Nonexistence of Solutions for Semilinear Equations and Systems in Cylindrical Domains

Brahim Khodja
Université d'Annaba, Institut de Mathématiques, B. P. 12, Annaba, Algérie
E-mail: bmkhodja@yahoo.fr

Abstract

We establish an integral identity in $\Omega=\mathbb{R} \times] \alpha, \beta[$ which we use to prove nonexistence of nontrivial solutions in $H^{2}(\Omega) \cap L^{\infty}(\Omega)$ to some semilinear equations under some conditions on f and g. We then extend this method to systems of the form $$
\left\{\begin{array}{l} \lambda \frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=g(v) \text { in } \Omega=\mathbb{R} \times \mathbb{R}^{+}, \\ \lambda \frac{\partial^{2} v}{\partial x^{2}}+\frac{\partial^{2} v}{\partial y^{2}}=f(u) \text { in } \Omega=\mathbb{R} \times \mathbb{R}^{+}, \\ u=v=0 \text { on } \partial \Omega . \end{array}\right.
$$

AMS Subject Classification: 35J65.
Key words: Elliptic and hyperbolic systems, Integral identities.

1 Introduction and notations

The question of existence and the nonexistence of solutions for the semi-linear elliptic problem in bounded or unbounded domain Ω in \mathbb{R}^{N}

$$
\left\{\begin{array}{c}
-\Delta u+f(u)=0 \text { in } \Omega, \\
u=0 \text { on } \partial \Omega
\end{array}\right.
$$

was studied by several authors for different reasons. We quote by way of examples the works of Esteban \& Lions [2], Kirane, Nabana \& Pohozaev [5], Pucci \& Serrin [11], Pohožaev [12] and Van der Vorst [13].
M. J. Esteban \& P.-L. Lions show that the Dirichlet problem

$$
\left\{\begin{array}{c}
-\Delta u+f(u)=0, \quad u \in C^{2}(\bar{\Omega}), \\
u=0 \text { on } \partial \Omega,
\end{array}\right.
$$

satisfying $\nabla u \in L^{2}(\Omega), F(u)=\int_{0}^{u} f(s) d s \in L^{1}(\Omega)$, where Ω is a connected unbounded domain of \mathbb{R}^{N} such that

$$
\exists \Lambda \in \mathbb{R}^{N},|\Lambda|=1,\langle n(x), \Lambda\rangle \geq 0 \text { on } \partial \Omega,\langle n(x), \Lambda\rangle \neq 0
$$

($n(x)$ is the outward normal to $\partial \Omega$ at the point x) does not have a solution.
The question which arises then is to know if this result is still valid for the Neumann problem

$$
\left\{\begin{array}{l}
-\Delta u+f(u)=0, \\
\frac{\partial u}{\partial n}=0 \text { on } \partial \Omega
\end{array}\right.
$$

The answer to this question is negative. Indeed, Berestycki, Gallouët and Kavian established that the problem

$$
-\Delta u-u^{3}+u=0, \quad u \in H^{2}\left(\mathbb{R}^{2}\right)
$$

admits a radial solution, see [1].
The same solution satisfies

$$
\left\{\begin{aligned}
-\Delta u-u^{3}+u=0, & u \in H^{2}(] 0,+\infty[\times \mathbb{R}) \\
\frac{\partial u}{\partial n}=0 & \text { on }\{0\} \times \mathbb{R} .
\end{aligned}\right.
$$

To show the nonexistence of solutions of elliptic problems several methods exist, but for this work, we use integral identities.

We establish in the second section an integral identity in a cylindrical domain of \mathbb{R}^{2} which shows that some semilinear elliptic as well as hyperbolic equations do not have nontrivial solutions in $H^{2}(\Omega) \cap L^{\infty}(\Omega)$.

In the third section, we illustrate our results by examples, namely we show that, under some assumptions on the nonlinearity, the Klein-Gordon equation does not have nontrivial solutions.

Finally, in the last section, we prove that with the help of two integral identities the following differential system

$$
\left\{\begin{array}{l}
\lambda \frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=g(v) \text { in } \Omega=\mathbb{R} \times \mathbb{R}^{+} \\
\lambda \frac{\partial^{2} v}{\partial x^{2}}+\frac{\partial^{2} v}{\partial y^{2}}=f(u) \text { in } \Omega=\mathbb{R} \times \mathbb{R}^{+} \\
u=v=0 \text { on } \partial \Omega
\end{array}\right.
$$

where f and g satisfy

$$
\left\{\begin{array}{l}
f, g \in C(\mathbb{R}) \\
f(0)=g(0)=0 \\
F(u) \cdot G(v) \geq 0
\end{array}\right.
$$

does not possess nontrivial solutions (u, v) in $H^{2}(\Omega) \cap L^{\infty}(\Omega) \times H^{2}(\Omega) \cap L^{\infty}(\Omega)$.
A nonexistence result for problems of the form

$$
\left\{\begin{array}{l}
\Delta^{2} u=f(u) \text { in } \Omega \\
\Delta u=0 \text { on } \partial \Omega \\
u=0 \text { on } \partial \Omega
\end{array}\right.
$$

will follow as a particular case of the above system.
Let us denote by (x, y) a generic point of $\Omega=\mathbb{R} \times] \alpha, \beta[, \Gamma=\partial \Omega=\partial(\mathbb{R} \times] \alpha, \beta[)$ $=\mathbb{R} \times(\alpha) \cup \mathbb{R} \times(\beta)$ and $n(x, y)=\left(n_{1}(x, y), n_{2}(x, y)\right)$ the outward normal to Γ at the point (x, y). We consider a locally Lipschitzian real function

$$
f:] \alpha, \beta[\times \mathbb{R} \rightarrow \mathbb{R}
$$

such that $f(y, 0)=0 \forall y \in] \alpha, \beta[$, so that $u=0$ is a solution of the problem

$$
\left\{\begin{array}{l}
\left.\lambda \frac{\partial^{2} u}{\partial x^{2}}-\frac{\partial^{2} u}{\partial y^{2}}+f(y, u)=0 \quad \text { in } \quad \Omega=\mathbb{R} \times\right] \alpha, \beta[\tag{P.1}\\
u+\varepsilon \frac{\partial u}{\partial n}=0 \quad \text { on } \quad \partial \Omega
\end{array}\right.
$$

where λ is a real parameter and ε is a positive real number.
We shall also use the notation $F(y, u)=\int_{0}^{u} f(y, \sigma) d \sigma$.

2 General results

We are now in a position to state the following result:
Proposition 1 Let u be a solution of (P.1), then for any $x \in \mathbb{R}$ and $\varepsilon>0$,

$$
\begin{equation*}
\int_{\alpha}^{\beta}\left[\lambda\left|\frac{\partial u}{\partial x}\right|^{2}+\left|\frac{\partial u}{\partial y}\right|^{2}+2 F(y, u)\right](x, y) d y+\frac{1}{\varepsilon}\left[u(x, \alpha)^{2}+u(x, \beta)^{2}\right]=0 . \tag{2.1}
\end{equation*}
$$

Proof. Let us set

$$
\mathcal{K}(x)=\int_{\alpha}^{\beta}\left[\frac{\lambda}{2}\left|\frac{\partial u}{\partial x}\right|^{2}+\frac{1}{2}\left|\frac{\partial u}{\partial y}\right|^{2}+F(y, u)\right](x, y) d y .
$$

Under the above hypothesis \mathcal{K} is absolutely continuous and we have almost everywhere on \mathbb{R} :

$$
\mathcal{K}^{\prime}(x)=\int_{\alpha}^{\beta}\left[\lambda\left(\frac{\partial u}{\partial x}\right)\left(\frac{\partial^{2} u}{\partial x^{2}}\right)+\left(\frac{\partial u}{\partial y}\right)\left(\frac{\partial^{2} u}{\partial x \partial y}\right)+\left(\frac{\partial u}{\partial x}\right) f(y, u)\right](x, y) d y
$$

An integration by parts yields

$$
\begin{aligned}
\mathcal{K}^{\prime}(x) & =\int_{\alpha}^{\beta}\left[\lambda \frac{\partial u}{\partial x} \frac{\partial^{2} u}{\partial x^{2}}-\frac{d}{d y}\left(\frac{\partial u}{\partial y}\right) \frac{\partial u}{\partial x}+f(y, u) \frac{\partial u}{\partial x}\right](x, y) d y+\left.\left(\frac{\partial u}{\partial x}\right)\left(\frac{\partial u}{\partial y}\right)\right|_{y=\alpha} ^{y=\beta} \\
& =\int_{\alpha}^{\beta}\left(\left(\lambda \frac{\partial^{2} u}{\partial x^{2}}-\frac{\partial^{2} u}{\partial y^{2}}+f(y, u)\right) \frac{\partial u}{\partial x}\right)(x, y) d y+\left.\left(\frac{\partial u}{\partial x}\right)\left(\frac{\partial u}{\partial y}\right)\right|_{y=\alpha} ^{y=\beta} \\
& =\left.\left(\frac{\partial u}{\partial x}\right)\left(\frac{\partial u}{\partial y}\right)\right|_{y=\alpha} ^{y=\beta}
\end{aligned}
$$

Or,

$$
u+\varepsilon \frac{\partial u}{\partial n}=0 \text { on } \partial \Omega \Longleftrightarrow\left\{\begin{array}{l}
\frac{\partial u(x, \beta)}{\partial y}+\frac{1}{\varepsilon} u(x, \beta)=0 \\
\frac{\partial u(x, \alpha)}{\partial y}-\frac{1}{\varepsilon} u(x, \alpha)=0
\end{array}\right.
$$

If $0<\varepsilon<+\infty$, we may write:

$$
\begin{aligned}
& \frac{\partial u(x, \beta)}{\partial y}=-\frac{1}{\varepsilon} u(x, \beta) \text { and } \\
& \frac{\partial u(x, \alpha)}{\partial y}=\frac{1}{\varepsilon} u(x, \alpha)
\end{aligned}
$$

The boundary term is then equal to

$$
\begin{aligned}
\left.\left(\frac{\partial u}{\partial x}\right)\left(\frac{\partial u}{\partial y}\right)\right|_{y=\alpha} ^{y=\beta} & =-\frac{1}{\varepsilon}\left[\left(\frac{\partial u(x, \beta)}{\partial x}\right) u(x, \beta)+\left(\frac{\partial u(x, \alpha)}{\partial x}\right) u(x, \alpha)\right] \\
& =-\frac{1}{2 \varepsilon} \frac{d}{d x}\left[(u(x, \alpha))^{2}+(u(x, \beta))^{2}\right]
\end{aligned}
$$

and finally,

$$
\frac{d}{d x}\left(K(x)+\frac{1}{2 \varepsilon}\left[(u(x, \alpha))^{2}+(u(x, \beta))^{2}\right]\right)=0
$$

thus the expression in parentheses is constant, but

$$
\int_{-\infty}^{+\infty}\left(\mathcal{K}(x)+\frac{1}{2 \varepsilon}\left[(u(x, \alpha))^{2}+(u(x, \beta))^{2}\right]\right) d x<+\infty
$$

implies that this constant is zero. This proves the Proposition.
Remark 1 If $\varepsilon=0$ (Dirichlet condition), $u=0$ on $\partial \Omega$ implies $\nabla u=\frac{\partial u}{\partial n} n$ and this allows us to write

$$
\left(\frac{\partial u}{\partial x}\right)(x, y)=\left(\frac{\partial u}{\partial n}\right) n_{1}(x, y)
$$

and

$$
\left.\left(\frac{\partial u}{\partial x}\right)\left(\frac{\partial u}{\partial y}\right)\right|_{y=\alpha} ^{y=\beta}
$$

vanishes.
If $\varepsilon=+\infty$ (Neumann condition), $\frac{\partial u}{\partial n}=0$ on $\partial \Omega$ becomes

$$
\frac{\partial u}{\partial y}=0 \quad \text { on } \quad \partial \Omega
$$

and

$$
\left.\left(\frac{\partial u}{\partial x}\right)\left(\frac{\partial u}{\partial y}\right)\right|_{y=\alpha} ^{y=\beta}
$$

also vanishes.
The problem (P.1) includes in fact two types of equations depending on whether λ is positive or negative.

2.1 Hyperbolic case

Let us present two theorems of nonexistence of nontrivial solutions.
Theorem 1 Suppose that $u \in H^{2}(\Omega) \cap L^{\infty}(\Omega)$ is a solution of $(P .1), \lambda>0$ and f satisfies

$$
\begin{equation*}
F(y, u) \geq 0 \tag{A}
\end{equation*}
$$

Then $u \equiv 0$.

Proof. We apply formula (2.1) to obtain

$$
\int_{\alpha}^{\beta}\left[\frac{\lambda}{2}\left|\frac{\partial u}{\partial x}\right|^{2}+\frac{1}{2}\left|\frac{\partial u}{\partial y}\right|^{2}+F(y, u)\right](x, y) d y=0
$$

$F(y, u) \geq 0$ and $\lambda>0$ yield

$$
\frac{\partial u}{\partial x}(x, y)=\frac{\partial u}{\partial y}(x, y)=0 \quad \text { in } \quad \Omega
$$

and then u is constant, but since

$$
\int_{\Omega}|u(x, y)|^{2} d x d y<+\infty
$$

this constant is necessarily zero.
Let us now see another type of nonlinearity which also provides a nonexistence result.

Theorem 2 Let $u \in H^{2}(\Omega) \cap L^{\infty}(\Omega)$ be a solution of $(P .1), \lambda>0$ and f satisfying

$$
\begin{equation*}
2 F(y, u)-u f(y, u) \geq 0, \quad y \in] \alpha, \beta[\tag{B}
\end{equation*}
$$

Then the function $j(x)=\int_{\alpha}^{\beta}|u(x, y)|^{2} d y$ is convex on \mathbb{R}.
Remark 2 The convexity of $j(x)$ on \mathbb{R} implies evidently the triviality of the solution u of problem (P.1).

Proof. It is easy to see that almost everywhere on Ω we have

$$
u\left(\frac{\partial^{2} u}{\partial x^{2}}\right)(x, y)=\left(\frac{1}{2} \frac{\partial^{2}\left(u^{2}\right)}{\partial x^{2}}-\left|\frac{\partial u}{\partial x}\right|^{2}\right)(x, y)
$$

Let us multiply equation (P.1) by $\frac{1}{2} u$ and integrate over $] \alpha, \beta[$ to obtain

$$
\int_{\alpha}^{\beta}\left[\frac{\lambda}{2}\left(\frac{\partial^{2} u}{\partial x^{2}}\right) u-\frac{1}{2}\left(\frac{\partial^{2} u}{\partial y^{2}}\right) u+\frac{1}{2}(f(y, u)) u\right](x, y) d y=0
$$

which yields

$$
\begin{aligned}
& \int_{\alpha}^{\beta}\left[\frac{\lambda}{2} \frac{\partial^{2}\left(u^{2}\right)}{\partial x^{2}}-\frac{\lambda}{2}\left|\frac{\partial u}{\partial x}\right|^{2}+\frac{1}{2}\left|\frac{\partial u}{\partial y}\right|^{2}+\frac{1}{2} f(y, u) u\right](x, y) d y \\
& =\left.\frac{1}{2}\left(u \frac{\partial u}{\partial y}\right)\right|_{y=\alpha} ^{y=\beta}=-\frac{1}{2 \varepsilon}\left[(u(x, \alpha))^{2}+(u(x, \beta))^{2}\right],
\end{aligned}
$$

which combined with (2.1) yields

$$
\frac{\lambda}{4} \frac{d^{2}}{d x^{2}}\left[\int_{\alpha}^{\beta}|u(x, y)|^{2} d y\right]=\int_{\alpha}^{\beta}\left[\lambda\left|\frac{\partial u}{\partial x}\right|^{2}+F(y, u)-\frac{1}{2} u f(y, u)\right] d y
$$

The hypothesis (B) implies that

$$
\frac{\lambda}{4} \frac{d^{2}}{d x^{2}}\left[\int_{\alpha}^{\beta}|u(x, y)|^{2} d y\right] \geq \lambda \int_{\alpha}^{\beta}\left|\frac{\partial u}{\partial x}\right|^{2} d y
$$

and $\lambda>0$ implies the desired result.

2.2 Elliptic equations

For the elliptic case, we have a nonexistence result stated in the following manner:
Theorem 3 Let $u \in H^{2}(\Omega) \cap L^{\infty}(\Omega)$ be a solution of (P.1), $\lambda<0$ and f satisfying

$$
2 F(y, u)-u f(y, u) \leq 0, \quad y \in] \alpha, \beta[.
$$

Then the function $j(x)$ defined in Theorem 2 is convex on \mathbb{R}.
Proof. Similar to the proof of Theorem 2.

3 Examples

In this section, we present some examples illustrating the preceeding theorems.
Example 1 Let ρ be a function of $\left.C^{1}, \rho:\right] \alpha, \beta[\rightarrow \mathbb{R}, \lambda \in \mathbb{R}$ and $f(y, u) \equiv \rho(y) u$. For $u \in H^{2}(\Omega) \cap L^{\infty}(\Omega)$, the problem

$$
\left\{\begin{array}{c}
\lambda \frac{\partial^{2} u}{\partial x^{2}}-\frac{\partial^{2} u}{\partial y^{2}}+\rho(y) u=0 \text { in } \Omega, \tag{3.1}\\
u+\varepsilon \frac{\partial u}{\partial n}=0 \quad \text { on } \quad \partial \Omega,
\end{array}\right.
$$

does not have nontrivial solutions.

Example 2 Let us consider the Klein-Gordon equation

$$
\left\{\begin{array}{c}
\frac{\partial^{2} u}{\partial x^{2}}-\frac{\partial^{2} u}{\partial y^{2}}+m u-\theta_{1}|u|^{p-1} u-\theta_{2}|u|^{q-1} u=0 \text { in } \Omega \tag{3.2}\\
u+\varepsilon \frac{\partial u}{\partial n}=0 \quad \text { on } \quad \partial \Omega
\end{array}\right.
$$

where $m>0$ is the mass of a particle, θ_{1}, θ_{2} are positive constants, p and q are numbers greater than one. The problem (3.2) does not possess nontrivial solutions in $H^{2}(\Omega) \cap L^{\infty}(\Omega)$. It suffices to note that

$$
F(y, u)-\frac{1}{2} u f(y, u)=\theta_{1}\left(\frac{1}{2}-\frac{1}{p+1}\right)|u|^{p+1}+\theta_{2}\left(\frac{1}{2}-\frac{1}{q+1}\right)|u|^{q+1}
$$

Example 3 Let ρ be a nonnegative function of class C^{1}, and ω a parameter, then the problem

$$
\left\{\begin{array}{c}
-\frac{\partial^{2} u}{\partial x^{2}}-\frac{\partial^{2} u}{\partial y^{2}}+\rho(y)\left(\omega u+|u|^{\tau-1} u\right)=0 \text { in } \Omega \tag{3.3}\\
u+\varepsilon \frac{\partial u}{\partial n}=0 \quad \text { on } \quad \partial \Omega
\end{array}\right.
$$

does not possess nontrivial solutions in $H^{2}(\Omega) \cap L^{\infty}(\Omega)$.
Remark 3 If $\Omega=\mathbb{R} \times] \alpha,+\infty[, \alpha \in \mathbb{R}$, we may get results on nonexistence of solutions for the problem

$$
\left\{\begin{array}{c}
\lambda \frac{\partial^{2} u}{\partial x^{2}}-\frac{\partial^{2} u}{\partial y^{2}}+f(x, u)=0 \text { in } \Omega \tag{P.1}\\
u+\varepsilon \frac{\partial u}{\partial n}=0 \quad \text { on } \quad \partial \Omega
\end{array}\right.
$$

We find that

$$
\int_{-\infty}^{+\infty}\left[-\frac{\lambda}{2}\left|\frac{\partial u}{\partial x}\right|^{2}-\frac{1}{2}\left|\frac{\partial u}{\partial y}\right|^{2}+F(x, u)\right](x, y) d x=0
$$

Probably it would be interesting to study the problem

$$
\left\{\begin{array}{c}
\lambda \frac{\partial^{2} u}{\partial x^{2}}-\frac{\partial^{2} u}{\partial y^{2}}+f(x, y, u)=0 \text { in } \Omega \tag{P}\\
u+\varepsilon \frac{\partial u}{\partial n}=0 \quad \text { on } \quad \partial \Omega
\end{array}\right.
$$

4 Application to differential systems

In this last section we study both elliptic and hyperbolic differential systems in $\Omega=\mathbb{R} \times \mathbb{R}^{+}$. Pucci \& Serrin [11] and Van der Vorst [13] have studied elliptic systems on star-shaped domains in \mathbb{R}^{N}. Van der Vorst showed that

$$
\left\{\begin{array}{l}
\Delta u=g(v) \text { in } \Omega \\
\Delta v=f(u) \text { in } \Omega \\
u=v=0 \text { on } \partial \Omega
\end{array}\right.
$$

where f and g satisfy

$$
\left\{\begin{array}{c}
f, g \in C(\mathbb{R}), \\
f(u)>0 \text { if } u>0 ; f(u)<0 \text { if } u<0 ; f(0)=0 ; N F(u)-a_{1} u f(u) \leq 0, u \neq 0 \\
g(v)>0 \text { if } v>0 ; g(v)<0 \text { if } v<0 ; g(0)=0 ; N G(v)-a_{2} v g(v) \leq 0, v \neq 0, \\
N-a_{1}-a_{2} \leq 0
\end{array}\right.
$$

does not possess nontrivial solutions in $C^{2}(\Omega) \cap C^{1}(\bar{\Omega})$.
We consider the system

$$
\left\{\begin{array}{l}
\lambda \frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=g(v) \text { in } \Omega=\mathbb{R} \times \mathbb{R}^{+} \tag{P.2}\\
\lambda \frac{\partial^{2} v}{\partial x^{2}}+\frac{\partial^{2} v}{\partial y^{2}}=f(u) \text { in } \Omega=\mathbb{R} \times \mathbb{R}^{+} \\
u=v=0 \quad \text { on } \quad \partial \Omega
\end{array}\right.
$$

where f and g satisfy the following hypothesis:

$$
\left\{\begin{array}{l}
f, g \in C(\mathbb{R}), \\
f(0)=g(0)=0 .
\end{array}\right.
$$

We have
Proposition 2 Let $\lambda \in \mathbb{R}$ and $(u, v) \in H^{2}(\Omega) \cap L^{\infty}(\Omega) \times H^{2}(\Omega) \cap L^{\infty}(\Omega)$ be a solution of problem (P.2), then, almost everywhere on \mathbb{R},

$$
\begin{equation*}
\int_{0}^{+\infty}\left[\left(\frac{\partial u}{\partial y}\right)\left(\frac{\partial v}{\partial y}\right)-\lambda\left(\frac{\partial u}{\partial x}\right)\left(\frac{\partial v}{\partial x}\right)+G(v)+F(u)\right](x, y) d y=0 \tag{4.1}
\end{equation*}
$$

and almost everywhere on \mathbb{R}^{+}

$$
\begin{equation*}
\int_{-\infty}^{+\infty}\left[-\left(\frac{\partial u}{\partial y}\right)\left(\frac{\partial v}{\partial y}\right)+\lambda\left(\frac{\partial u}{\partial x}\right)\left(\frac{\partial v}{\partial x}\right)+G(v)+F(u)\right](x, y) d x=0 \tag{4.2}
\end{equation*}
$$

Theorem 4 Assume that f and g satisfy

$$
\begin{equation*}
F(u) \cdot G(v) \geq 0 . \tag{C}
\end{equation*}
$$

Then the problem (P.2) does not possess nontrivial solutions (u, v) in $H^{2}(\Omega) \cap$ $L^{\infty}(\Omega) \times H^{2}(\Omega) \cap L^{\infty}(\Omega)$.

Proof of Proposition 2. Let us set

$$
\Lambda(x)=\int_{0}^{+\infty}\left[\left(\frac{\partial u}{\partial y}\right)\left(\frac{\partial v}{\partial y}\right)-\lambda\left(\frac{\partial u}{\partial x}\right)\left(\frac{\partial v}{\partial x}\right)+G(v)+F(u)\right](x, y) d y
$$

and

$$
\Gamma(y)=\int_{-\infty}^{+\infty}\left[-\left(\frac{\partial u}{\partial y}\right)\left(\frac{\partial v}{\partial y}\right)+\lambda\left(\frac{\partial u}{\partial x}\right)\left(\frac{\partial v}{\partial x}\right)+G(v)+F(u)\right](x, y) d x
$$

Under the above hypothesis $\Lambda(x)$ and $\Gamma(y)$ are absolutely continuous and we have almost everywhere on \mathbb{R} and on \mathbb{R}^{+}respectively

$$
\Lambda^{\prime}(x)=0 \text { and } \Gamma^{\prime}(y)=0,
$$

$\Lambda(x)$ and $\Gamma(y)$ are constants and as in Proposition 1, we obtain

$$
\Lambda(x) \equiv 0 \text { and } \Gamma(y) \equiv 0
$$

The proof is complete.
Proof of Theorem 4. From formulae (4.1) and (4.2), we obtain

$$
\int_{\Omega}\left[\left(\frac{\partial u}{\partial y}\right)\left(\frac{\partial v}{\partial y}\right)-\lambda\left(\frac{\partial u}{\partial x}\right)\left(\frac{\partial v}{\partial x}\right)+G(v)+F(u)\right](x, y) d x d y=0
$$

and

$$
\int_{\Omega}\left[-\left(\frac{\partial u}{\partial y}\right)\left(\frac{\partial v}{\partial y}\right)+\lambda\left(\frac{\partial u}{\partial x}\right)\left(\frac{\partial v}{\partial x}\right)+G(v)+F(u)\right](x, y) d x d y=0 .
$$

Adding both formulae, we find

$$
\int_{\Omega}[G(v)+F(u)](x, y) d x d y=0 .
$$

Hypotesis (C) implies that

$$
F(u)=0 \text { in } \Omega
$$

and

$$
G(v)=0 \text { in } \Omega .
$$

As in [6, Theorem 1], the problem (P.2) becomes

$$
\left\{\begin{array}{c}
\lambda \frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0 \text { in } \Omega=\mathbb{R} \times \mathbb{R}^{+}, \\
\lambda \frac{\partial^{2} v}{\partial x^{2}}+\frac{\partial^{2} v}{\partial y^{2}}=0 \text { in } \Omega=\mathbb{R} \times \mathbb{R}^{+}, \\
u=v=0 \text { on } \partial \Omega .
\end{array}\right.
$$

For any one of these equations we check that

$$
\begin{equation*}
\int_{0}^{+\infty}\left[\lambda\left|\frac{\partial u}{\partial x}\right|^{2}-\left|\frac{\partial u}{\partial y}\right|^{2}\right](x, y) d y=0 \tag{4.3}
\end{equation*}
$$

The multiplication by u and integration over $] 0,+\infty[$ yield

$$
\begin{equation*}
\int_{0}^{+\infty}\left[\frac{\lambda}{2} \frac{d^{2}}{d x^{2}}\left(|u|^{2}\right)-\lambda\left|\frac{\partial u}{\partial x}\right|^{2}-\left|\frac{\partial u}{\partial y}\right|^{2}\right](x, y) d y=0 \tag{4.4}
\end{equation*}
$$

Combining formulae (4.3) and (4.4), we get

$$
\lambda \frac{d^{2}}{d x^{2}}\left[\int_{0}^{+\infty}|u(x, y)|^{2}(x, y) d y\right]=4 \int_{0}^{+\infty}\left|\frac{\partial u}{\partial y}\right|^{2}(x, y) d y \geq 0 .
$$

If $\lambda>0$, we conclude as in Theorem 3.
If $\lambda<0$, (4.3) yields

$$
\frac{\partial u}{\partial x}(x, y)=0=\frac{\partial u}{\partial y}(x, y)
$$

and we conclude as in Theorem 2.
Example 4 Let $g(v)=v$ and $f(u)$ be such that such that $F(u) \geq 0$, then the following problem

$$
\left\{\begin{array}{c}
\Delta^{2} u=f(u) \text { in } \Omega=\mathbb{R} \times \mathbb{R}^{+}, \tag{P.2}\\
\Delta u=0 \text { on } \partial \Omega \\
u=0 \text { on } \partial \Omega
\end{array}\right.
$$

does not have nontrivial solutions in $H^{2}(\Omega) \cap L^{\infty}(\Omega)$.

Proof. Let

$$
\Delta u=v .
$$

$(P .2)^{\prime}$ reduces to

$$
\left\{\begin{aligned}
\Delta u & =v \text { in } \Omega=\mathbb{R} \times \mathbb{R}^{+} \\
\Delta v & =f(u) \text { in } \Omega=\mathbb{R} \times \mathbb{R}^{+}, \\
u & =\Delta u=0 \text { on } \partial \Omega .
\end{aligned}\right.
$$

The conclusion follows from Theorem 4.
Example 5 Let

$$
f(u)=u(u+a)(u+b) \text { with } a b \geq \frac{2}{5}\left(a^{2}+b^{2}\right), \quad a, b \in \mathbb{R}
$$

and

$$
g(v)=v .
$$

The system (P.2) does not possess nontrivial solutions, and it is clear that the result of Van der Vorst does not permit to conclude it.

References

[1] Berestycki H., Gallouët T. and Kavian O., Équations de champs scalaires euclidiens non linéaires dans le plan, C. R. Acad. Sci. Paris, Série I Math., 297 (1983), No. 5, 307-310.
[2] Esteban M. J. and Lions P.-L., Existence and nonexistence results for semilinear elliptic problems in unbounded domains, Proc. Roy. Soc. Edimburgh Sect. A, 93 (1982/83), No. 2, 1-14.
[3] Haraux A. and Khodja B., Caractère trivial de la solution de certaines équations aux dérivées partielles non linéaires dans des ouverts cylindriques de \mathbb{R}^{N}, Portugal. Math., 42 (1983/84), No. 2, 127-136.
[4] Kawano N., Ni W.-M. and Yotsutani S., A generalized Pohozaev identity and its applications, J. Math. Soc. Japan, 42 (1990), No. 3, 541-564.
[5] Kirane M., Nabana E. and Pohozaev S., A nonexistence result for an elliptic system with dynamic boundary conditions, private communication.
[6] Khodja B., Équations elliptiques semi linéaires dans des ouverts non bornés de \mathbb{R}^{N}, Portugal. Math., 53 (1996), No. 4, 457-470.
[7] Ni W.-M. and Serrin J., Nonexistence theorems for quasilinear partial differential equations, Rend. Circ. Mat. Palermo (1), Suppl. No. 8 (1985), 171-185.
[8] Ôtani M., Existence and nonexistence of nontrivial solutions of some nonlinear degenerate elliptic equations, J. Funct. Anal., 76 (1988), No. 1, 140-159.
[9] Peletier L. A. and Van der Vorst R. C. A. M, Existence and nonexistence of positive solutions of nonlinear elliptic systems and the biharmonic equation, Differential Integral Equations. (to appear)
[10] Protter M. H. and Weinberger H. F., Maximum Principles in Differential Equations, Prentice-Hall, Englewood Cliffs, N. J., 1967.
[11] Pucci P. and Serrin J., A general variational identity, Indiana Univ. Math. J., 35 (1986), 681-703.
[12] Pohožaev S. I., On the eigenfunctions of the equation $\Delta u+\lambda f(u)=0$, Dokl. Akad. Nauk SSSR, 165 (1965), 36-39. (in Russian)
[13] Van der Vorst R. C. A. M., Variational identities and applications to differential systems, Arch. Rational. Mech. Anal., 116 (1992), No. 4, 375-398.

