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Abstract

Our recent interest is focused on establishing the necessary and sufficient
conditions that guarantee a long-term stable evolution of both natural and ar-
tificial systems that exert fluctuations. One already established necessary con-
dition is the boundedness of the fluctuations, namely: the fluctuations should
not exceed the thresholds of stability of the system. Another necessary con-
dition is the boundedness of the increments. This condition means that the
amount of energy and/or matter that the system exchanges currently with
the environment is also bounded. This provokes our interest in studying the
properties of the bounded irregular sequences (BIS).
A certain class of rather chaotic properties of the BIS’es are set on the

strong parallel between the deterministic chaos brought about by simple dy-
namical systems and the BIS’es. This parallel is provided by the boundedness,
since the available phase space volume of any system exhibiting deterministic
chaos is always finite. Thus, the created trajectories are BIS’es. The major
mechanism that brings about chaos in simple dynamical systems is stretching
and folding. From the viewpoint of a BIS, the presence of folding is another
necessary condition that provides a long-term stable evolution. By the use of
reformulated in terms of BIS’es Lyapunov exponent we find out the condition
for presence of folding mechanism that is insensitive to the particularities of
the boundary conditions imposed by the thresholds of stability. The target
condition is a certain relation among the 3 characteristics of every BIS: the
threshold of stability, the variance and a parameter set on the incremental
statistics.
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Introduction

The major goal of a series of our papers [1, 2, 3] is to establish explicitly the nec-
essary and sufficient conditions that guarantee a long-term stable evolution of both
natural and artificial systems that exert fluctuations. One of the most important
problems is whether these conditions are insensitive to the nature of the fluctu-
ation sequence, to the details of its incremental statistics and to its length. So
far, we have found out two necessary conditions that have such general properties.
The first one is that the fluctuations that a system exerts should not exceed the
thresholds of stability of the system. In other words, the fluctuations should be
permanently bounded. Another necessary condition is the boundedness of the in-
crements. This condition means that the amount of energy and/or matter that the
system exchanges currently with the environment is also bounded. The next general
condition is that the incremental statistics should have finite memory so that its
size be much smaller than the thresholds of stability. Then, each bounded irregular
sequence (BIS) exhibits properties set on the boundedness and the finite size of the
incremental memory that are insensitive to the particularities of the incremental
statistics and to the length of the sequence [3]. Some of them are the following:

(i) The power spectrum uniformly fits the shape 1/fα(f), where α(f)→ 1 as f →
1/T (T is the length of the sequence) and α(f) monotonically increases to
p > 2 as f →∞.

(ii) the phase space attractor has a non-integer correlation dimension ν(X) that
monotonically decreases from ν(X) = d at the mean value to ν(X) = 0 at the
boundaries of the attractor; d is the embedding (topological) dimension.

(iii) the Kolmogorov entropy is finite.

So far, these properties have been exclusive for the deterministic chaos – a phenom-
enon that occurs in the dynamics of simple deterministic systems. It is associated
with unpredictability and great sensitivity to the initial conditions introduced by
stretching and folding mechanism [4, 5]. However, the deterministic chaos also ex-
hibits boundedness: the folding is provided by the fact that the dynamics of the
discussed systems is confined to a finite volume of phase space. The stretching
happens along the unstable directories and gives rise to the unpredictability.

Yet, because of the confinement to a finite phase space volume, every time
series produced by the stretching and folding mechanism creates a BIS. Dynamical
systems whose set of unstable hyperbolic points has a non-zero measure give rise
to BIS’es whose incremental memory has a finite size. Then, it is to be expected
that the chaotic properties listed above are rather generic for the BIS’es than being
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the hallmarks of only the deterministic chaos. The leading role of the boundedness
poses the question how to relate the characteristics of the deterministic chaos to
those of the BIS’es.

Why is it important to reformulate the hallmarks of the deterministic chaos in
terms of BIS’es? Our particular aim is to substantiate explicitly the characteristics
of the stretching and folding mechanism for the BIS’es. In particular, our attention
is focused on the folding because its presence sustains the evolution of a chaotic
system permanently bounded in a finite phase volume. Intuitively it seems that for
the BIS’es the folding is ensured by the presence of the thresholds of the stability.
However, it is to be expected that the particularities of the boundary conditions
imposed by the thresholds of stability make the folding mechanism sensitive to
them and thus not universal. The question now becomes whether there is a folding
mechanism insensitive to the details of the boundary conditions. We consider this
problem together with the problem about the existence of a folding mechanism
viewed as a necessary condition for keeping the evolution in the phase space bounded
arbitrarily long time. We find out that a universal folding mechanism does exist
when a certain relation among the thresholds of stability, a parameter set on the
incremental statistics and the variance of the BIS holds. In turn, this relation is
another necessary condition that provides a long-term stable evolution of a BIS.

It is obvious that from the viewpoint of the deterministic chaos the folding
mechanism is associated with a negative value of the Lyapunov exponent. On the
other hand, from the point of view of BIS’es, it is to be associated with the largest
fluctuations, namely those whose amplitude is of the order of the thresholds of
stability. Thus, our task is to define the Lyapunov exponent in terms of the large
scaled fluctuations and to show explicitly the dependence of its value and sign on
the their characteristics. A great advantage in doing this is the universal behavior of
the large-scaled fluctuations in the case when the incremental statistics have finite-
size memory [3]. It has been found out that namely the large scaled fluctuations are
the bearers of the chaotic properties listed above. The finite size of the incremental
memory renders the influence of the incremental statistics over the properties of
the large-scaled fluctuations to be manifested by a single parameter. The latter is
the one that appears in the target relation among the characteristics of BIS’es that
provides the folding mechanism. It should be stressed that we look for a folding
mechanism that does not involve any specific boundary condition(s) imposed by the
thresholds of stability.

Thus, our study is focused on deriving an explicit definition of the Lyapunov
exponent in terms of BIS’es. This is done in the next section.

The measure for the unpredictability of the deterministic chaos is the value of
the Lyapunov exponent. Figuratively, it is the average measure how fast a trajec-
tory deviates under an arbitrarily small perturbation of the initial conditions. Its
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rigorous definition is:

ξ = lim
t→∞

1

t
log |U(t)|, (1a)

where
U(t) = X(t)−X∗(t), (1b)

X∗(t) is the unperturbed trajectory and U(t) is the average deviation from it. So
|U(t)| is the measure of all the available deviations from a given point X∗(t).

Now we have to rewrite eq. (1) by using the characteristics of a BIS. Evidently,
the essential deviations of any trajectory come out from the large fluctuations. So,
to construct an explicit expression for the Lyapunov exponent in terms of large-
scaled fluctuations we need those properties of a BIS that are brought about by the
boundedness and finite-size incremental memory and at the same time preserve the
chaoticity.

1 Properties of large-scaled fluctuations of BIS’es [3]

Very recently it has been obtained [3] that the large scale fluctuations of every
BIS appear as a sequence of separated by non-zero intervals successive excursions.
Each excursion is characterised by its amplitude, duration and embedding interval.
An excursion is a trajectory of a walk originating at the mean value of a given
sequence at the moment t and returning to it for the first time at the moment t+∆.
The separation of the successive excursions means embedding of each of them in
a larger interval so that no other excursions can be found in that interval. The
duration of the “embedding” interval is a multi-valued function whose properties
are strongly related to the duration of the embedded excursion ∆ itself: the range
and the values of the selection are set on ∆; the realisation of any excursion is
always associated with the realisation of its embedding interval. Since the duration
of each embedding interval is a multi-valued function, its successive performances
permanently introduce stochasticity through the random choice of one selection
among all available. Thus, this induced stochastisity breaks any possible long-range
periodicity (i.e., large-size memory) and helps the large-scaled excursion sequence
to preserve the chaotic properties listed in the Introduction.

The relation amplitude-duration of each excursion is a result of the “blob” struc-
ture of the underlying incremental walk. The finite size of the incremental memory
renders that the incremental walk can be considered as a discrete symmetric ran-
dom walk with a step equal to the blob size. The implication that the incremental
memory has a finite size renders that the incremental walks that creats blobs has
also a finite length m; the particularities of the incremental statistics determines an
exponent β, such that the

√
m.s.d. of the blob creating walks equals mβ. Thus, the
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relation between the amplitude X (where X2 is the m.s.d.=mean square deviation
of the incremental walk) and the duration ∆ of an excursion reads

X2 ∝ mβ∆

m
= ∆α(∆), (2)

where α(∆) is a monotonic function that tends to 1 on increasing the number of
steps of the underlying incremental walk N regardless to what the value of β is.
The latter is determined by the specific properties of the incremental statistics but
it is confined in the range [βmin, 2]. The non-zero bounds of β are due to the bound-
edness of the increments. Indeed, any boundedness introduces certain artificial
correlations among increments. In turn, these correlations manifest themselves in
a finite value of β. The value of the upper bound is brought about by the largest
possible correlation among the increments. The finite value of β means that the
size, duration and the structure of the blobs strongly depends on the incremental
statistics and thus are specific to the BIS. To compare, suppose β = 0. In this case,
the size and the duration of the blobs are independent of one another and appear
as parameters. On the contrary, any β 6= 0 provides a diffeomorphism between the
amplitude of an excursion X and its duration ∆. Indeed, along with eq. (2) there
holds the following relation:

∆ ∝ 1

mβ

m

N
= Xµ(X), (3)

where µ(X) is diffeomorphic to 1
α(∆)/2 .

A major property of any BIS is the existence of mean and variance that is
guaranteed by the Lindeberg theorem [6]. This brings about two very important
consequences. The first one is that the amplitudes of the excursions are normally
distributed. The second one is that the excursion sequence is a stationary process.
Indeed, the boundedness and the finite-size memory render a uniform convergence
of the average to the mean of every BIS. In turn, it provides the stationarity of the
excursion sequence. Thus, the frequency of occurrence of an excursion of any size
X is time-independent. Following [2], it reads:

P (X) = cXµ(X) 1

σ
exp

¡−X2/σ2
¢
. (4)

The required probability P (x) is given by the duration∆ = Xµ(X) of an excursion of
amplitude A weighted by the probability for appearance of an excursion of that size.
As it has been already established, the fluctuation sizes are normaly distributed. σ is
the variance of the BIS and in the present consideration is a parameter. c = σ−1/β(σ)

is the normalizing term. The stationarity of the excursion appearance ensures that
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P (X) has the same value at every point of the sequence. It is worth noting that
the variance is a characteristic of the full BIS, not only of its fine or coarse-grained
structure.

2 Stretching and folding of the excursion sequences

Now we are ready to write down an asymptotic explicit expression for the average
deviation from a trajectory that starts at X∗. The corresponding |U(t)| set on in
terms of the excursions reads:

|U(t)| =
XtrZ
X∗

XP (X) dX +

X∗Z
Xcgr

XP (X) dX. (5)

Xcgr is the level of coarse-graining, i.e., averaging over all scales smaller than Xcgr.
This “smooths out” all the excursions whose sizes are smaller than Xcgr and renders
their contribution to the Lyapunov exponent zero.

The separation into two terms each of which represents the deviations from X∗

to larger and smaller amplitudes is formal. It is made only to elucidate the idea that
starting at any point of the attractor one can reach any other through a sequence
of excursions. Thus, the Lyapunov exponent ξ reads:

ξ = log

XtrZ
Xcgr

XP (X) dX. (6)

Here we come to the same result as the Oseledec theorem states [7], namely: the
Lyapunov exponent for the chaotic systems does not depend on the initial point of
the trajectory.

On the other hand, the stationarity of the excursion process makes the set of
excursion sequence a dense set of periodic orbits. Moreover, it renders its transitivity
as well: starting anywhere in the attractor a sequence of excursions can reach any
other point in it. Some authors [8] list these properties as a definition of the chaos.
Here they appear as a result of the boundedness and finite-size incremental memory
of the BIS’es. It is worth noting that the chaotic properties listed in the Introduction
are also a result of the boundedness and the finite-size memory of the incremental
statistics. It supports our suggestion about the paramount role of the boundedness
in defining the chaoticity.

It should be stressed that the chaotic properties listed in the Introduction are
derived under the condition that all scales larger than the blob size contribute
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uniformly to the stochastic properties of any BIS. The above chaotic properties also
do not involve any specific scale larger than the blob size. However, it seems that
it brings about a contradiction: how the scale-free process of excursion occurrence
interferes with the boundary conditions imposed by the presence of the thresholds
of stability. The contradiction is solved in the presence of folding since the latter
makes the approach to a boundary a tangent U-turn. Thus, the folding being a
neccessary condition for keeping the evolution of a BIS permanently confined in a
finite attractor ensures that the chaoticity produced by the stretching and folding
is a scale-free process.

It is to be expected that the size of an excursion determines its contribution
to the stretching or folding of a trajectory. Indeed, the small size excursions are
random walks whose frequency is essentially high (eq. (4)). Thus, figuratively
speaking, they “hold” any trajectory permanently deviated from the mean. So, the
small size excursion most probably contributes to the stretching of the trajectories.
On the contrary, the largest excursions are rather occasional and any trajectory
subjected to them spends most of its time closest to the mean. So, they would
provide the folding. The explicit revealing of the role of small and large excursions
is made by the use of the coarse-graining: the role of the excursion size is carried
out by scanning the ratio Xcgr/σ.

The ratio Xcgr/σ has two extreme cases:
(ii) Xcgr ¿ σ. By the use of the steeepest descent method eq. (6) yields:

ξ ≈ log σ. (7)

Eq. (7) says that asymptotically any trajectory visits any point of the attractor so
that the mean deviation from any initial point is the same for every trajectory and is
bounded by the thresholds of the attractor itself. This makes the value of ξ positive.
The latter justifies our speculation that the small size excursions contribute to the
stretching.

(ii) Xcgr À σ. In this case eq. (6) yields

ξ ≈ (µ(Xcgr) + 1) log
Xcgr

σ
+ log σ − X2

cgr

σ2
. (8)

While ξ from eq. (7) is always positive which provides stretching, eq. (8) opens the
alternative for ξ being both positive or negative setting on the relation among µ, σ
and Xcgr. The permanent presence of folding is necessary for keeping the evolution
bounded in a finite size attractor arbitrary long time. The natural measure of
the folding is the negative value of the Lyapunov exponent. Thus we come to the
condition: the largest size fluctuations provide folding when Xtr, µ(Xtr) and σ are
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such that ξ < 0. So our target relation reads:

ξ ≈ (µ(Xtr) + 1) log
Xtr

σ
+ log σ − X2

tr

σ2
< 0. (9)

It is worth noting that the eq. (9) is derived under the condition that the excursions
do not “feel” the boundaries at X = Xtr. Thus, the folding is insensitive to the
details of the threshold of stability and the way it is approached. It is worth noting
that the folding is a broader notion than a tangent approach to the boundary. Both
the folding and the tangent approach produce the same effect – they contribute
to the convergence of a trajectory making it depart from the threshold. Yet, the
tangent approach itself is a property of the random walk that creates the excursions
along with appropriate boundary conditions imposed, while the folding is provided
by eq. (9) not involving any boundary conditions.

Conclusions

The present paper elucidates the interrelation between the boundeness as a nec-
essary condition for a BIS to demonstrate chaotic properties and the presence of
stretching and folding mechanism for keeping the evolution of a BIS confined in a
finite attractor arbitrarily long time. In order to account for the leading role of the
boundedness for exhibiting chaos we reformulate the major characteristics of the
stretching and folding mechanism, the Lyapunov exponent, in terms of BIS’es. On
the other hand, an unlimited in the time stable evolution of a BIS is possible if and
only if the folding does not “feel” the boundary conditions imposed by the presence
of the tresholds of stability. Otherwise, the evolution stongly depends on the way
the excursion approaches the threshold.

The new definition of the Lyapunov exponent is set on the properties of the
large-scaled fluctuations. Previously, it has been established that the large-scaled
fluctuations of every BIS occur as a sequence of well separated by non-zero qui-
escent intervals excursions [3]. Each excursion is characterised by 3 interrelated
parameters: amplitude, duration and embedding interval. This structure of the
large-scaled fluctuations sequence is a result of 3 assumptions: (i) boundedness of
fluctuations; (ii) finite size of the incremental memory and (iii) a uniform contribu-
tion of all scales larger than the size of the incremental memory to the properties
of a BIS. Then, the excursion sequence is the bearer of the chaotic properties listed
in the Introduction.

Now we have proved that when a certain relation (eq. (9)) among the major
characteristics of any BIS holds, there exists a stretching and folding mechanism
that meets the above assumptions. Actually, eq. (9) ensures the presence of folding.
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In turn, the latter renders the largest possible excursions to make a tangent U-turn
at the threshold of stability. As a result, the presence of the thresholds is unper-
ceptible which ensures that all scales, thresholds included, uniformly participate in
setting on the chaoticity of a BIS. In turn, the uniform participation of all scales,
thresholds included, ensures an unlimited confinement of the BIS evolution in a
finite attractor.

Indeed, eqs. (5)—(6) justify the insensitivity of the Lyapunov exponent to any
scale and point in the attractor. This insensitivity along with the stationarity of
the excursion occurence makes the coarse-grained structure of the BIS attractor
a transitive dense set of periodic orbits. Consequently, our attractor has steady
properties insensitive to the development of any specific trajectory and/or the way
of approaching the boundaries.

On the other hand, the universality of the large-scaled fluctuations occurrence
as a sequence of excursions renders that the coarse-grained structure of every BIS is
also universal, namely: on meeting the relation (9) each BIS attractor is a transitive
dense set of periodic orbits.
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