1}\right)^{\mu}+\left(\left\|u_{t}(t)\right\|_{2}^{2}\right)^{\mu}\right] \\
\left|\left(u, u_{t}\right)\right|^{1 / \mu} & \leq C_{2}\left[\|\nabla u(t)\|_{m+1}^{m+1}+\left\|u_{t}(t)\right\|_{2}^{2}\right], \quad t>0, \tag{13}
\end{align*}
$$

where in this inequality and in the sequel $C_{i}(i=1,2, \ldots)$ denote positive constants independent of $t, \mu=\frac{m+3}{2(m+1)}(<1)$. By the Sobolev-Poincaré inequality and the Hölder inequality

$$
\begin{align*}
\|\nabla u(t)\|_{m+1}^{m+1} & \geq C_{3}\left(\|u(t)\|_{2}^{2}\right)^{\frac{m+1}{2}}, \quad t>0 \tag{14}\\
\int_{0}^{t}\|\nabla u(\tau)\|_{m+1}^{m+1} d \tau & \geq C_{4} t^{\frac{1-m}{2}}\left(\int_{0}^{t}\|\nabla u(\tau)\|_{2}^{2} d \tau\right)^{\frac{m+1}{2}} . \tag{15}
\end{align*}
$$

By using the inequalities (13)-(15), we obtain

$$
\begin{gathered}
g(t) \geq C_{5}\left(3\|\nabla u(t)\|_{m+1}^{m+1}+\left\|u_{t}(t)\right\|_{2}^{2}+\int_{0}^{t}\|\nabla u(\tau)\|_{m+1}^{m+1} d \tau\right)-4 E(0) t+F^{\prime}(0) \\
\geq C_{6}\left(\left|\left(u, u_{t}\right)\right|^{1 / \mu}+\left(\|u(t)\|_{2}^{2}\right)^{\frac{m+1}{2}}+\left(\|\nabla u(t)\|_{2}^{2}\right)^{\frac{m+1}{2}}+t^{\frac{1-m}{2}}\left(\int_{0}^{t}\|\nabla u(\tau)\|_{2}^{2} d \tau\right)^{\frac{m+1}{2}}\right) \\
-4 E(0) t+F^{\prime}(0)
\end{gathered}
$$

Blow up of solutions for a class of nonlinear wave equations

$$
\begin{gather*}
\geq C_{7} t^{\frac{1-m}{2}}\left(\left|\left(u, u_{t}\right)\right|^{\alpha}+\left(\|u(t)\|_{2}^{2}\right)^{\alpha}+\left(\|\nabla u(t)\|_{2}^{2}\right)^{\alpha}+\left(\int_{0}^{t}\|\nabla u(\tau)\|_{2}^{2} d \tau\right)^{\alpha}\right) \\
-4 E(0) t+F^{\prime}(0)-C_{7} t^{\frac{1-m}{2}}, \quad t \geq 1 \tag{16}
\end{gather*}
$$

where in this inequality and in the sequel $\alpha=\frac{1}{\mu}>1$. Since $-4 E(0) t+F^{\prime}(0)-$ $C_{7} t^{\frac{1-m}{2}} \rightarrow \infty$ as $t \rightarrow \infty$, there must be a $t_{1} \geq 1$ such that

$$
\begin{equation*}
-4 E(0) t+F^{\prime}(0)-C_{7} t^{\frac{1-m}{2}} \geq 0 \quad \text { as } \quad t \geq t_{1} \tag{17}
\end{equation*}
$$

Let

$$
\begin{equation*}
y(t)=F^{\prime}(t)+F(t), \tag{18}
\end{equation*}
$$

then from the inequality (11) and the equality (8) we obtain $y(t)>0$ as $t \geq t_{1}$. By using the inequality

$$
\left(a_{1}+\cdots+a_{\ell}\right)^{n} \leq 2^{(n-1)(\ell-1)}\left(a_{1}^{n}+\cdots+a_{\ell}^{n}\right),
$$

where $a_{i} \geq 0(i=1, \ldots, \ell)$ and $n>1$ are real numbers, by virtue of (17) and using the inequality (16), we get

$$
\begin{equation*}
g(t) \geq C_{8} t^{\frac{1-m}{2}} y^{\alpha}(t), \quad t \geq t_{1} . \tag{19}
\end{equation*}
$$

So combining (12) with (19) gives

$$
\begin{equation*}
y^{\prime}(t) \geq C_{8} t^{\frac{1-m}{2}} y^{\alpha}(t), \quad t \geq t_{1} . \tag{20}
\end{equation*}
$$

Therefore, there exists a positive constant

$$
T= \begin{cases}{\left[t_{1}^{\frac{3-m}{2}}+\frac{3-m}{2 C_{8}(\alpha-1) y^{\alpha-1}\left(t_{1}\right)}\right]^{\frac{2}{3-m}},} & m<3, \tag{21}\\ t_{1} \cdot \exp \frac{1}{C_{8}(\alpha-1) y^{\alpha-1}\left(t_{1}\right)}, & m=3,\end{cases}
$$

such that

$$
\begin{equation*}
y(t) \rightarrow \infty \quad \text { as } \quad t \rightarrow T^{-} . \tag{22}
\end{equation*}
$$

By using (8), (9) and (22), we obtain
$2\|u(t)\|_{2}^{2}+\left\|u_{t}(t)\right\|_{2}^{2}+\|\nabla u(t)\|_{2}^{2}+\int_{0}^{t}\|\nabla u(\tau)\|_{2}^{2} d \tau \geq F^{\prime}(t)+F(t) \rightarrow \infty$ as $t \rightarrow T^{-}$.
So (23) implies

$$
\|u(t)\|_{2}^{2}+\left\|u_{t}(t)\right\|_{2}^{2}+\|\nabla u(t)\|_{2}^{2}+\int_{0}^{t}\|\nabla u(\tau)\|_{2}^{2} d \tau \rightarrow \infty \text { as } t \rightarrow T^{-}
$$

This completes the proof.

Example 1 Take $\sigma(s)=a|s|^{m-1} s$, where $a<0,1<m<3$ are real numbers. Obviously $\sigma(s)=\nabla \omega(s)$, where $\omega(s)=\frac{a}{m+1}|s|^{m+1} \in C^{1}\left(\mathbb{R}^{n}\right), s \in \mathbb{R}^{n}$. A simple verification shows that

$$
\sigma(s) \cdot s=k \int_{[0, s]} \sigma(\tau) \cdot d \tau=-k \beta|s|^{m+1}
$$

where $k=m+1>2, \beta=-\frac{a}{m+1}>0$. If $u_{0} \in H_{0}^{2}(\Omega), u_{1} \in L_{2}(\Omega)$ are such that $E(0)<0$, then by Theorem 1 the solution of the corresponding problem (1) - (3) blows up in finite time.

Acknowledgements

The authors would like to express their sincere thanks to Professor Valéry Covachev for his valuable suggestions and the final form of our paper.

References

[1] Adams R. A., Sobolev Spaces, Academic Press, New York, 1975.
[2] Ang D. D. and Dinh A. P. N., On the strongly damped wave equation $u_{t t}-\Delta u-$ $\Delta u_{t}+f(u)=0$, SIAM J. Math. Anal., 19 (1988), 1409-1418.
[3] Nishihara K., Asymptotic behavior of solutions of quasilinear hyperbolic equations with linear damping, J. Diff. Eq., 137 (1997), 384-395.
[4] Ono K., Global existence, asymptotic behavior, and global non-existence of solutions for damped non-linear wave equations of Kirchhoff type in the whole space, Math. Meth. Appl. Sci., 23 (2000), 535-560.
[5] Can M., Park S. R. and Aliyev F., Nonexistence of global solutions of some quasilinear hyperbolic equations, J. Math. Anal. Appl., 213 (1997), 540-553.
[6] Rybka P. and Hoffman K. H., Convergence of solutions to the equation of quasistatic approximation of viscoelasticity with capillarity, J. Math. Anal. Appl., 226 (1998), 61-81.
[7] Zhyijian Y., Global existence, asymptotic behavior and blowup of solutions for a class of nonlinear wave equations with dissipative term, J.Diff. Eqns., 187 (2003), 520-540.

