5–10 July 2004, Antalya, Turkey — Dynamical Systems and Applications, Proceedings, pp. 547–552

On the Approximation of Singular Integrals of Cauchy Type

Mostefa Nadir Department of Mathematics University of M'sila 28000 ALGERIA E-mail: mostefanadir@yahoo.fr and mostefa.nadir@univ-msila.dz

Abstract

The aim of this work is to approximate numerically the singular integral of Cauchy type on a piecewise smooth curve by expressions based on the cubic spline, which is one of the recent ideas in numerical analysis.

AMS Subject Classification: Primary 45D05, 45E05, 45L05; Secondary 45L10, 65R20.

Key words: Singular integral, Interpolation, Hölder space and Hölder condition, Cubic spline.

Let Γ be a piecewise regular curve, in other words, Γ consists of a finite number of smooth non-intersecting contours in a complex plane, where Γ can be represented in the form

$$t(s) = x(s) + iy(s), \quad a \le s \le b, \ a, b \in \mathbb{R},$$

where x(s) and y(s) are continuous functions in the interval [a, b] with the following property:

The functions x(s) and y(s) have continuous first derivatives x'(s) and y'(s) within the interval [a, b], including the endpoints, and these derivatives are never simultaneously zero.

Let $F(t_0)$ be a singular integral defined by

$$F(t_0) = \frac{1}{\pi i} \int_{\Gamma} \frac{\varphi(t)}{t - t_0} dt, \quad t_0 \in \Gamma.$$
(1)

For the existence of the principal value for a given density $\varphi(t)$, we will need more than mere continuity, in other words, the density $\varphi(t)$ has to satisfy the Hölder condition ($\varphi \in H(\mu)$) [2]. Let us now consider an arbitrary natural number N, generally we take it large enough, we divide the interval [a, b] into N subintervals of $[a, b] = \{a = s_0 < s_1 < \cdots < s_N = b\}$ called I_1 to I_N , so that $I_{\sigma+1} = [s_{\sigma}, s_{\sigma+1}]$. Also define $h_{\sigma+1} = s_{\sigma+1} - s_{\sigma}$, noting that the subintervals need not be of equal length.

But, in our case and for reasons of programming one takes the subintervals of the same length, into N equal parts by the points

$$s_{\sigma} = a + \sigma \frac{l}{N}, \quad l = b - a, \quad \sigma = 0, 1, 2, \dots, N.$$

Denoting $t_{\sigma} = t(s_{\sigma})$ and using the smoothness of Γ , we can take $h_{\sigma+1} = t_{\sigma+1} - t_{\sigma}$ [3, 7] and assuming that $\sigma, \nu = 0, 1, 2, ..., N - 1$, we consider now that the point t_0 belongs to the arc $t_{\nu}t_{\nu+1}$, where $t_{\nu}t_{\nu+1}$ denotes the smallest arc with ends t_{ν} and $t_{\nu+1}$ [3, 6].

For the arbitrary numbers σ, ν from $1, 2, \ldots, N - 1$ we define the function $\beta_{\sigma\nu}(\varphi; t, t_0)$ dependent on φ, t and t_0 by

$$\beta_{\sigma\nu}(\varphi; t, t_0) = (S_3(\varphi; t, \sigma) - S_3(\varphi; t_0, \nu)) \frac{2(t - t_0)}{(t_\sigma - t_0) + (t_{\sigma+1} - t_0)},$$
(2)

where the expression $S_3(\varphi; t, \sigma)$ denotes the cubic spline to the function density $\varphi(t)$ on the curve Γ given by the following formula

$$S_{3}(\varphi \ t, \sigma) = \frac{M_{\sigma}(t_{\sigma+1} - t)^{3}}{6h_{\sigma+1}} + \frac{M_{\sigma+1}(t - t_{\sigma})^{3}}{6h_{\sigma+1}} + \left(\varphi(t_{\sigma}) - \frac{M_{\sigma}h_{\sigma+1}^{2}}{6}\right)\frac{t_{\sigma+1} - t}{h_{\sigma+1}} + \left(\varphi(t_{\sigma+1}) - \frac{M_{\sigma+1}h_{\sigma+1}^{2}}{6}\right)\frac{t - t_{\sigma}}{h_{\sigma+1}}$$

and the density φ still represents a given function on the curve Γ of class $H(\mu)$.

Seeing that the equality $[(t_{\sigma}-t_0)+(t_{\sigma+1}-t_0)]=0$ is possible only when $\sigma = \nu$, in this case we take the function $\beta_{\sigma\sigma}(\varphi; t, t_0)$ omitting the expression $\frac{2(t-t_0)}{(t_{\sigma}-t_0)+(t_{\sigma+1}-t_0)}$, as given by

$$\beta_{\sigma\sigma}(\varphi; t, t_0) = S_3(\varphi; t, \sigma) - S_3(\varphi; t_0, \sigma).$$
(3)

It is simple to see that, for N large enough, the limit of the expression $\frac{2(t-t_0)}{(t_{\sigma}-t_0)+(t_{\sigma+1}-t_0)}$ is equal to the unit. However, the expressions (2) and (3) are almost equal, so we can confirm that the function $\beta_{\sigma\nu}(\varphi; t, t_0)$ is defined for all values of the variables $t, t_0 \in \Gamma$, and almost continuous at all points, for all $\sigma, \nu = 0, 1, \ldots, N-1$.

Now we define the function

$$\psi_{\sigma\nu}(\varphi; t, t_0) = \begin{cases} \varphi(t_0) + \beta_{\sigma\nu}(\varphi; t, t_0), \ t \in \tau_{\sigma}\tau_{\sigma+1}, \ t_0 \in \tau_{\nu}\tau_{\nu+1}, \\ \sigma = 0, 1, \dots, N-1; \ \nu = 0, 1, \dots, N-1. \end{cases}$$

It can be easily seen that the function $\beta_{\sigma\nu}(\varphi; t, t_0)$ contains $(t - t_0)$ as a factor, for all $\sigma, \nu = 0, 1, \ldots, N-1$, whence, the function $\psi_{\sigma\nu}(\varphi; t, t_0)$ admits the following representation

$$\psi_{\sigma\nu}(\varphi; t, t_0) = \varphi(t_0) + (t - t_0)Q_{\sigma\nu}(\varphi; t, t_0).$$
(4)

After this construction, one replaces the singular integral (1)

$$F(t_0) = \frac{1}{\pi i} \int_{\Gamma} \frac{\varphi(t)}{t - t_0} dt$$

by the following ones

$$S(\varphi; t_0) = \frac{1}{\pi i} \int_{\Gamma} \frac{\psi_{\sigma\nu}(\varphi; t, t_0)}{t - t_0} dt = \varphi(t_0) + \frac{1}{\pi i} \int_{\Gamma} Q_{\sigma\nu}(\varphi; t, t_0) dt.$$
(5)

Let us now cite the theorem concerning the accuracy of approximation of singular integrals (1) by expressions of the form (5).

Theorem Let Γ be a rectifiable simple path of finite length and let φ be a density satisfying the Hölder condition $(H(\mu))$, then the following estimation

$$|F(t_0) - S(\varphi; t_0)| \le \frac{C_N}{N^{\mu}}, \quad N > 1,$$

holds, where the constant C_N depends only of the curve Γ . Furthermore, if we suppose that φ and its first derivatives are continuous and $\max_{t\in\Gamma} |\varphi^{(4)}(t)| = M$, then one has

$$|F(t_0) - S(\varphi; t_0)| \le \frac{C_N}{N^{\mu+4}}, \quad N > 1.$$

For the sake of simplicity, we try to prove only the first estimate. Indeed, for $t \in t_{\sigma}t_{\sigma+1}$ and $t_0 \in t_{\nu}t_{\nu+1}$, we consider

$$\varphi(t) - \psi_{\sigma\nu}(\varphi; t, t_0) = \varphi(t) - \{\varphi(t_0) + \beta_{\sigma\nu}(\varphi; t, t_0)\}$$

For the sake of simplicity we take the cubic spline as a polynomial of degree three characterized by its moments M_{σ} ,

$$S_3(\varphi; t, \sigma) = \alpha_\sigma + \beta_\sigma (t - t_\sigma) + \gamma_\sigma (t - t_\sigma)^2 + \delta_\sigma (t - t_0)^3 \text{ for } t \in [t_\sigma, t_{\sigma+1}],$$

where

$$\begin{aligned} \alpha_{\sigma} &= \varphi(t_{\sigma}), \\ \beta_{\sigma} &= \frac{\varphi(t_{\sigma+1}) - \varphi(t_{\sigma})}{h_{\sigma+1}} - \frac{2M_{\sigma} + M_{\sigma+1}}{6}h_{\sigma+1}, \\ \gamma_{\sigma} &= \frac{M_{\sigma}}{2}, \\ \delta_{\sigma} &= \frac{M_{\sigma+1} - M_{\sigma}}{6h_{\sigma+1}}. \end{aligned}$$

For all $t \in t_{\sigma}t_{\sigma+1}$ and $t_0 \in t_{\nu}t_{\nu+1}$, $\sigma \neq \nu$, we can write

$$\varphi(t) - \psi_{\sigma\nu}(\varphi; t, t_0) = \varphi(t) - \varphi(t_0)$$

$$- \{\varphi(t_{\sigma}) + \beta_{\sigma}(t - t_{\sigma}) + \gamma_{\sigma}(t - t_{\sigma})^2 + \delta_{\sigma}(t - t_{\sigma})^3
- \varphi(t_{\nu}) - \beta_{\nu}(t - t_{\nu}) - \gamma_{\nu}(t - t_{\nu})^2
- \delta_{\nu}(t - t_{\nu})^3 \} \frac{2(t - t_0)}{(t_{\sigma} - t_0) + (t_{\sigma+1} - t_0)}.$$
(6)

If $\sigma = \nu$, we can easily put our expression in the form

$$\varphi(t) - \psi_{\sigma\nu}(\varphi; t, t_0) = \varphi(t) - \varphi(t_0)$$

$$- \{\beta_{\sigma} + \gamma_{\sigma}((t - t_{\sigma}) + (t_0 - t_{\sigma})) + \delta_{\sigma}((t - t_{\sigma})^2 + (t - t_{\sigma})(t_0 - t_{\sigma}) + (t_0 - t_{\sigma})^2)\}(t - t_0).$$
(7)

Taking into account the expressions (6), (7) above, we have

$$\frac{1}{\pi i} \int_{\Gamma} \frac{\varphi(t) - \psi_{\sigma\nu}(\varphi; t, t_0)}{t - t_0} dt = \sum_{\substack{\sigma=0\\\sigma\neq\nu}}^{N-1} \frac{1}{\pi i} \int_{\Gamma} \left\{ \frac{\varphi(t) - \varphi(t_0)}{t - t_0} \right\}$$

$$- \left[\varphi(t_{\sigma}) + \beta_{\sigma}(t - t_{\sigma}) + \gamma_{\sigma}(t - t_{\sigma})^2 + \delta_{\sigma}(t - t_{\nu})^3 - \varphi(t_{\nu}) - \beta_{\nu}(t - t_{\nu}) - \gamma_{\nu}(t - t_{\nu})^2 + \delta_{\sigma}(t - t_{\nu})^3 \right] \\
- \varphi(t_{\nu}) - \beta_{\nu}(t - t_{\nu}) - \gamma_{\nu}(t - t_{\nu})^2 + \delta_{\sigma}(t - t_{\nu})^3 + \delta_{\sigma}(t - t_{\nu})^3 + \delta_{\nu}(t - t_{\nu})^3 \right] \\
+ \frac{1}{\pi i} \int_{t_{\nu}t_{\nu+1}} \left\{ \frac{\varphi(t) - \varphi(t_0)}{t - t_0} - \left[\beta_{\nu} + \gamma_{\nu}((t - t_{\nu}) + (t_0 - t_{\nu})) \right] \right\} dt.$$
(8)

Passing now to the estimation of the expression (8), we have for $t_0 \in t_{\nu}t_{\nu+1}$ and $\sigma \neq \nu$ the relation

$$\left| \begin{array}{c} \sum\limits_{\substack{\sigma=0\\\sigma\neq\nu}}^{N-1} \int_{t_{\sigma}t_{\sigma+1}} \left\{ \frac{\varphi(t)-\varphi(t_{0})}{t-t_{0}} - [\varphi(t_{\sigma})-\varphi(t_{\nu})+\beta_{\sigma}(t-t_{\sigma}) \\ \\ -\beta_{\nu}(t-t_{\nu})] \frac{1}{\frac{t_{\sigma}+t_{\sigma+1}}{2}-t_{0}} \right\} dt \right| = O(N^{-\mu}).$$

Naturally, this estimation given above is obtained using expressions of β_{σ} and $\varphi \in H(\mu)$ [2]. Besides, it is easy to see that

$$\left| \sum_{\substack{\sigma=0\\\sigma\neq\nu}}^{N-1} \int_{t_{\sigma}t_{\sigma+1}} \{ \gamma_{\sigma}(t-t_{\sigma})^2 - \gamma_{\nu}(t_0-t_{\nu})^2 \} \frac{1}{\frac{t_{\sigma}+t_{\sigma+1}}{2} - t_0} \, dt \right| = O(N^{-2})$$

550

On the approximation of singular integrals of Cauchy type

and

$$\left| \sum_{\substack{\sigma=0\\\sigma\neq\nu}}^{N-1} \int_{t_{\sigma}t_{\sigma+1}} \{ \delta_{\sigma}(t-t_{\sigma})^3 - \delta_{\nu}(t_0-t_{\nu})^3 \} \frac{1}{\frac{t_{\sigma}+t_{\sigma+1}}{2} - t_0} \, dt \right| = O(N^{-2})$$

Further, using again the condition $\varphi \in H(\mu)$ and the condition of smoothness of Γ , we have

$$\left|\int_{t_{\nu}t_{\nu+1}}\frac{\varphi(t)-\varphi(t_{0})}{t-t_{0}}\,dt\right| \leq A \int_{s_{\nu}}^{s_{\nu+1}} |s-s_{0}|^{\mu-1}\,ds = O(N^{-\mu}).$$

And again on the base of $\varphi \in H(\mu)$ for the expression of β_{ν} , we can easily come to

$$\left|\begin{array}{c} \int_{t_{\nu}t_{\nu+1}} \{\beta_{\nu} + \gamma_{\nu}((t-t_{\nu}) + (t_0 - t_{\nu})) \\ +\delta_{\nu}((t-t_{\nu})^2 + (t-t_{\nu})(t_0 - t_{\nu}) + (t_0 - t_{\nu})^2)\} dt \end{array}\right| = O(N^{-\mu}).$$

Numerical experiments: Using our approximation, we apply the algorithms to singular integrals and we present results concerning the accuracy of the calculations. In these numerical experiments each table I represents the exact value of the singular integral and \tilde{I} corresponds to the approximate calculation produced by our approximation at points of interpolation.

Example Consider the singular integral

$$I = F(t_0) = \frac{1}{\pi i} \int_{\Gamma} \frac{\varphi(t)}{t - t_0} dt,$$

where the curve Γ denotes the unit circle and the function density φ is given by the following expression

$$\varphi(t) = \frac{-2t^2 + 8t + 12}{4t(t^2 - t - 6)}$$

N	$\parallel I - \widetilde{I} \parallel_1$	$\parallel I - \widetilde{I} \parallel_2$	$\parallel I - \widetilde{I} \parallel_{\infty}$
20	1.8246599E - 02	9.1665657E - 03	5.0822943E - 03
40	3.6852972E - 03	1.9270432E - 03	1.5697196E - 03
60	2.3687426E - 03	1.1880117E - 03	6.6070486E - 04

References

- [1] ANTIDZE D. J., On the approximate solution of singular integral equations, Seminar of Institute of Applied Mathematics, 1975, Tbilissi.
- [2] MUSKELISHVILI N. I., Singular Integral Equations, Nauka, Moscow, 1968. (in Russian)
- [3] NADIR M., Problèmes aux limites qui se réduisent aux équations intégrales de Fredholm, Séminaire de l'Institut de Mathématiques et Informatique, 1985, Annaba.
- [4] NADIR M., Opérateurs intégraux et bases d'ondelettes, Far East J. Sci., 6 (1998), No. 6, 977–995.
- [5] NADIR M., Opérateurs de Hilbert et bases d'ondelettes sur un intervalle, Far East J. Sci., 4 (2000), No. 1, 19–42.
- [6] SANIKIDZE J., On approximate calculation of singular line integral, Seminar of Institute of Applied Mathematics, 1970, Tbilissi.
- [7] SANIKIDZE J., Approximate solution of singular integral equations in the case of closed contours of integration, Seminar of Institute of Applied Mathematics, 1971, Tbilissi.