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Abstract

The aim of this work is to find an approximative method for computing the
scaling functions constructed at the endpoints of an interval, using the inner
product in L2([0, 1]) of the scaling function and its derivative.
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Introduction

As it is known, on the interval [0, 1] the values of the scaling functions, the wavelets
at the endpoints are not zero [2]. Unfortunately, there exists no method to calculate
them due to the homogeneous algebraic system obtained by the relation (4) [5].

The idea of this work is to make a little detour, by making use of the scalar prod-
uct in L2([0, 1]) of the scaling function constructed on an interval and its derivative,
to solve the algebraic system obtained in order to have a better approximation of
these functions at the endpoints 0 and 1.

Multiresolution analysis

A multiresolution analysis on L2([0, 1]) is given by an increasing sequence {Vj}j≥j0 ,
j, j0 ∈ Z, of closed subspaces of L2([0, 1]) satisfying the following properties:

∞[
j=j0

Vj is dense in L2([0, 1]), (1)
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∀f ∈ L2([0, 1]), ∀j, j0 ∈ Z, j ≥ j0, we have f(x) ∈ Vj ⇒ f(2x) ∈ Vj+1, (2)

{Φjk, j ≥ j0, k = 0, 1, . . . , 2
j − 1} = {φLjk, k = 0, 1, . . . , N − 1} (3)

∪{φjk, k = N, . . . , 2j −N − 1} ∪ {φRjk, k = −N, . . . ,−1}
is a system representing an orthonormal basis of Vj , where

φLjk(x) = 2
j
2φLk (2

jx), φjk(x) = 2
j
2φ(2jx− k), φRjk(x) = 2

j
2φRk (2

jx)

are, respectively, the scaling functions of the endpoint 0, the internal ones and of
the endpoint 1, given by,

for x ≥ 0, k = 0, 1, . . . , N − 1, we have Φk(x) = φLk (x),

φLk (x) =
√
2
N−1X
l=0

HL
k,lφ

L
l (2x) +

√
2
N+2kX
m=N

hLk,mφ(2x−m); (4)

for x ≥ 0, k = N, . . . , 2j −N − 1, we have Φk(x) = φk(x),

φk(x) = φ(x− k) =
√
2

NX
q=−N+1

hqφ(2x− 2k − q); (5)

for x ≤ 0, k = −N, . . . ,−1, we have Φ(x) = φRk (x),

φRk (x) =
√
2

−1X
l=−N

HR
k,lφ

R
l (2x) +

√
2

−N−1X
m=2k−N+1

hRk,mφ(2x−m). (6)

In an analogous way, we define Wj , the complementary subspace of Vj in Vj+1,
as the subspace generated by the orthonormal basis

{Ψjk, j ≥ j0, k = 0, 1, . . . , 2
j − 1} = {ψL

jk, k = 0, 1, . . . ,N − 1}
∪{ψjk, k = N, . . . , 2j −N − 1} ∪ {ψR

jk, k = −N, . . . ,−1},
where

ψL
jk(x) = 2

j
2ψL

k (2
jx), ψjk(x) = 2

j
2ψ(2jx− k), ψR

jk(x) = 2
j
2ψR

k (2
jx)

are, respectively, the wavelets of the endpoint 0, the internal ones and of the end-
point 1, satisfying the algebraic systems,

for x ≥ 0, k = 0, 1, . . . , N − 1, we have Ψk(x) = ψL
k (x),

ψL
k (x) =

√
2
N−1X
l=0

GL
k,lφ

L
l (2x) +

√
2
N+2kX
m=N

gLk,mφ(2x−m); (40)
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for x ≥ 0, k = N, . . . , 2j −N − 1, we have Ψk(x) = ψk(x),

ψk(x) = ψ(x− k) =
√
2

NX
q=−N+1

gqφ(2x− 2k − q); (50)

pour x ≤ 0, k = −N, . . . ,−1, we have Ψ(x) = ψR
k (x),

ψR
k (x) =

√
2

−1X
l=−N

GR
k,lφ

R
l (2x) +

√
2

−N−1X
m=2k−N+1

gRk,mφ(2x−m). (60)

From the relation Vj+1 = Vj ⊕Wj , and from (1), we obtain

VJ ⊕
∞M
j=J

Wj = L2([0, 1]), J ≥ j0, 2j0 ≥ 2N,

which gives the expansion of any function f of L2([0, 1]),

f(x) = PJf(x) +
∞X
j=J

Qjf(x), (7)

where PJ is the orthogonal projection of the function f onto VJ and Qj its orthog-
onal projection onto Wj .

Moments of the scaling functions on an interval

Denote by mL,i
k the moment of order i of the function φLk defined by

mL,i
k =

Z ∞

0
xiφLk (x) dx.

From the scaling relation (4), we obtain for i = 0 the following algebraic system

mL,0
k =

√
2
N−1X
l=0

HL
k,l

mL,0
k

2
+
√
2
N+2kX
m=N

hLk,m
M0

2
,

where M0 = 1. In fact, we have m ≥ N, henceZ ∞

0
φ(x−m) dx =

Z ∞

−m
φ(x) dx =

Z +∞

−∞
φ(x) dx = 1,
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which implies that for different values of i, we have the following algebraic system
[8],

2i
√
2mL,i

k =
N−1X
l=0

HL
k,lm

L,i
k +

N+2kX
m=N

hLk,m

 iX
j=0

µ
i

j

¶
mjMi−j

 ,

where Mp is the moment of order p of the scaling function on R and
¡
i
j

¢
= i!

j!(i−j)! .

In the same way, we find the moments mR,i
k of the scaling functions φRk [8],

2i
√
2mR,i

k =
−1X

l=−N
HR
k,lm

R,i
k +

−N−1X
m=2k−N+1

hRk,m

 iX
j=0

µ
i

j

¶
mjMi−j

 .

Applications

The moments of the scaling functions φL, φR et φ for Daubechies’s wavelets D4 with
two vanishing moments [8, 9], with i = 0, 1, 2, are

i mL,i
0 mL,i

1 mR,i
−2 mR,i

−1 Mi

0 0.3620521 1.001445 1.089843 1.295480 1.000000

1 −0.1509356 1.032428 −1.995769 −0.7217156 0.6339746

2 −0.3873851 1.166270 3.499148 0.5874012 0.4019238
The moments of the scaling functions on an interval

for N = 2 (D4 Daubechies)

Scalar product of the scaling functions on an interval

Denote by θjkl the matrix of the scalar product hΦ0jk,Φjli given by

θjkl =

Z 1

0
Φ0jk(x)Φjl(x) dx = 2

j

Z 2j

0
Φ0k(x)Φl(x) dx

= 2j
Z ∞

0
Φ0k(x)Φl(x) dx = 2

jθkl,

let Θ be the matrix defined by Θ = θkl, where

θkl = hΦ0k,Φli =
Z ∞

0
Φ0k(x)Φl(x) dx
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The construction of the scaling functions on an interval shows us that the matrix
Θ = θkl depends on nine submatrices given as follows,

Θ = θkl =

 θLL θLI θLR

θIL θII θIR

θRL θRI θRR

 ,

k = 0, 1, . . . ,N − 1,
l = 0, 1, . . . , N − 1,

θLLkl =

Z ∞

0
φ0Lk (x)φ

L
l (x) dx,

k = 0, 1, . . . ,N − 1,
l = N, . . . , 2j −N − 1,

θLIkl =

Z ∞

0
φ0Lk (x)φ(x− l) dx,

k = N, . . . , 2j −N − 1,
l = 0, 1, . . . , N − 1,

θILkl =

Z ∞

0
φ0(x− k)φLl (x) dx,

k = N, . . . , 2j −N − 1,
l = N, . . . , 2j −N − 1,

θIIkl =

Z ∞

0
φ0(x− k)φ(x− l) dx,

k = N, . . . , 2j −N − 1,
l = −N, . . . ,−1,

θIRkl =

Z 0

−∞
φ0(x− k + 2j)φRl (x) dx,

k = −N, . . . ,−1,
l = N, . . . , 2j −N − 1,

θRIkl =

Z 0

−∞
φ0Rk (x)φ(x− l + 2j) dx,

k = −N, . . . ,−1,
l = −N, . . . ,−1,

θRRkl =

Z 0

−∞
φ0Rk (x)φ

R
l (x) dx.

The above relation between the scaling functions shows that the elements of the
submatrices θLL, θLI , . . . , θRR depend on the elements of the internal block θII of
the matrix.
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Lemma 1 The matrix Θ = θkl is a band matrix with a half band width 2N − 1.

In fact, due to the compact and disjoint supports of the functions of the end-
points φLk , φ

R
k , we have

θLR =

Z ∞

0
φ0Lk (x)φ

R
k (x) dx = 0,

as well as

θRL =

Z 0

−∞
φ0Rk (x)φ

L
l (x) dx = 0.

Lemma 2 The elements of the internal matrix θII are antisymmetric,

θIIkl = −θIIlk ,

moreover, they satisfy the algebraic system

θIIkl = θII2k,2l +
1

2

NX
r=1

d2r−1(θII2k,2l+2r−1 + θII2k+2r−1,2l). (8)

In fact, applying to the expression

θIIkl =

Z ∞

0
φ0(x− k)φ(x− l) dx (9)

an integration by parts, we obtain

θIIkl = φ(x− k)φ(x− l) |∞0 −
Z ∞

0
φ0(x− l)φ(x− k) dx = −θIIlk ,

moreover, the scaling relation (5) applied to equation (9) leads us directly to system
(8); found also in [1].

Lemma 3 The elements of the matrix θLI satisfy the algebraic system

θLIkl = 2
N−1X
p=0

NX
q=−N+1

HL
kphqθ

LI
p,2l+q + 2

N+2kX
m=N

NX
q=−N+1

hLkmhqθ
II
m,2l+q. (10)

Moreover, we have
θLIkl = −θILlk .
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In fact, let

θLIkl =

Z ∞

0
φ0Lk (x)φ(x− l) dx. (11)

The scaling relations (4) and (5) applied to equation (11) give the system (10); an
integration by parts of this equation leads us to the relation θLIkl = −θILlk .

Let us note that the calculation of the elements de la matrix θLI is done in a
simple and straightforward way, beginning with the elements θLIkl such that 2l+q >
3N − 3, for all k = 0, 1, . . . , N − 1, and in an analogous way we find the matrices
θRI and θIR.

Lemma 4 The elements of the matrix θLL satisfy the algebraic system

θLLkl = 2
N−1X
p=0

N−1X
q=0

HL
kpH

L
lqθ

LL
pq + 2

N−1X
p=0

N+2lX
s=N

HL
kph

L
lsθ

LI
ps (12)

+ 2
N+2kX
m=N

N−1X
q=0

hLkmH
L
lqθ

IL
mq + 2

N+2kX
m=N

N+2lX
s=N

hLkmh
L
lsθ

II
ms ,

moreover, we have the relation

θLLkl + θLLlk = −φLk (0)φLl (0).

In fact, let

θLLkl =

Z ∞

0
φ0Lk (x)φ

L
l (x) dx. (13)

The scaling relation (4) applied to equation (13) gives the algebraic system (12)
formed by N ×N equations. The second term in (13) depends on elements of the
matrices θLI , θIL and θII ; found also in [5].

If we apply an integration by parts to the equation (13), we obtain

θLLkl = φLk (x)φ
L
l (x) |∞0 −

Z ∞

0
φ0Ll (x)φ

L
k (x) dx,

thus
θLLkl = −φLk (0)φLl (0)− θLLlk .

Corollary 1 The values of the scaling functions at the endpoint of an interval are
given by

φLk (0) = ±
q
−2θLLkk . (14)
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It suffices to take k = l in the above expression.
In the same way we find

φRk (0) = ±
q
2θRRkk . (140)

We should notice that the calculation of the function φLk at the point 0 using the
scaling relation (4) is practically impossible, due to the homogeneity of the system
of equations; on the contrary, the relation (14) gives the approximate values of the
scaling function at the endpoint, of course, after having solved the algebraic system
(12). The same reasoning applies to the function φRk at the point 1.

Let

θLL =


θLL00 θLL01 · · · θLL0,N−1
θLL10 θLL11 · · · θLL1,N−1
...

...
...

...
θLLN−1,0 θLLN−1,1 · · · θLLN−1,N−1

 ,

also, one has

θRR =


θRR
2j−N,2j−N θRR2j−N,2j−N+1 · · · θRR2j−N,2j−1

θRR2j−N+1,2j−N θRR2j−N+1,2j−N+1 · · · θRR2j−N+1,2j−1
...

...
...

...
θRR2j−1,2j−N θRR2j−1,2j−N+1 · · · θRR2j−1,2j−1

 .

Applications

θLL2 =

µ −1.96344 −1.52529
0.93546 −0.04429

¶
, θRR2 =

µ
0.08996 −0.79412
0.31493 0.63712

¶
.

It is easy to see that the scaling functions φL0 and φL1 are positives in a neigh-
bourhood of 0, while the functions φR0 and φR1 are of the opposite sign, hence from
the relations (14) and (140) we have

φL0 (0) = 1.981636,

φL1 (0) = 0.2976239,

φR−2(0) = −0.4241698,
φR−1(0) = 1.128822.

For the different values of N (the number of vanishing moments of the wavelets
on an interval), one proceeds in the same way to obtain the approximate values of
the scaling functions at the endpoints. The values of the wavelets at the endpoints
are deduced in a very simple way.
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