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Abstract

We shall generalize some results concerning the boundedness and the blow-
up of solutions to some reaction-diffusion systems. Firstly, we consider systems
of m unknown functions rather than two, and secondly, we weaken the hypothe-
ses to allow for a large class of nonlinearities.

Mathematics Subject Classification: 35K45, 35K57, 35H35.
Key words: Reaction-diffusion, Blow-up, Boundedness.

1 Introduction

Let © be an open and bounded subset of R™ of class C'. In this talk we shall be
interested in some quantitative properties such as boundedness, exponential decay
and blow-up of the nonnegative solutions to the following reaction-diffusion system

Ouy

m
pr — Auj =Y azu; + fj(tu), t>0, z€Q,
i=1

(1)

forj=1,...,m,

where u; stands for u; (z,t), with (z,t) € Q x (0,00) and v = (u1,...,un). The
constants {a;;}, <ij<m 8re nonnegative real numbers and the real-valued functions
f; are defined and continuous on the set (0, 00) x R™.

We assume that the solution u is subject to the initial conditions

uj (2,0) = ugj (x), x€Q, forj=1,...,m, (2)

the data ug; for j = 1,...,m are supposed to be continuous and bounded on the
set (2.
We assume further that u satisfies the following boundary condition:
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1) Dirichlet boundary condition
uj(x,t) =0,t>0, 2 €0, forj=1,...,m, (B1)

It is not hard to carry out the same task with either
2) Neumann boundary condition

811,]

an (x,t)=0,t>0, €0, forj=1,...,m (B2)

(n being the outer normal vector to 0f2), or
3) Robin boundary condition

ou,; Ou;
on

Because of the importance of the study of quantitative properties of solutions
to the above problem we shall generalize, on the one hand, the ideas proposed in
[5] to a higher number of unknown functions and, on the other hand, weaken our
hypotheses to obtain blow-up and boundedness of the nonnegative solution.

The success of these generalizations lies on deriving some Bernoulli’s inequality
whose solution can be estimated by some known quantities.

We say that the solution (ui,...,up) of problem (1),(2),(Bi) blows up at a
finite time T' < oo if its largest domain of existence is the cylinder €2 x [0,7") and

lim sup (Z |u; (x,t)|) = +00.

t—=T e 1

(,t) = —0o (x)uj(x,t), t >0, 2 €0Q, forj=1,...,m. (B3)

If, for each positive and finite T the solution (uq, ..., uy,) remains bounded on
the set © x [0,Tp), then we have a global existence of the solution in © x [0, c0) .

Next, denote respectively by A and ¢ (z) the smallest positive eigenvalue and
its corresponding positive eigenfunction satisfying the problem

Ap+Ap=0 in Q and ¢ =0 on 09, (3)

with [, ¢ (z)dz = 1.
We deﬁne throughout this work the function

J : 0,T) =R,
M
= e ou; dx
> [

and J (0) = 370, [ & (2) uoj (v) dz.
We shall repeatedly use the following useful discrete inequality, namely,
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Lemma 1 Let m be a positive integer and p a positive real number. If {a;}; is a
set of nonnegative real numbers, then

m D
(Zai) S(max 1,mP™ 1 (Za) if p>0,
i=1
and

m m p
(Zaf) <m!'™P (Z%) if 0<p<l.
i=1 i=1

To prove the lemma, it suffices to apply the integral Jensen’s Inequality with the
counting measure and the convex function ¢ (z) = P, if p > 1, and ¢ (z) = 2P,
if 0 < p < 1. Finally, the inequality (37", a;)? < > 7" a?, for 0 < p < 1 can be
treated by induction on m.

2 Main results

Here is our first result:

Proposition 2 If

m m l
0< ij (t,u) < COZuj —i—cht% exp (Bit), Yu = (u1,...,up) € RT,t >0,
j=1 j=1 k=1
for some real constants {c},-. {ak}f,c:l and {51:}2:1 such that
1)0<co<Xand B, <co— A fork=1,...,1,
2) {atiy CRY and 0 < o +1 fork=1,...,1,
then, the nonnegative solution to system (1),(2),(B1) satisfies the estimate

Z/ ¢ (x) uj (x,t) dz < [C 4 J(0)] e" A0 for all t >0,
— Ja
where
l
C= Z k(o — A= B) @I (a, +1) (T (2) being the gamma function).
k=1

Proof. Let u = (uq,...,us) be a nonnegative solution to (1), (2), (B1). Define

t)_e)\tZ/ ¢ujd$, tZO,
j=17%
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then, by differentiation we obtain
m
J(t) = e)‘t/ ¢ fi(t,u)de >0,
o =
7=1

so that

IN

m l
J'(t) o Z e /Q puj dzx 4 e /Q o) Z ekt exp(Byt) dx
j=1 k=1

l
< cod () + Y ext™ exp (A + By,
k=1

which gives
!

(Jefcot)/ < Z ekt exp (A + B, — co) t.
k=1

Integrating both sides of the above inequality from 0 to ¢, we get

J (t) e~ — J(0)

IN

l o0
ch/ t% exp (A + B, — co) tdt
k=1 70

1
< S enleo—A—B) I (o +1) = C,
k=1

giving
J () < (C + J(0)) et

Therefore,
Z/ ¢ (x) uj (z,t) dz < [C+ J (0)] e~ P~ for all ¢ > 0. O
j=1"9

Here is another result of boundedness of the nonnegative solution which is es-
tablished in the following Theorem:

Theorem 3 Assume that ug; >0 in ), for j=1,...,m. Let

m
fj:oszj—ujZBiui for j=1,...,m,
i=1
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and
a;j =0 for i,5=1,...,m,

where {a;}7", ,{B; } (0,00).
Let o = 12%}571 {aj} and 3 = 1gfjllglflm {/Bj}. If

0)_2/Q¢U0j(9?) a;/\,

then the nonnegative solution u to (1), (2), (B1) satisfies
Z/ du; (t,x)dx < J(0) for t>0.
=179

Proof. Let a and b be positive real numbers satisfying
BJ(0) <a<2B8J(0)+\—a, (4)

we set b= J(0) +¢ for 0 <e < a— BJ(0). It follows that
BJ(0)<b<a<2b+A—o. (5)

Next, define the function S (t) b

S(t)zeat/gqs (bﬁZuj) dz, t >0,
j=1

S(()):/qu (bﬁZuoj(x)> de=b—pBJ(0)=¢ > 0.
j=1

A differentiation with respect to t yields

then

S'(t) = / {abﬁz a+aj—N) uj+BZZBiuzuj}d:n

v
o,
\
/—/Q\
=]
0‘
Q
Q
+
Q
|
=
e
.
+
®
[\]
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On the other hand, we have by virtue of (5) the estimates
b? <aband a+a — X < 2b,

from which we get

v

o

.

=

NE

&S

_l’_
N o

=

NE

Q@
N————

[\V]

Therefore,

“
=
\%

2
eat/gz(?b(bﬁzu]') dx
=0

2
> e / $lb—B> uy|do
= S (1),
from which we obtain
at
S(t) > aS (0)e £>0,

(a—S(0))et+5(0)  —

ace™
h— —
(a —e)e® 4+ ¢

(BJ(0)+¢).

and accordingly,

Z/Qqﬁuj de <
§=0

<

| =
™|~

Now, since ¢ is arbitrary, then

Z/¢ujda:§J(0), t>0,
j=0"%
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which completes the proof. O

In what follows we shall get rid of some unnecessary integral condition on the
initial data which is widely used in previous works in order to obtain the blow-up
of the solution.

Theorem 4 Let {qij}lgz.ngm C(l,00),p= 1§I51311§1m (gij) and q = 13’1,?%(7;1 (¢ij), and

with

m m qij—Pp
a = min ai; | >0 = min b Uo; AT >0
1<i<m Z i ’ 6 1<i<m Z ©J (/ng 07
Jj=1 J=1
and = max )
v 1<ij<m (i)

Then the nonnegative solution w = (uy,...,un) of problem (1), (2), (B1) blows
up in finite time in each of the following cases:
IfA=ap—a—Ag+AX—vy=0and J(0) >0, then u blows up at a finite

time Ty with .
1 m \?~
To <
= B-1) <J(0)>

and it satisfies in [0,Ty) the estimate

iuj t, )| >mJ(0)eleNty {mP=! — B (p—1)J71(0) t}l/(p—l) '
=1

o0

2) If A >0 and J (0) > 0, then the solution blows up in a finite time Ty with

1 A m \PL
Tl S Z].n |:1 + B(p*l) <m> :|

and satisfies the estimate

m AL/ (1) N
Zuj (t,) Z[{l/(p——l)(t) fO’I" t e [O,Tl),

J=1 I

where

K(t) = {AJl_p 0)+8(p—-1) ml_p} e~ (ap=ajt

—B(p — 1) m'Pe (A2t
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, then the solution blows up at a finite

1/(p-1)
5’)IfA<0andJ(0)>m< A ) g

B(p—1)
time Ty with
1 A m \P1
o< i1+ sy ()

and satisfies the estimate

m (_A)l/(p—l)e—)\t
;“j ) = CrRre e

e}

for t€[0,Ty).

Proof. Let u = (ui,...,un) be a nonnegative solution to (1), (2), (B1) and
J(t) be as above. By a differentiation of J we obtain

m

m m
J(t) = Ze’\t/qf) Zaij uj + szje—%it ul? b dx
i=1 Q j=1 j=1

m m m
> 0o [oudat Y0 Y by [ oul da,
i=1 Q i=1 j=1 Q
On the other hand, we observe that for any j = 1,...,m we have

! m
(e’\t/ qﬁujdx) = Z e’\t/ ¢ {aiju; + bje Vi'ul? } dx > 0,
Q — Q

which gives

e’\t/gbujde/gbuojdfc for =1,...,m,
Q Q

so that

ij qij—p P
(e’\t/gqbuj dw) > (/Q Puo; d:p) <e’\t/g¢uj- d:p) ,

fori,7=1,...,m.
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Setting ¢; = fQ ¢ugjdr for 7 =1,...,m, and taking into account Lemma 1, we
get
J(t) > az At/¢uzd:c+22b”eA ) /qﬁuq” dzx
i=1 j=1
qij
> aZe)‘t/¢uzda:+ZZb eA=y=at (e)‘t/fﬁuz‘da:>
i—1 i=1 j=1 Q
m P
> a At/ ou; dr + A —r—aMt Z Zbijcgij_p (6”/ ou; da:)
i=1 \ j=1 Q
> aJ (t) + Bm !t PP ANt P (3

Putting ¢ (t) = J17P (), then the previous differential inequality becomes
Y+ alp = 1) < B(1 = pym! PN

so that )
(we(apfa)t) < _/3 (p - 1) mlfpe(apfoﬂr)\f'yf)\q)t‘ (6)

Set A =ap—a+ A— v — Ag, and consider the following cases:
1) If A =0, then the differential inequality (6) gives

1 oo _
w(t)zmge (v l)t{Jl PO)-p(p-1) lpt}
1 m \? !
this is meaningful whenever ¢t < T = .
& 0 ﬁ@—ﬁ(J@Q

Therefore, for 0 < ¢ <7}y, one has
at 1-p 1-p 1/(p—1)
T = e/ {77 (0) = B (p— 1) mi0t)

and, accordingly, the solution must blow up at a finite time 7y < 77}, and
Z/ pujdx > mJ (0) e(“*)‘)t/ {mP*1 —B(p—1) g1 (0) t}l/(p—l)
_1 JQ

for all ¢ € [0,Tp), from which we infer

zm:u]' (t,) > m.J (0) e(o‘*)‘)t/ {mpfl —Bp—1) gp—1 (0) t}l/(P—l)

e}



530 S. Mazouzi and N. Ferfar

for 0 <t < Tp.
2) Suppose that A > 0.
Integrating (6) we find

o< [AJIP(0) + B (p— 1) mi P} e~ (@)t _ g (p — 1) pl-Pe— (@A)t
< X '

Denote by K(t) the numerator of the right-hand side of the above estimate.
Since ¢ > 0, then K (¢) must be nonnegative. On the other hand, we observe that
K (t) vanishes if and only if there is 77 > 0 such that

e~ (A=A TY _AJYP0) + B(p — Dm! P
cer T B Dmir

AT =14 s <J%>>pl’

T AIH[Hﬁ(pl( %) }

Thus, K (t) is nonnegative if and only if ¢ € [0, T}]. Next, since

JITP (1) < KT@,

that is,

giving

then
N A
J@) > | —= for t €[0,17).
()_<K(t)> or 6[7 1)
This shows that the solution must blow up at a finite time 77 < T}, and we
have
i ) AL/(p—1) =Mt
ui o)l 2 S
st K1Y (=1) (¢)

o

for t € [0,71).

3) Suppose now that A < 0.
Integrating (6) we find as above

K(t) _—-K(t)
LN

Since 1 > 0 and A < 0, then —K (¢) must be nonnegative. On the other hand,
K (t) vanishes at Ty > 0 given by

AT =14 g <J%>>
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that is,
« 1 A m \P1
=xM [1 + e () } ’
1/(p—1)
provided that J (0) > m (5(;—91» g
Hence, —K (t) is nonnegative if and only if ¢ € [0, T5]. Next, since
_ —K(t)
JUP(t) <
( ) — —A )

then
_A N\ V-1
> | — *) .
J(t) > <—K(t)> for ¢t € [0,7%)

This shows that the solution blows up at a finite time 75 < T5'; moreover, we have
the estimate

m

(=AY /=Dt
g uj (t,-)|] > R0 for t €[0,T%). O
7=1

[e.9]
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