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Abstract

An efficient algorithm based on the Haar wavelet approach for numerical
solution of linear integral equations is proposed. The method is applicable for
different kinds of integral equations (Fredholm and Volterra equations, integro-
differential equations, weakly singular integral equations). Five test problems,
for which the exact solution is known, are considered. The calculations indicate
that the accuracy of the obtained solutions is quite high even when the number
of calculation points is small.

AMS Subject Classification: 65R20.
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1 Introduction

For numerical solution of linear integral equations traditional quadrature formula
methods and spline approximations are used. In the case of these methods systems
of linear equations must be solved. For big matrices this requires a huge number
of arithmetic operations and a large storage capacity. A lot of computing time is
saved if we succeed in replacing the fully populated transform matrix with a sparse
matrix. One possibility for this gives the wavelet method; the wavelet bases lead to
a sparse matrix representation since

(i) the basis functions are usually orthogonal;

(ii) most of the functions have a small interval of support.

Presumably the first paper in which the wavelet method was applied for solving
integral equations belongs to Beylkin et al. [1] from 1991. After that important
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contributions to this subject are due to many authors (cf., e.g., [2]—[18]). That the
interest to the wavelet approach has lasted up to the immediate past indicate the
papers [14]—[18] which were published in 2003.

In [1]—[18] mostly Fredholm and Volterra integral equations are discussed. In
[3, 6, 8, 17] also weakly singular equations and in [16] the Hammerstein equation
are analyzed. Solution of integro-differential equations is considered in [9, 17]. In
the majority of these papers the continuous operator is discretized into matrix form
by Galerkin’s procedure; in [13, 18] the collocation method is used.

Various wavelet bases are applied. In addition to the conventional Daubechies
wavelets the adaptive Battle-Lemarie wavelets [7], Hermite-type trigonometric wave-
lets [12], Haar wavelets [13], linear B-splines [14], Walsh functions [17], Cohen [10]
and Albert [16] wavelets have been used.

In our opinion insufficient attention is paid to the Haar functions, which are
mathematically the most simple wavelets. Probably the reason for this is the fact
that Haar wavelets are discontinuous. Nevertheless Chen and Hsiao [19, 20] demon-
strated that these wavelets can be successfully applied for solving differential equa-
tions, since here very sparse transform matrices have been obtained. This approach
was developed further in [21].

The main aim of the present paper is to propose for numerical solution of integral
equations a simple method based on the Haar wavelets. The recommended tech-
nique is applicable with minor changes to Fredholm, Volterra and integro-differential
equations; also singular integral equations can be treated in the same way. The
method is tested with the aid of the five numerical examples, for which the exact
solution is known. Error estimates show that the accuracy of computations is very
high even when the mode number is small.

2 Haar wavelet method

Let us confine to the time interval t ∈ [0, 1]. The Haar wavelet family is

hi(t) =


1 for t ∈ [τ1, τ2) ,
−1 for t ∈ [τ2, τ3) ,
0 elsewhere .

(2.1)

Here the notations

τ1 =
k

m
, τ2 =

k + 0.5

m
, τ3 =

k + 1

m
(2.2)

are introduced. The integer m = 2j , j = 0, 1, . . . , J , indicates the level of the
wavelet; k = 0, 1, . . . ,m− 1 is the translation parameter. The integer J determines
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the maximal level of resolution. The index i is calculated from the formula i =
m + k + 1; the minimal value for which (2.1) holds is i = 2 (then m = 1, k = 0);
the maximal value is i = 2M where M = 2J . The index i = 1 corresponds to the
scaling function of the Haar wavelet h1(t) ≡ 1.

Simple calculations show thatZ 1

0
hi(t)hl(t)dt =

½
1/m for i = l ,
0 for i 6= l ,

(2.3)

consequently, the functions hi(t) are orthogonal.
Next we discretize the functions hi(t) by dividing the interval t ∈ [0, 1] into 2M

parts of equal length ∆t = 1/(2M) and introduce the collocation points

tl = (l − 0.5)/(2M) , l = 1, 2, . . . , 2M . (2.4)

Following Chen and Hsiao [19, 20] the coefficients matrix Hil = hi(tl) is intro-
duced (this is a 2M × 2M matrix). A function u(t) which is defined in the interval
t ∈ [0, 1] can be expanded into the Haar wavelet series:

u(t) =
2MX
i=1

aihi(t) , (2.5)

where ai are the wavelet coefficients. The discrete form of this equation is

u(tl) =
2MX
i=1

aihi(tl) =
2MX
i=1

aiHil ,

or in a matrix presentation u = aH where u and a are 2M dimensional row vectors.

3 Fredholm integral equations

A linear Fredholm integral equation has the form

u∗(x∗)−
Z β

α
K∗(x∗, t∗)u∗(t∗) dt∗ = f∗(x∗), x∗ ∈ [α, β] ,

where the kernel K∗ and the right-hand side function f∗ are prescribed. Since the
Haar wavelets are defined only for t ∈ [0, 1], the transformation

t∗ = (β − α)t+ α, x∗ = (β − α)x+ α (3.1)
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must be accomplished. By doing this we find

u(x)−
Z 1

0
K(x, t)u(t) dt = f(x), x ∈ [0, 1] , (3.2)

where u(t) = u∗(t∗), u(x) = u∗(x∗), f(x) = f∗(x∗), K(x, t) = (β − α)K∗(x∗, t∗).
The formula (3.1) is applicable only if α and β are finite (the cases α → −∞ or
β →∞ are not considered in this paper).

Replacing (2.5) into (3.2) we find

2MX
i=1

aihi(x)−
2MX
i=1

aiGi(x) = f(x) , (3.3)

where

Gi(x) =

Z 1

0
K(x, t)hi(t) dt . (3.4)

Next we shall evaluate the wavelet coefficients ai in the following two ways:

(i) Collocation method. Satisfying (3.3) only at the collocation points (2.4) we
get a system of linear equations

2MX
i=1

ai[hi(xl)−Gi(xl)] = f(xl) , l = 1, 2, . . . , 2M . (3.5)

The matrix form of this system is

a(H −G) = F (3.6)

where Gil = Gi(xl), Fl = f(xl).

(ii) Galerkin method. For realizing this approach each term of (3.3) is multiplied
by hl(x) and the result is integrated over x ∈ [0, 1]. Due to the orthogonality
condition (2.3) we obtain

al
m1
−

2MX
i=1

aiΓil =

Z 1

0
f(x)hl(x) dx . (3.7)

Here l = m1 + k1 + 1, m1 = 2
j1 , j1 = 0, 1, . . . , J , k1 = 0, 1, . . . ,m1 − 1 and

Γil =

Z 1

0
Gi(x)hl(x) dx . (3.8)
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Example 3.1 Let us solve Eq. (3.2) for K(x, t) = x + t, f(x) = x2. Taking into
account (2.1) and evaluating the integrals (3.4) we find

Gi(x) =

(
x+ 0.5 for i = 1 ,

− 1
4m2 for i > 1 .

If we apply the collocation method, then the vector a can be calculated from
the system (3.6).

In the case of the Galerkin method we shall go out from (3.7).
Evaluating the integrals (3.8) we obtain

Γ11 = 1 , Γ1l = − 1
4m2

1
for l > 1 ,

Γi1 = − 1
4m2 for i > 1 , Γil = 0 for i, l > 1 .

It follows from (3.7) that

2MX
i=2

ai
m2

=
4

3
for l = 1 , (3.9)

al = − a1
4m1

− 1

4m2
1

(2k1 + 1) for l > 1 . (3.10)

Replacing al from (3.10) into (3.9) we get

a1

2MX
i=2

1

m3
+

2MX
i=2

2k + 1

m4
= −16

3
. (3.11)

Since

2MX
i=2

1

m3
= 1 +

µ
1

8
+
1

8

¶
+

µ
1

64
+
1

64
+
1

64
+
1

64

¶
+ · · ·+ 2J 1

23J

= 1 +
1

22
+
1

24
+ · · ·+ 1

22J
=
4

3

µ
1− 1

(2M)2

¶
and

2MX
i=2

2k + 1

m4
= 1 +

1X
k=0

2k + 1

24
+

2X
k=0

2k + 1

28
+ · · ·+

M−1X
k=0

2k + 1

24J
=
4

3

µ
1− 1

(2M)2

¶
,

it follows from (3.11) that

a1 = −5 + (2M)
−2

1− (2M)−2 .
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The coefficients al for l > 1 can be calculated according to (3.10); the function
u(x) is evaluated from (2.5).

Computations were carried out for different values of J . These results were
compared with the exact solution

uex = x2 − 5x− 17/6 .
The accuracy of the results was estimated by the error function

eJ = max
1≤l≤2M

(|u(tl)− uex(tl)|) , (3.12)

where tl is defined by (2.4).
The errors eJ both for collocation and Galerkin method are shown in Table 1.

Table 1. Errors of solving (3.2) for
K = x+ t, f(x) = x2.

eJ

J 2M collocation Galerkin
2 8 7.2E − 2 1.1E − 1
3 16 1.7E − 2 2.6E − 2
4 32 4.3E − 3 6.5E − 3
5 64 1.3E − 3 1.6E − 3

This example demonstrates the simplicity of the Haar wavelet solution: for
evaluating the wavelet coefficients in the case of the collocation method a system of
linear equations must be solved; as to the Galerkin method then analytic expressions
for these coefficients were obtained. For getting the necessary accuracy the number
of calculation points is quite small.

4 Eigenvalues and eigenfunctions

Consider the homogeneous Fredholm equation

u(x)− λ

Z 1

0
K(x, t)u(t) dt = 0 , (4.1)

where λ is a parameter. Equation (3.6) obtains now the form a(H − λG) = 0.
This system has a nontrivial solution only for some values of λ (eigenvalues). The
corresponding functions u(x) are eigenfunctions.

The method of solution presented in Sec. 3 is still applicable also in this case.
The details are explained by means of the following example.
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Example 4.1 Here the equation

u∗(x∗)− λ

Z π

0
cos(x∗ + t∗)u∗(t∗) dt∗ = 0

is solved. By the change of variables x∗ = πx, t∗ = πt, u∗(x∗) = u(x) this equation
can be put into the form

u(x)− πλ

Z 1

0
cosπ(x+ t)u(t) dt = 0 . (4.2)

Carrying out the integration in (3.4) we obtain

G1(x) = − 2
π
sinπx (4.3)

and

Gi(x) =
1

π

©
2 sin[π(x+ τ2)]− sin[π(x+ τ1)]− sin[π(x+ τ3)]

ª
.

Making use of (2.2) and applying trigonometric transformations, this equation
can be rewritten in the form

Gi(x) =
4

π
sin2

π

4m
sin

·
π

µ
x+

2k + 1

2m

¶¸
, i = 2, 3, . . . , 2M . (4.4)

If we want to apply the collocation method then again the matrix Gil = Gi(xl)
is formed. For solving the matrix equation a(H−πλG) = 0 the MATLAB program
EIG was used.

Now let us solve (4.2) with the Galerkin method. This procedure leads to the
equation

2MX
i=1

ai

Z 1

0
hi(x)hl(x) dx = πλ

2MX
i=1

aiΓil ,

which is view of (2.3) gets the form

al
m1

= πλ
2MX
i=1

aiΓil , l = 1, . . . , 2M . (4.5)



Application of the Haar wavelets for solution of . . . 501

Taking into consideration (3.8) we get

Γ11 = − 4
π2

,

Γ1l =
8

π2
sin2

π

4m1
cos

µ
π
2k1 + 1

2m1

¶
, l = k1 +m1 + 1 > 1 ,

Γi1 =
8

π2
sin2

π

4m
cosπ

µ
2k + 1

2m

¶
, i = k +m+ 1 > 1 ,

Γil = −16
π2
sin2

π

4m
sin2

π

4m1
cos

·
π

µ
2k + 1

2m
+
2k1 + 1

2m1

¶¸
, i, l > 1 .

(4.6)

For solving the system again the EIG program was used (this program calculates
also the eigenfunctions).

The exact solution of the problem is

λ1 =
2

π
, λ2 = − 2

π
, u1(x) = cosπx , u2(x) = sinπx ,

where u1, u2 are normed eigenfunctions.
Some numerical results obtained by the wavelet method are shown in Table 2.

The eigenvalues λ1 = −λ2 (and their error in percents) are calculated both by the
collocation and Galerkin methods. In the last column the error function (3.12) of
the normed eigenfunctions is given (it turned out that the error was the same both
for the collocation and Galerkin approach). Again high accuracy even with a small
number of calculation points is stated.

Table 2. Eigenvalues of Eq. (4.2) and error of the
normed eigenfunctions.

λ1 = −λ2
J 2M collocation Galerkin eJ
2 8 0.6407 (0.64%) 0.6449 (1.3%) 1.9E − 2
3 16 0.6376 (0.15%) 0.6387 (0.32%) 4.8E − 3
4 32 0.6369 (0.04%) 0.6371 (0.07%) 1.2E − 3
5 64 0.6367 (0.01%) 0.6367 (0.01%) 3.0E − 4

5 Volterra integral equation

The Volterra integral equation is

u(x)−
Z x

0
K(x, t)u(t) dt = f(x) , 0 ≤ x ≤ 1 . (5.1)
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Its discrete form is

u(xl)−
Z xl

0
K(xl, t)u(t) dt = f(xl) , (5.2)

where xl = (l − 0.5)/(2M), l = 1, 2, . . . , 2M , are the collocation points.
We proceed as in Sec. 3, Eq. (3.5) holds. The matrix Gil = Gi(xl) is now

defined as

Gil =

Z tl

0
K(xl, t)hi(t) dt . (5.3)

By computing these integrals the following cases should be distinguished:

(i) Gil = 0 if xl < τ1 ,

(ii) Gil =

Z xl

τ1

K(xl, t) dt if τ1 ≤ xl ≤ τ2 ,

(iii) Gil =

Z τ2

τ1

K(xl, t) dt−
Z xl

τ2

K(xl, t) dt if τ2 ≤ xl ≤ τ3 ,

(iv) Gil =

Z τ2

τ1

K(xl, t) dt−
Z τ3

τ2

K(xl, t) dt if τ3 ≤ xl ≤ 1 ,

(5.4)

where the quantities τ1, τ2, τ3 are defined with the formulas (2.2).
In this and in the following sections the Galerkin solution is not considered.

Example 5.1 Let us take K(x, t) = 3− x− t, f(x) = x3. Evaluating the integrals
(5.4) we obtain

(i) Gil = 0 for xl < τ1,

(ii) Gil =
1

2
(xl − τ1)(6− 3xl − τ1) for τ1 ≤ xl ≤ τ2,

(iii) Gil = (3− xl)(2τ2 − τ1 − xl) +
1

2
(x2l − 2τ22 + τ21 ) for τ2 ≤ xl ≤ τ3,

(iv) Gil =
1

4m2
for τ3 ≤ xl.

To find the exact solution of the problem eq. (5.1) is differentiated twice with
respect to x. Doing this we get the differential equation

u00 − (3− 2x)u0 + 3u = 6x
with the initial conditions u(0) = u0(0) = 0. This equation was integrated by the
fourth order Runge-Kutta method and the result was taken for uex(x). Computa-
tions gave for the error function (3.12) the values:

e2 = 1.2E − 2 , e3 = 3.1E − 3 , e4 = 7.9E − 4 , e5 = 2.0E − 4 .
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6 Integro-differential equation

For the sake of concreteness let us consider equation of the following type

u0(x) + p(x)u(x) =

Z 1

0
K(x, t)[αu(t) + βu0(t)] dt+ f(x) , (6.1)

where α, β are constants and p(x), f(x) prescribed functions. To this equation
belongs the initial condition u(0) = γ.

According to the method suggested by Chen and Hsiao [19, 20] we do not develop
into the Haar series the function u(x), but its derivative u0(x):

u0(t) =
2MX
i=1

aihi(t) , u(t) =
2MX
i=1

aiSi(t) + u(0) , (6.2)

where Si(t) =
Z t

0
hi(t) dt.

A substitution of (6.2) into (6.1) gives

2MX
i=1

ai
£
hi(x)+p(x)Si(x)−αRi(x)−βGi(x)

¤
= −p(x)u(0)+αu(0)Q(x)+f(x) . (6.3)

Here Gi(x) is defined by (3.4), besides the following notations are introduced

Q(x) =

Z 1

0
K(x, t) dt , Ri(x) =

Z 1

0
K(x, t)Si(t) dt .

Next we discretize (6.3) by assuming x = xl = (l − 0.5)/(2M), l = 1, 2, . . . , 2M . It
is convenient to pass to the matrix notation assuming that

Hil = hi(xl) , Gil = Gi(xl) , Ql = Q(xl) , Ril = Ri(xl) , Vil = p(xl)Si(xl) .

In [19] the matrix S was written in the form S = PH, where P is the integration
matrix. In the same paper an algorithm, which allows to compute P for an arbitrary
J , is given.

If p, f and Q are understood as 2M -vectors, then the matrix form of (6.3) is

a(H + V − αR− βG) = −γp+ αγQ+ f . (6.4)

Example 6.1 Consider the case p(x) = 2x, K(x, y) = x+ t, α = 0, β = 1, γ = 0,
f(x) = 2x4 + 2x3 + 3x2 − 17/12. Equation (6.4) gets the form

a(H + V −G) = f . (6.5)
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Here Vil = 2xl(PH)il and according to (3.4):

Gil =

(
xl + 0.5 for i = 1 ,

−1/(4m2) for i > 1 .

After (6.5) is solved the functions u(x) and u0(x) can be calculated from the
formulas (6.2).

The results of the computation were compared with the exact solution, which
is uex = x2(1 + x). The error estimate (3.12) was: e2 = 1.6E − 2, e3 = 4.0E − 3,
e4 = 1.0E − 3, e5 = 2.6E − 4, e6 = 6.5E − 5.

7 Weakly singular integral equation

In this section the integral equation

u(x) =

Z x

0

K(x, t)

(x− t)α
u(t) dt+ f(x) , 0 < α < 1 , 0 ≤ t ≤ x ≤ 1, (7.1)

is considered. This is a weakly singular equation. Since it is also a Volterra equation,
then we can here apply the results of Sec. 5.

Example 7.1 Let us consider the Abel integral equationZ x

0

u(t)√
x− t

dt = 1 , 0 ≤ t ≤ x ≤ 1 . (7.2)

Replacing (2.5) into (7.2) we get

2MX
i=1

aiGi(xl) = 1 , l = 1, . . . , 2M , (7.3)

where

Gi(x) =

Z x

0

hi(t)√
x− t

dt .

The matrix formulation of this equation is

aG = E , (7.4)

where Gil = Gi(xl) and E is a 2M -dimensional unit vector.
Evaluating the integrals Gil = Gi(xl) we obtain

(i) Gil = 0 for xl ≤ τ1,
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(ii) Gil = 2
√
xl − τ1 for τ1 ≤ xl ≤ τ2,

(iii) Gil = −4
√
xl − τ2 + 2

√
xl − τ1 for τ2 ≤ xl ≤ τ3,

(iv) Gil = −4
√
xl − τ2 + 2

√
xl − τ1 + 2

√
xl − τ3 for τ3 ≤ xl ≤ 1.

The exact solution of (7.2) is

uex =
1

π
√
x
.

The computations which were carried out for the Haar wavelet approach showed
that near the singularity x = 0 a great number of collocation points must be taken.
This situation is demonstrated in Fig. 1: only for J = 7 (or 2M = 256) the accuracy
of the wavelet solutions can be regarded more or less satisfactory. If we move away
from x = 0 the convergence is again good. So for the interval 0.1 ≤ x ≤ 1 the error
estimates (3.12) are e4 = 1.9E − 2, e5 = 1.3E − 3, e6 = 3.4E − 4, e7 = 8.8E − 5.

0.01 0.02 0.03 0.04 0.05
1.5

2

2.5

3

x

u

1

2

3

Figure 1: Solution of the Example 7.1 in vicinity of the singular point x = 0; 1 —
exact solution; 2,3 — wavelet solutions for J = 6 and J = 7.

8 Conclusion

In this work the Haar wavelet method for solution of linear integral equations is
proposed. A method of solution which is applicable for different kind of integral
equations, is worked out. Fredholm and Volterra equations,also integro-differential
and singular integral equations are considered. Two variants of solution, which
are based on the collocation and Galerkin technics are proposed. The elaborated
method is very simple and — as it follows from the test problems — high precision of
results can be obtained with a small number of calculation points.

The calculations show that by doubling the number of the calculation points
the error function decreases ∼ 4 times. This result follows also from analytical
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considerations. Approximation with the Haar wavelets is equivalent with the ap-
proximation for piecewise constant functions [13]. Therefore the results on the
convergence rate obtained for the piecewise constant approximation can be trans-
ferred to the Haar wavelet approach. It is shown in [22]—[24] that in the case of
Fredholm and Volterra equations the convergence rate is O(M−2), which coincides
with our numerical results.

It should be noted that in the case of Haar wavelets we have to solve systems
of linear equations with a smaller condition number as for other methods based on
piecewise constant approximation. Therefore the solution via Haar wavelets is more
effective than conventional solutions with the same stepsize [13].

Acknowledgement. Support from the Estonian Science Foundation under
Grant ETF-5240 is gratefully acknowledged.
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