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Abstract

In this paper, we use the Petrov—Galerkin (PG) method for solving Fred-
holm integral equations of the second kind whose trial space and test space are
Alpert’s multiwavelets. This method yields a linear system having numerically
sparse coefficient matrices and their condition numbers are bounded. At last,
for showing the efficiency of the method, we use numerical examples.
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1 Introduction

In this paper, we solve Fredholm integral equations of the second kind given in the
form

u(t)− (Ku)(t) = f(t), t ∈ [0, 1], (1)

where

(Ku)(t) =

Z 1

0
k(t, s)u(s) ds.

The function f ∈ L2[0, 1], the kernel k ∈ L2([0, 1]× [0, 1]) are given and u ∈ L2[0, 1]
is the unknown function to be determined.

The Petrov—Galerkin method for equation (1) has been studied in [4]. We have
seen from [4] that one of the advantages of the Petrov—Galerkin method is that it
allows us to achieve the same order of convergence as the Galerkin method with
much less computational cost by choosing the test spaces to be spaces of piecewise
polynomials of lower degree than the trial space. In [5], we used continuous and
discontinuous Lagrange type k − 0 elements with 1 ≤ k ≤ 5 for equation (1).
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In [1], Alpert constructed a class of wavelet bases in L2[0, 1] and applied it to
approximate the solution of equation (1). The numerical method employed in [1]
was the Galerkin method. In [2], the wavelet Petrov—Galerkin schemes based on
discontinuous orthogonal multiwavelets were described. The results of this method
yield integrals that are not solved easily and for this problem in [3] Discrete Wavelet
Petrov—Galerkin (DWPG) method was described. In this paper we use Alpert’s
multiwavelets by using Petrov—Galerkin method for solving equation (1).

We organize this paper as follows. In Section 2, we review the Petrov—Galerkin
method for equation (1). In Section 3, we describe the wavelet basis we use for the
piecewise polynomials spaces considered here and, at last, in Section 4 we use the
wavelet Petrov—Galerkin method with this multiwavelet basis for solving equation
(1).

2 The Petrov—Galerkin method

In this section we follow the paper [4] with a brief review of the Petrov—Galerkin
method.

Let X be a Banach space and X∗ be its dual space of continuous linear func-
tionals. For each positive integer n, we assume that Xn ⊂ X, Yn ⊂ X∗ and Xn, Yn
are finite dimensional vector spaces with

dimXn = dimYn, n = 1, 2, . . . (2)

Also Xn, Yn satisfy condition (H): For each x ∈ X and y ∈ X∗, there exist xn ∈ Xn

and yn ∈ Yn such that kxn − xk→ 0 and kyn − yk→ 0 as n→∞.
The Petrov-Galerkin method for equation (1) is a numerical method for finding

un ∈ Xn such that

(un −Kun, yn) = (f, yn) for all yn ∈ Yn. (3)

Definition. For x ∈ X, an element Pnx ∈ Xn is called the generalized best
approximation from Xn to x with respect to Yn if it satisfies the equation

(x− Pnx, yn) = 0 for all yn ∈ Yn. (4)

It is proved in [4] that for each x ∈ X the generalized best approximation from Xn

to x with respect to Yn exists uniquely if and only if

Yn ∩X⊥
n = {0}. (5)

Under this condition, Pn is a projection, i.e., P 2n = Pn and equation (3) is equivalent
to

un − PnKun = Pnf. (6)
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Assume that, for each n, there is a linear operator Πn : Xn → Yn with ΠnXn = Yn
satisfying the following two conditions

(H-1) for all xn ∈ Xn, kxnk ≤ C1(xn,Πnxn)
1/2,

(H-2) for all xn ∈ Xn, kΠnxnk ≤ C2kxnk.

If a pair of space sequences {Xn} and {Yn} satisfies (H-1) and (H-2), we call
{Xn, Yn} a regular pair. Then Xn and Yn are respectively trial space and test
space.

3 Alpert’s multiwavelets

In this section, we follow the paper [1] with a brief review of the Alpert’s wavelets.

For k a positive integer, and for m = 0, 1, . . . we define a space Sk
m of piecewise

polynomials functions,

Sk
m = {f : the restriction of f to the interval (2−mn, 2−m(n+ 1))

is a polynomial of degree less than k, for n = 0, 1, . . . , 2m − 1
and f vanishes elsewhere}.

It is apparent than dim(Sk
m) = 2

mk and

Sk
0 ⊂ Sk

1 ⊂ · · · ⊂ Sk
m ⊂ · · ·

The orthogonal complement of Sk
m in Sk

m+1 is denoted by Rk
m so that dim(Rk

m) =
2mk and

Sk
m

M
Rk
m = Skm+1 , Rk

m⊥Sk
m .

Let h1, h2, . . . , hk be an orthonormal basis for Rk
0, therefore, since R

k
0 is orthogonal

to Sk
0 , the first k moments of h1, h2, . . . , hk vanish, that is,

Z 1

0
hj(x)x

idx = 0, i = 0, 1, . . . , k − 1.
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The functions h1, h2, . . . , hk for k = 1, 2, 4 are as follows:

−−−−−−−−−−−−−− k = 1−−−−−−−−−−−−−−

h1(x) =


−1, 0 < x < .5,

1, .5 < x < 1,
−−−−−−−−−−−−−− k = 2−−−−−−−−−−−−−−

h1(x) =


√
3(4x− 1), 0 < x < .5,

√
3(3− 4x), .5 < x < 1,

h2(x) =


6x− 1, 0 < x < .5,

6x− 5, .5 < x < 1,

−−−−−−−−−−−−−− k = 4−−−−−−−−−−−−−−

h1(x) =


q

15
17(3− 56x+ 216x2 − 224x3), 0 < x < .5,q
15
17(−61 + 296x− 456x2 + 224x3), .5 < x < 1,

h2(x) =

(
1√
21
(−11 + 270x− 1320x2 + 1680x3), 0 < x < .5,

1√
21
(−619 + 2670x− 3720x2 + 1680x3), .5 < x < 1,

h3(x) =


q

35
68(2− 60x+ 348x2 − 512x3), 0 < x < .5,q
35
68(−222 + 900x− 1188x2 + 512x3), .5 < x < 1,

h4(x) =


q

5
84(−2 + 72x− 492x2 + 840x3), 0 < x < .5,q
5
84(−418 + 1608x− 2028x2 + 840x3), .5 < x < 1.

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Therefore, we have

Rk
0 = Span {h1, . . . , hk} (7)

and
Rk
m = Span {hnj,m; j = 1, . . . , k, n = 0, 1, . . . , 2m − 1}, (8)

where
hnj,m(x) = 2

m
2 hj(2

mx− n), j = 1, . . . , k, m, n ∈ Z. (9)

Let {u1, . . . , uk} be the orthonormal Legendre polynomials adjusted to the interval
[0,1], then for a fixed value of m

Bk = {bj}2mk
j=1 =

{uj , j = 1, . . . , k} ∪ {hnj,p : p = 0, 1, . . . ,m− 1, n = 0, 1, . . . , 2p − 1, j = 1, . . . , k}
is an orthonormal system for Sk

m.
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4 The wavelet Petrov—Galerkin method

In this method, we choose Xn = Sk
m as trial space and Yn = Sk

0
m0 as test space

where k, k0,m,m0 are positive integers such that k0 < k and n = 2mk = 2m
0
k0. This

condition is equivalent to k
k0 = 2

q and m0 = m+ q for some non-negative integer q.
If q = 0, we have the Galerkin method.

Now, assume un ∈ Xn and {bi}ni=1 is a basis for Xn and {b∗j}nj=1 is a basis for
Yn. Therefore the Petrov—Galerkin method on [0, 1] for equation (1) is

(un −Kun, b
∗
j ) = (f, b

∗
j ), j = 1, . . . , n. (10)

Let un(t) =
Pn

i=1 aibi(t) and the equation (1) leads to determining {a1, a2, · · · , an}
as the solution of the linear system

nX
i=1

ai

½Z 1

0
bi(t)b

∗
j (t) dt−

Z 1

0

Z 1

0
K(s, t)bi(s)b

∗
j (t) ds dt

¾
=

Z 1

0
f(t)b∗j (t) dt, j = 1, . . . , n. (11)

In the sequel, we test this method by an example.

Example.

u(t)−
Z 1

0
(−1
3
e2t−5s/3)u(s) ds = e2t+1/3, 0 ≤ t ≤ 1,

with exact solution u(t) = e2t. In the following tables we computed kun(t)− u(t)k2
for different k, k0,m,m0 such that k0 < k and k

k0 = 2
q and m0 = m+ q.

m m0 k = 2, k0 = 1 k = 4, k0 = 2
1 2 0.0164051 0.000339447
2 3 0.00422859 0.0000223377
3 4 0.00172423 3.40864 ∗ 10−6
4 5 0.00175073 3.48285 ∗ 10−6

m m0 k = 4, k0 = 1
1 3 0.0000235729
2 4 3.07707 ∗ 10−6
3 5 3.03923 ∗ 10−6
4 6 3.09844 ∗ 10−6
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