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Abstract

We shall generalize some results concerning the boundedness and the blow-
up of solutions to some reaction-diffusion systems. Firstly, we consider systems
ofm unknown functions rather than two, and secondly, we weaken the hypothe-
ses to allow for a large class of nonlinearities.
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1 Introduction

Let Ω be an open and bounded subset of Rn of class C1. In this talk we shall be
interested in some quantitative properties such as boundedness, exponential decay
and blow-up of the nonnegative solutions to the following reaction-diffusion system

∂uj
∂t
−∆uj =

mP
i=1

aijui + fj (t, u) , t > 0, x ∈ Ω,
for j = 1, . . . ,m,

(1)

where uj stands for uj (x, t), with (x, t) ∈ Ω × (0,∞) and u = (u1, . . . , um) . The
constants {aij}1≤i,j≤m are nonnegative real numbers and the real-valued functions
fj are defined and continuous on the set (0,∞)×Rm.

We assume that the solution u is subject to the initial conditions

uj (x, 0) = u0j (x) , x ∈ Ω, for j = 1, . . . ,m, (2)

the data u0j for j = 1, . . . ,m are supposed to be continuous and bounded on the
set Ω.

We assume further that u satisfies the following boundary condition:
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1) Dirichlet boundary condition

uj (x, t) = 0, t ≥ 0, x ∈ ∂Ω, for j = 1, . . . ,m, (B1)

It is not hard to carry out the same task with either
2) Neumann boundary condition

∂uj
∂η

(x, t) = 0, t ≥ 0, x ∈ ∂Ω, for j = 1, . . . ,m (B2)

(η being the outer normal vector to ∂Ω), or
3) Robin boundary condition

∂uj
∂η

(x, t) = −σ (x)uj (x, t) , t ≥ 0, x ∈ ∂Ω, for j = 1, . . . ,m. (B3)

Because of the importance of the study of quantitative properties of solutions
to the above problem we shall generalize, on the one hand, the ideas proposed in
[5] to a higher number of unknown functions and, on the other hand, weaken our
hypotheses to obtain blow-up and boundedness of the nonnegative solution.

The success of these generalizations lies on deriving some Bernoulli’s inequality
whose solution can be estimated by some known quantities.

We say that the solution (u1, . . . , um) of problem (1) , (2) , (Bi) blows up at a
finite time T <∞ if its largest domain of existence is the cylinder Ω× [0, T ) and

lim
t→T

sup
x∈Ω

Ã
mX
i=1

|ui (x, t)|
!
= +∞.

If, for each positive and finite T0 the solution (u1, . . . , um) remains bounded on
the set Ω× [0, T0), then we have a global existence of the solution in Ω× [0,∞) .

Next, denote respectively by λ and φ (x) the smallest positive eigenvalue and
its corresponding positive eigenfunction satisfying the problem

∆φ+ λφ = 0 in Ω and φ = 0 on ∂Ω, (3)

with
R
Ω φ (x) dx = 1.

We define throughout this work the function

J : [0, T )→ R,

J (t) = eλt
mX
j=1

Z
Ω
φuj dx

and J (0) =
Pm

j=1

R
Ω φ (x)u0j (x) dx.

We shall repeatedly use the following useful discrete inequality, namely,
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Lemma 1 Let m be a positive integer and p a positive real number. If {ai}mi=1 is a
set of nonnegative real numbers, thenÃ

mX
i=1

ai

!p

≤ ¡max ¡1,mp−1¢¢Ã mX
i=1

api

!
if p > 0,

and Ã
mX
i=1

api

!
≤ m1−p

Ã
mX
i=1

ai

!p

if 0 < p ≤ 1.

To prove the lemma, it suffices to apply the integral Jensen’s Inequality with the
counting measure and the convex function ϕ (x) = xp, if p > 1, and ϕ (x) = x1/p,
if 0 < p < 1. Finally, the inequality (

Pm
i=1 ai)

p ≤ Pm
i=1 a

p
i , for 0 < p < 1 can be

treated by induction on m.

2 Main results

Here is our first result:

Proposition 2 If

0 ≤
mX
j=1

fj (t, u) ≤ c0

mX
j=1

uj +
lX

k=1

ckt
αk exp (βkt) , ∀u = (u1, . . . , um) ∈ Rm

+ , t ≥ 0,

for some real constants {ck}mk=0, {αk}lk=1 and {βk}lk=1 such that
1) 0 < c0 ≤ λ and βk < c0 − λ for k = 1, . . . , l,
2) {ck}mk=1 ⊂ R+ and 0 < αk + 1 for k = 1, . . . , l,

then, the nonnegative solution to system (1) , (2) , (B1) satisfies the estimate

mX
j=1

Z
Ω
φ (x)uj (x, t) dx ≤ [C + J (0)] e−(λ−c0)t for all t ≥ 0,

where

C =
lX

k=1

ck (c0 − λ− βk)
−(αk+1) Γ (αk + 1) ( Γ (x) being the gamma function).

Proof. Let u = (u1, . . . , um) be a nonnegative solution to (1), (2), (B1). Define

J (t) = eλt
mX
j=1

Z
Ω
φuj dx, t ≥ 0,
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then, by differentiation we obtain

J 0 (t) = eλt
Z
Ω
φ

mX
j=1

fj (t, u) dx ≥ 0,

so that

J 0 (t) ≤ c0

mX
j=1

eλt
Z
Ω
φuj dx+ eλt

Z
Ω
φ

lX
k=1

ckt
αk exp(βkt) dx

≤ c0J (t) +
lX

k=1

ckt
αk exp (λ+ βk) t,

which gives ¡
Je−c0t

¢0 ≤ lX
k=1

ckt
αk exp (λ+ βk − c0) t.

Integrating both sides of the above inequality from 0 to t, we get

J (t) e−c0t − J (0) ≤
lX

k=1

ck

Z ∞

0
tαk exp (λ+ βk − c0) t dt

≤
lX

k=1

ck (c0 − λ− βk)
−(αk+1) Γ (αk + 1) = C,

giving
J (t) ≤ (C + J (0)) ec0t.

Therefore,

mX
j=1

Z
Ω
φ (x)uj (x, t) dx ≤ [C + J (0)] e−(λ−c0)t for all t ≥ 0. ¤

Here is another result of boundedness of the nonnegative solution which is es-
tablished in the following Theorem:

Theorem 3 Assume that u0j ≥ 0 in Ω, for j = 1, . . . ,m. Let

fj = αjuj − uj

mX
i=1

βiui for j = 1, . . . ,m,
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and
aij = 0 for i, j = 1, . . . ,m,

where {αj}mj=1 ,
©
βj
ªm
j=1
⊂ (0,∞) .

Let α = max
1≤j≤m

{αj} and β = min
1≤j≤m

©
βj
ª
. If

J (0) =
mX
j=1

Z
Ω
φu0j (x) dx >

α− λ

β
,

then the nonnegative solution u to (1), (2), (B1) satisfies

mX
i=1

Z
Ω
φuj (t, x) dx ≤ J (0) for t ≥ 0.

Proof. Let a and b be positive real numbers satisfying

βJ (0) < a ≤ 2βJ (0) + λ− α, (4)

we set b = βJ (0) + ε for 0 < ε < a− βJ (0). It follows that

βJ (0) < b < a < 2b+ λ− α. (5)

Next, define the function S (t) by

S (t) = eat
Z
Ω
φ

b− β
mX
j=1

uj

 dx, t ≥ 0,

then

S (0) =

Z
Ω
φ

b− β
mX
j=1

u0j (x)

 dx = b− βJ (0) = ε > 0.

A differentiation with respect to t yields

S0(t) = eat
Z
Ω
φ

ab− β
mX
j=1

(a+ αj − λ)uj + β
mX
i=1

mX
j=1

βiuiuj

 dx

≥ eat
Z
Ω
φ

ab− β
mX
j=1

(a+ α− λ)uj + β2

 mX
j=1

uj

2 dx.
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On the other hand, we have by virtue of (5) the estimates

b2 < ab and a+ α− λ < 2b,

from which we get

ab− β (a+ α− λ)
mX
j=1

uj + β2

 mX
j=1

uj

2

≥ b2 − 2bβ
mX
j=1

uj +

β
mX
j=1

uj

2

=

b− β
mX
j=1

uj

2 .
Therefore,

S0(t) ≥ eat
Z
Ω
φ

b− β
mX
j=0

uj

2 dx
≥ eat

Z
Ω
φ

b− β
mX
j=0

uj

 dx

2

= e−atS
2
(t) ,

from which we obtain

S(t) ≥ aS (0) eat

(a− S (0)) eat + S (0)
, t ≥ 0,

and accordingly,

mX
j=0

Z
Ω
φuj dx ≤ 1

β

½
b− aεeat

(a− ε)eat + ε

¾
<

b

β
=
1

β
(βJ (0) + ε) .

Now, since ε is arbitrary, then

mX
j=0

Z
Ω
φuj dx ≤ J (0) , t ≥ 0,
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which completes the proof. ¤
In what follows we shall get rid of some unnecessary integral condition on the

initial data which is widely used in previous works in order to obtain the blow-up
of the solution.

Theorem 4 Let {qij}1≤i,j≤m ⊂ (1,∞), p = min
1≤i,j≤m

(qij) and q = max
1≤i,j≤m

(qij), and

let {aij}1≤i,j≤m,{bij}1≤i,j≤m,
©
γij
ª
1≤i,j≤m ⊂ [0,∞) and fj (t, u) =

Pm
i=1 bije

−γijtuqiji ,
with

α = min
1≤i≤m

 mX
j=1

aij

 > 0, β = min
1≤i≤m

 mX
j=1

bij

µZ
Ω
φu0idx

¶qij−p
 > 0

and γ = max
1≤i,j≤m

¡
γij
¢
.

Then the nonnegative solution u = (u1, . . . , um) of problem (1), (2), (B1) blows
up in finite time in each of the following cases:

1) If ∆ = αp − α − λq + λ− γ = 0 and J (0) > 0 , then u blows up at a finite
time T0 with

T0 ≤ 1

β (p− 1)
µ

m

J (0)

¶p−1

and it satisfies in [0, T0) the estimate°°°°°°
mX
j=1

uj (t, ·)
°°°°°°
∞
≥ mJ (0) e(α−λ)t/

©
mp−1 − β (p− 1)Jp−1 (0) tª1/(p−1) .

2) If ∆ > 0 and J (0) > 0, then the solution blows up in a finite time T1 with

T1 ≤ 1

∆
ln

·
1 + ∆

β(p−1)
³

m
J(0)

´p−1¸
and satisfies the estimate°°°°°°

mX
j=1

uj (t, .)

°°°°°°
∞
≥ ∆

1/(p−1)e−λt

K1/(p−1) (t)
for t ∈ [0, T1) ,

where

K (t) =
©
∆J1−p (0) + β (p− 1)m1−pª e−(αp−α)t
−β (p− 1)m1−pe−(qλ−λ+γ)t.
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3) If ∆ < 0 and J (0) > m
³

−∆
β(p−1)

´1/(p−1)
, then the solution blows up at a finite

time T2 with

T2 ≤ 1

∆
ln

·
1 + ∆

β(p−1)
³

m
J(0)

´p−1¸
,

and satisfies the estimate

°°°°°°
mX
j=1

uj (t, .)

°°°°°°
∞
≥ (−∆)

1/(p−1)e−λt

(−K)1/(p−1)(t) for t ∈ [0, T2) .

Proof. Let u = (u1, . . . , um) be a nonnegative solution to (1), (2), (B1) and
J(t) be as above. By a differentiation of J we obtain

J 0(t) =
mX
i=1

eλt
Z
Ω
φ


 mX

j=1

aij

uj +

 mX
j=1

bije
−γijt

u
qij
i

 dx

≥ α
mX
i=1

eλt
Z
Ω
φui dx+

mX
i=1

mX
j=1

bije
(λ−γ)t

Z
Ω
φu

qij
i dx.

On the other hand, we observe that for any j = 1, . . . ,m we have

µ
eλt
Z
Ω
φujdx

¶0

=
mX
i=1

eλt
Z
Ω
φ
©
aijui + bije

−γijtuqiji
ª
dx ≥ 0,

which gives

eλt
Z
Ω
φujdx ≥

Z
Ω
φu0j dx for j = 1, . . . ,m,

so that µ
eλt
Z
Ω
φuj dx

¶qij

≥
µZ

Ω
φu0j dx

¶qij−pµ
eλt
Z
Ω
φuj dx

¶p

,

for i, j = 1, . . . ,m.
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Setting cj =
R
Ω φu0j dx for j = 1, . . . ,m, and taking into account Lemma 1, we

get

J 0(t) ≥ α
mX
i=1

eλt
Z
Ω
φui dx+

mX
i=1

mX
j=1

bije
(λ−γ)t

Z
Ω
φu

qij
i dx

≥ α
mX
i=1

eλt
Z
Ω
φui dx+

mX
i=1

mX
j=1

bije
(λ−γ−qλ)t

µ
eλt
Z
Ω
φui dx

¶qij

≥ α
mX
i=1

eλt
Z
Ω
φui dx+ e(λ−γ−qλ)t

mX
i=1

 mX
j=1

bijc
qij−p
i

µeλt Z
Ω
φui dx

¶p

≥ αJ (t) + βm1−pe(λ−γ−qλ)tJp (t) .

Putting ψ (t) = J1−p (t), then the previous differential inequality becomes

ψ0 + α(p− 1)ψ ≤ β(1− p)m1−pe(λ−γ−qλ)t,

so that ³
ψe(αp−α)t

´0
≤ −β (p− 1)m1−pe(αp−α+λ−γ−λq)t. (6)

Set ∆ = αp− α+ λ− γ − λq, and consider the following cases:
1) If ∆ = 0, then the differential inequality (6) gives

ψ (t) =
1

Jp−1 (t)
≤ e−α(p−1)t

©
J1−p (0)− β (p− 1)m1−pt

ª
,

this is meaningful whenever t < T ∗0 =
1

β (p− 1)
µ

m

J (0)

¶p−1
.

Therefore, for 0 ≤ t < T ∗0 , one has

J(t) ≥ eαt/
©
J1−p (0)− β (p− 1)m1−pt

ª1/(p−1)
and, accordingly, the solution must blow up at a finite time T0 ≤ T ∗0 , and

mX
j=1

Z
Ω
φujdx ≥ mJ (0) e(α−λ)t/

©
mp−1 − β (p− 1)Jp−1 (0) tª1/(p−1)

for all t ∈ [0, T0) , from which we infer°°°°°°
mX
j=1

uj (t, ·)
°°°°°°
∞
≥ mJ (0) e(α−λ)t/

©
mp−1 − β (p− 1)Jp−1 (0) tª1/(p−1)
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for 0 ≤ t < T0.
2) Suppose that ∆ > 0.
Integrating (6) we find

ψ ≤
©
∆J1−p (0) + β (p− 1)m1−pª e−(αp−α)t − β (p− 1)m1−pe−(qλ−λ+γ)t

∆
.

Denote by K(t) the numerator of the right-hand side of the above estimate.
Since ψ ≥ 0, then K (t) must be nonnegative. On the other hand, we observe that
K(t) vanishes if and only if there is T ∗1 > 0 such that

e−(qλ−λ+γ)T∗1
e−(αp−α)T∗1

=
∆J1−p(0) + β(p− 1)m1−p

β(p− 1)m1−p ,

that is,

e∆T∗1 = 1 +
∆

β(p− 1)
µ

m

J(0)

¶p−1
,

giving

T ∗1 =
1

∆
ln

·
1 + ∆

β(p−1)
³

m
J(0)

´p−1¸
.

Thus, K(t) is nonnegative if and only if t ∈ [0, T ∗1 ]. Next, since

J1−p (t) ≤ K (t)

∆
,

then

J(t) ≥
µ
∆

K (t)

¶1/(p−1)
for t ∈ [0, T ∗1 ) .

This shows that the solution must blow up at a finite time T1 ≤ T ∗1 , and we
have °°°°°°

mX
j=1

uj (t, ·)
°°°°°°
∞
≥ ∆

1/(p−1)e−λt

K1/(p−1) (t)
for t ∈ [0, T1) .

3) Suppose now that ∆ < 0.
Integrating (6) we find as above

ψ ≤ K (t)

∆
=
−K (t)

−∆ .

Since ψ ≥ 0 and ∆ < 0, then −K (t) must be nonnegative. On the other hand,
K (t) vanishes at T ∗2 > 0 given by

e∆T∗2 = 1 +
∆

β(p− 1)
µ

m

J(0)

¶p−1
,
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that is,

T ∗2 =
1

∆
ln

·
1 + ∆

β(p−1)
³

m
J(0)

´p−1¸
,

provided that J (0) > m
³

−∆
β(p−1)

´1/(p−1)
.

Hence, −K (t) is nonnegative if and only if t ∈ [0, T ∗2 ]. Next, since

J1−p(t) ≤ −K(t)−∆ ,

then

J (t) ≥
µ −∆
−K (t)

¶1/(p−1)
for t ∈ [0, T ∗2 ) .

This shows that the solution blows up at a finite time T2 ≤ T ∗2 ; moreover, we have
the estimate °°°°°°

mX
j=1

uj (t, ·)
°°°°°°
∞
≥ (−∆)

1/(p−1)e−λt

(−K)1/(p−1)(t) for t ∈ [0, T2) . ¤
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