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Abstract

In order to understand the effect of initial stress and the thickness of the
tube on flow in elastic tubes, the propagation of time harmonic waves in a
prestressed elastic, isotropic tube filled with a viscous fluid is studied. The thick
walled tubes are important to understand the blood flow through the arteries.
Although the blood is known to be a non-Newtonian fluid, for simplicity in the
mathematical analysis it is assumed to be a viscous fluid.
After obtaining the field equations, for the sake of better understanding of

the effect of thickness, a finite difference method is used to solve the equations.
The variations of primary and secondary wave speeds and the transmission
coefficients are investigated with respect to the thickness ratio and Womersley
parameter by considering long wave approximation. Also a cut-off frequency
which could not have been obtained in the previous works that used a truncated
power series method is obtained.
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1 Introduction

The importance of fluid mechanics and mathematical models in understanding the
blood flow process in human and animal bodies has been reviewed by Rudinger
[1]. Witzig [2] is the first one who took the viscosity into account but ignored
the effects of Poisson’s ratio and obtained the propagation constants as a function
of the frequency and viscosity. Morgan and Kiely [3] studied the same problem by
assuming the artery as an elastic tube and the blood as a viscous but incompressible
fluid and obtained the dispersion relation in which the effects of Poisson’s ratio is
also included. Womersley [4] in his pioneering work treated the artery as a thick
walled shell and blood as incompressible viscous fluid. In reality, the artery is
subject to average pressure which is about 100 mm Hg and axial stretch which is
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1.5 under physiological conditions. The initial stress (or deformation) of arterial
wall had been first taken into consideration by Atabek and Lew [5], and the effects
of initial stresses and tethering were numerically analyzed. The effects of initial
deformation were properly taken into account by Rachev [6], but he simply treated
artery as a membrane. However, physiological studies on arteries show that the
ratio of thickness to mean radius of the artery (large blood vessels in general)
changes from 1

6 to
1
4 . This means that the arterial wall is not thin enough to

use the membrane theory and to take the constant initial stresses distributions.
Demiray and Antar [7] have taken into account the initial stresses and the thickness
of artery, but to obtain solution of equations governing the solid body, they have
used a truncated power series in terms of thickness ratio.

In the present work the propagation of harmonic waves in an initially stressed
isotropic, elastic cylindrical tube filled with an incompressible viscous fluid is stud-
ied. Considering the arterial wall as an elastic, isotropic and incompressible material
subjected to a large initial static deformation, the governing differential equations
in cylindrical coordinates are obtained for fluid flow and solid body. Although a
closed form solution can be obtained for equations governing the fluid body, due
to the variability of coefficients of differential equations of solid body, such a closed
form solution is not possible. Therefore the solution is obtained numerically by
using the finite difference method.

2 Equations of motion

2.1 Equations of fluid

Although the blood is known to be a non-Newtonian fluid, the incremental behavior
of blood in arteries can be treated as Newtonian fluid. For an axially symmetric
motion, the equations of fluid are given by
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r2
+

∂2ū
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where ρ̄ is the mass density of the fluid, µ is the viscosity, p̄ is the incremental inner
pressure, the velocity field is given as

u = (ū, 0, w̄)

and the equation of incompressibility is
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+
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= 0. (2)
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The components of stress tensor which we need in using the boundary conditions
are given by

σ̄rr = −p̄+ 2µ∂ū
∂r

, σ̄rz = µ

µ
∂ū

∂z
+

∂w̄

∂r

¶
. (3)

2.2 Equations of solid body

In this work the arterial wall material is assumed to be incompressible, isotropic
and elastic. The cylindrical tube is subject to a large static deformation under the
effects of inner pressure Pi and the axial force N . The governing field equations for
such a deformation may be given by (see Eringen and Suhubi [8])

σkl,l = ρ
∂2uk
∂t2

, (4)

where ρ is the mass density of solid body, u is the incremental displacement field
and the incremental stress tensor σkl is defined by

σkl = tkl +mkl, (5)

here
mkl = uk,mt

◦
ml (6)

and tkl is the incremental stress tensor referred to the final deformed area.
The material is assumed to be incompressible neo-Hookean. So the incompress-

ibility condition and the constitutive relations become

uk,k = 0,

t◦kl = P ◦gkl + αckl, W =
α

2
(I1 − 3), (7)

where P ◦ is the hydrostatic pressure, gkl is the metric tensor of the spatial frame,
ckl the Finger deformation tensor, I1 is the first invariant of ckl, and α is a ma-
terial constant to be determined from experimental measurements. Assuming the
geometry of the tube is a cylindrical thick shell, the stress distribution in cylindrical
coordinates may be given as follows (Demiray and Dost [9])
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α
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2

+ λ ln
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¶
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where Pi is the inner pressure, λ is the axial stretch. R and r are the radial
coordinates of a material point before and after deformation and the subscripts (i)
and (o) stand for the values of a quantity evaluated on the inner and outer surfaces,
respectively. On the other hand, the incremental stress tensor is given by [8]

tkl = pgkl − 2P ◦ekl, (9)

where ekl is defined as ekl = 1
2(uk,l + ul,k). In order to obtain the complete field

equations, one must also know the initial stress distribution t◦kl through the elastic
wall. The tube that we shall study here is subject to the inner pressure Pi and axial
stretch λ.

After writing the explicit form of the incremental stress tensor from (9) and
the components of mkl from (6) by considering (7), the governing equations can be
written in the following form:
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where the coefficients β̄i(r) (i = 1, 2, . . . , 5) are defined by

β̄1(r) = t◦rr − P ◦, β̄2(r) =
t◦θθ
r
− 2dP

◦

dr
− P ◦

r
, β̄3(r) =
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r2
− P ◦

r2
,

β̄4(r) = t◦zz − P ◦, β̄5(r) =
t◦θθ
r
− dP ◦

dr
− P ◦

r
. (11)

These differential equations are to be supplemented by the boundary conditions
given by

trr(ri) = σ̄rr(ri), trz(ri) = σ̄rz(ri), trr(ro) = trz(ro) = 0,

∂u

∂t
(ri) = ū,

∂w

∂t
(ri) = w̄, (12)

where ri and r0 represent the inner and outer radius of the tube, respectively. On
the other hand, the effects of tethering on the outer boundary have been neglected
here.

3 Solution of the governing equations

In the present work we shall seek a harmonic wave type of solution to the field
equations. For that purpose we set

(ū, w̄, p̄) = [Ū(r), W̄ (r), P̄ (r)] exp[i(ωt− kz)], (13)
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where ω is the angular frequency, k is the wave number and Ū(r), W̄ (r), P̄ (r) are
the complex amplitudes to be determined from the solution of the field equations
and the boundary conditions. Substituting (13) into (1) and (2), the solution of the
resulting equations for Ū(r), W̄ (r) and P̄ (r) can be obtained:

Ū = k[I1(kr)Ā+ J1(sr)B̄],

W̄ = −i[kI0(kr)Ā+ sJ0(sr)B̄],

P̄ = −iρ̄ωI0(kr)Ā, (14)

where we defined s2 = −
³
k2 + iρ̄ω

µ

´
and Jn(sr), In(kr) are the first kind and

modified Bessel functions of order n, respectively, Ā and B̄ are integration constants
to be determined by using the boundary conditions.

In order to obtain the solution of the field equations of solid body, we shall seek
again a harmonic type solution which can be written as

(u,w, p) = [Û(r), Ŵ (r), P̂ (r)] exp[i(ωt− kz)]. (15)

Considering the incompressibility condition and substituting this solution into the
eqs. (10), we have

dP̂
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d2Û

dr2
+ β̄2

dÛ
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dŴ

dr
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dÛ
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+
1

r
Û − ikŴ = 0. (16)

By defining a function φ(r) as

φ(r) =

Z r

0
ξŴ (ξ) dξ, (17)

from the last equation of (16) the following can be obtained:

Û =
ik

r
φ(r), Ŵ (r) =

1

r

dφ

dr
. (18)

By using this function, the first two equations of (16) can be written in the
following form:
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where we used the following non-dimensionalized quantities

β̄1 = αβ1, β̄2 =
α
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β2, β̄3 =
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On the other hand, we obtain boundary conditions in the following form·
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ξ
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where

A =
2µI0(η)

αr̄2
Ā, B =

2µJ1(γ)

αr̄2
B̄ (22)

and r̄ is the midradius of the tube after deformation.
It is almost impossible to give a closed form analytical solutions to (19). To

see the effects of thickness of the tube on wave propagation more clearly, we will
investigate numerical solutions of the equations by using finite difference method.
It is obvious that the results will be obtained by using this method, will be more
realistic than the power series method in which only first order terms have been
taken into account. To use the finite difference method we divide the thickness of
the tube, h̄ = r0 − ri, into n equal intervals, thus we define

ξj = ξ0 + jh, j = 0, 1, . . . , n, (23)

where

ξ0 =
ri
r̄
= 1− nh

2
, ξn =

ro
r̄
, h =

h̄

nr̄
.
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We characterize the value of a function at the point ξj = ξ0 + jh by a subscript j.
By introducing appropriate finite-difference expressions for various derivatives, we
obtain the following difference equations for the equations (21) and (19):

−hPj + hPj+1 +
iη

ξj
[α1j + h2(Ω2 − η2β4j)]φ̄j

+
iη

ξj
α2jφ̄j+1 +

iη

ξj
β1jφ̄j+2 = 0,

−iηh3Pj +
h
α3j − h2

ξj
(Ω2 − η2β4j) +

h3η2

ξj
(β2j − β5j)

i
φ̄j

+
h
α4j +

h2

ξj
(Ω2 − η2β4j)

i
φ̄j+1 + α5jφ̄j+2 +

β1j
ξj

φ̄j+3 = 0,

hP0 +
2P ◦0 iη
ξ0

µ
1 +

h

ξ0

¶
φ̄0 − 2P

◦
0 iη

ξ0
φ̄1

−h
µ
η2 − f

ξ0
+ α0

¶
A− hη

µ
g − 1

ξ0

¶
B = 0,

−P
◦
0

ξ0

µ
η2h2 + 1 +

h

ξ0

¶
φ̄0 +

P ◦

ξ0

µ
2 +

h

ξ0

¶
φ̄1 − P ◦0

ξ0
φ̄2

+iηfh2A+ ih2(α0 + η2)B = 0,

iΩ2

ξ0
φ̄0 + qα0

µ
f

η
A+B

¶
= 0,

iΩ2

ξ0
(φ̄1 − φ̄0) + qα0h(ηA+ gB) = 0,

hξnPn + 2P
◦
niη

µ
1 +

h

ξn

¶
φ̄n − 2P ◦niηφ̄n+1 = 0,

−
µ
η2h2 + 1 +

h

ξn

¶
φ̄n +

µ
2 +

h

ξn

¶
φ̄n+1 − φ̄n+2 = 0, (24)

where

α1j = β1j − h

µ
β2j − 2β1j

ξj

¶
+ h2

Ã
2β1j
ξ2j
− β2j

ξj
− β3j

!
,

α2j = −2β1j + h

µ
β2j − 2β1j

ξj

¶
,

α3j = −β1j
ξj
+ h

Ã
β5jξj − 2β1j

ξ2j

!
− h2

Ã
2β1j
ξ3j
− β5j

ξ2j

!
,



560 S. Özer and A. Ercengiz
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.

In order to have a non-zero solution for the coefficients Pj , φ̄j (j = 0, 1, . . . , n), A
and B, the determinant of the coefficients matrix must vanish.

4 Long wave approximation

Even for large arteries the wave length is very large as compared to the mean
radius of the artery. Therefore, for this special case |η| ¿ 1, f approaches η2

2 . To
understand the effects of the thickness of the arterial wall on the wave characteristics
parameter n defining the number of intervals through thickness must be greater than
1. For the values n > 1, the cut-off frequency which could not have been obtained
in the previous works have been obtained from the dispersion relation by setting
η → 0. For instance, the cut-off frequency for small values of h and n = 2 is
obtained as

Ω2c = {h[β11(2β10 − β50 − P 00 gq) + β10(β51 − P 01 )gq] + β11β10}/(h2β10). (25)

For the more general case, we will take n = 4, λ = 1.3, Ri = 0.3 cm and Pi = 0.1.
Moreover, experimental studies indicate that the density of the arterial wall tissue
is quite close to that of blood, therefore, we may approximate q as q ∼= 1 and
decompose the non-dimensional phase velocity c into real and imaginary parts as

c = X + iY. (26)

The speed of propagation v and the transmission coefficient χ are defined by (Atabek
and Lew [5])

v =
X2 + Y 2

X
, χ = exp(−2πY/X). (27)
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The speeds of propagation and transmission coefficients are evaluated for various
values of thickness ratio and Womersley parameter.

Figure 1 shows the variation of primary wave speed with Womersley parameter
and the thickness ratio. It shows that speed increases with Womersley parameter
and thickness ratio. This result indicates the effects of the thickness on the wave
speeds. The variation of secondary wave speed is depicted in Figure 2. The varia-
tions of transmission coefficients of primary wave are depicted in Fig. 3. Examina-
tion of this figure indicates that the coefficient decreases very fast with Womersley
parameter at the beginning but stars to increase after a certain value of the parame-
ter and with the thickness ratio. Finally, the variation of transmission coefficient of
secondary wave with the same parameters is depicted in Figure 4. As might be seen
from the figure, the coefficient increases with Womersley parameter but decreases
with the thickness ratio.
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Figure 1: Variation of the primary
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Figure 3: Variation of the transmis-
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