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Abstract

We establish an integral identity in Ω = R × ]α, β[ which we use to prove
nonexistence of nontrivial solutions in H2(Ω)∩L∞(Ω) to some semilinear equa-
tions under some conditions on f and g. We then extend this method to systems
of the form 

λ
∂2u

∂x2
+

∂2u

∂y2
= g(v) in Ω = R×R+,

λ
∂2v

∂x2
+

∂2v

∂y2
= f(u) in Ω = R× R+,

u = v = 0 on ∂Ω.

AMS Subject Classification: 35J65.
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1 Introduction and notations

The question of existence and the nonexistence of solutions for the semi-linear el-
liptic problem in bounded or unbounded domain Ω in RN(

−∆u+ f(u) = 0 in Ω,

u = 0 on ∂Ω,

was studied by several authors for different reasons. We quote by way of examples
the works of Esteban & Lions [2], Kirane, Nabana & Pohozaev [5], Pucci &
Serrin [11], Pohožaev [12] and Van der Vorst [13].

M. J. Esteban & P.-L. Lions show that the Dirichlet problem(
−∆u+ f(u) = 0, u ∈ C2(Ω),

u = 0 on ∂Ω,
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satisfying ∇u ∈ L2(Ω), F (u) =

uZ
0

f(s)ds ∈ L1(Ω), where Ω is a connected un-

bounded domain of RN such that

∃Λ ∈ RN , |Λ| = 1, hn(x),Λi ≥ 0 on ∂Ω, hn(x),Λi 6= 0

(n(x) is the outward normal to ∂Ω at the point x) does not have a solution.
The question which arises then is to know if this result is still valid for the

Neumann problem −∆u+ f(u) = 0,

∂u

∂n
= 0 on ∂Ω.

The answer to this question is negative. Indeed, Berestycki, Gallouët and
Kavian established that the problem

−∆u− u3 + u = 0, u ∈ H2(R2),

admits a radial solution, see [1].
The same solution satisfies −∆u− u3 + u = 0, u ∈ H2(]0,+∞[×R),

∂u

∂n
= 0 on {0} ×R.

To show the nonexistence of solutions of elliptic problems several methods exist,
but for this work, we use integral identities.

We establish in the second section an integral identity in a cylindrical domain
of R2 which shows that some semilinear elliptic as well as hyperbolic equations do
not have nontrivial solutions in H2(Ω) ∩ L∞(Ω).

In the third section, we illustrate our results by examples, namely we show that,
under some assumptions on the nonlinearity, theKlein—Gordon equation does not
have nontrivial solutions.

Finally, in the last section, we prove that with the help of two integral identities
the following differential system

λ
∂2u

∂x2
+

∂2u

∂y2
= g(v) in Ω = R×R+,

λ
∂2v

∂x2
+

∂2v

∂y2
= f(u) in Ω = R×R+,

u = v = 0 on ∂Ω,
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where f and g satisfy 
f, g ∈ C(R),

f(0) = g(0) = 0,

F (u) ·G(v) ≥ 0,
does not possess nontrivial solutions (u, v) in H2(Ω) ∩ L∞(Ω) × H2(Ω) ∩ L∞(Ω).

A nonexistence result for problems of the form
∆2u = f(u) in Ω,

∆u = 0 on ∂Ω,

u = 0 on ∂Ω,

will follow as a particular case of the above system.
Let us denote by (x, y) a generic point of Ω = R×]α, β[, Γ = ∂Ω = ∂ (R×]α, β[)

= R× (α)∪R× (β) and n(x, y) = (n1(x, y), n2(x, y)) the outward normal to Γ at
the point (x, y). We consider a locally Lipschitzian real function

f : ]α, β[×R→ R,

such that f(y, 0) = 0 ∀y ∈]α, β[, so that u = 0 is a solution of the problem
λ
∂2u

∂x2
− ∂2u

∂y2
+ f(y, u) = 0 in Ω = R×]α, β[,

u+ ε
∂u

∂n
= 0 on ∂Ω,

(P.1)

where λ is a real parameter and ε is a positive real number.

We shall also use the notation F (y, u) =

uZ
0

f(y, σ) dσ.

2 General results

We are now in a position to state the following result:

Proposition 1 Let u be a solution of (P.1), then for any x ∈ R and ε > 0,

βZ
α

"
λ

¯̄̄̄
∂u

∂x

¯̄̄̄2
+

¯̄̄̄
∂u

∂y

¯̄̄̄2
+ 2F (y, u)

#
(x, y) dy +

1

ε

£
u(x, α)2 + u(x, β)2

¤
= 0. (2.1)
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Proof. Let us set

K(x) =
βZ
α

"
λ

2

¯̄̄̄
∂u

∂x

¯̄̄̄2
+
1

2

¯̄̄̄
∂u

∂y

¯̄̄̄2
+ F (y, u)

#
(x, y) dy.

Under the above hypothesis K is absolutely continuous and we have almost
everywhere on R:

K0(x) =
βZ
α

·
λ

µ
∂u

∂x

¶µ
∂2u

∂x2

¶
+

µ
∂u

∂y

¶µ
∂2u

∂x∂y

¶
+

µ
∂u

∂x

¶
f(y, u)

¸
(x, y) dy.

An integration by parts yields

K0(x) =

βZ
α

·
λ
∂u

∂x

∂2u

∂x2
− d

dy

µ
∂u

∂y

¶
∂u

∂x
+ f(y, u)

∂u

∂x

¸
(x, y) dy +

µ
∂u

∂x

¶µ
∂u

∂y

¶¯̄̄̄y=β
y=α

=

βZ
α

µµ
λ
∂2u

∂x2
− ∂2u

∂y2
+ f(y, u)

¶
∂u

∂x

¶
(x, y) dy +

µ
∂u

∂x

¶µ
∂u

∂y

¶¯̄̄̄y=β
y=α

=

µ
∂u

∂x

¶µ
∂u

∂y

¶¯̄̄̄y=β
y=α

.

Or,

u+ ε
∂u

∂n
= 0 on ∂Ω⇐⇒


∂u(x, β)

∂y
+
1

ε
u(x, β) = 0,

∂u(x, α)

∂y
− 1

ε
u(x, α) = 0.

If 0 < ε < +∞ , we may write:

∂u(x, β)

∂y
= −1

ε
u(x, β) and

∂u(x, α)

∂y
=

1

ε
u(x,α).

The boundary term is then equal toµ
∂u

∂x

¶µ
∂u

∂y

¶¯̄̄̄y=β
y=α

= −1
ε

·µ
∂u(x, β)

∂x

¶
u(x, β) +

µ
∂u(x,α)

∂x

¶
u(x, α)

¸
= − 1

2ε

d

dx

h
(u(x, α))2 + (u(x, β))2

i
,
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and finally,
d

dx

µ
K(x) +

1

2ε

h
(u(x, α))2 + (u(x, β))2

i¶
= 0,

thus the expression in parentheses is constant, but

+∞Z
−∞

µ
K (x) + 1

2ε

£
(u(x, α))2 + (u(x, β))2

¤¶
dx < +∞

implies that this constant is zero. This proves the Proposition. ¤

Remark 1 If ε = 0 (Dirichlet condition), u = 0 on ∂Ω implies ∇u = ∂u
∂nn and

this allows us to write µ
∂u

∂x

¶
(x, y) =

µ
∂u

∂n

¶
n1(x, y)

and µ
∂u

∂x

¶µ
∂u

∂y

¶¯̄̄̄y=β
y=α

vanishes.

If ε = +∞ (Neumann condition),
∂u

∂n
= 0 on ∂Ω becomes

∂u

∂y
= 0 on ∂Ω

and µ
∂u

∂x

¶µ
∂u

∂y

¶¯̄̄̄y=β
y=α

also vanishes.

The problem (P.1) includes in fact two types of equations depending on
whether λ is positive or negative.

2.1 Hyperbolic case

Let us present two theorems of nonexistence of nontrivial solutions.

Theorem 1 Suppose that u ∈ H2(Ω) ∩ L∞(Ω) is a solution of (P.1), λ > 0 and f
satisfies

F (y, u) ≥ 0. (A)

Then u ≡ 0.
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Proof. We apply formula (2.1) to obtain

βZ
α

"
λ

2

¯̄̄̄
∂u

∂x

¯̄̄̄2
+
1

2

¯̄̄̄
∂u

∂y

¯̄̄̄2
+ F (y, u)

#
(x, y) dy = 0.

F (y, u) ≥ 0 and λ > 0 yield

∂u

∂x
(x, y) =

∂u

∂y
(x, y) = 0 in Ω,

and then u is constant, but sinceZ
Ω

|u(x, y)|2 dxdy < +∞,

this constant is necessarily zero. ¤
Let us now see another type of nonlinearity which also provides a nonexistence

result.

Theorem 2 Let u ∈ H2(Ω)∩L∞(Ω) be a solution of (P.1), λ > 0 and f satisfying

2F (y, u)− uf(y, u) ≥ 0, y ∈]α, β[. (B)

Then the function j(x) =

βZ
α

|u(x, y)|2 dy is convex on R.

Remark 2 The convexity of j(x) on R implies evidently the triviality of the solu-
tion u of problem (P.1).

Proof. It is easy to see that almost everywhere on Ω we have

u

µ
∂2u

∂x2

¶
(x, y) =

Ã
1

2

∂2
¡
u2
¢

∂x2
−
¯̄̄̄
∂u

∂x

¯̄̄̄2!
(x, y).

Let us multiply equation (P.1) by
1

2
u and integrate over ]α, β[ to obtain

βZ
α

·
λ

2

µ
∂2u

∂x2

¶
u− 1

2

µ
∂2u

∂y2

¶
u+

1

2
(f(y, u))u

¸
(x, y) dy = 0,
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which yields

βZ
α

"
λ

2

∂2
¡
u2
¢

∂x2
− λ

2

¯̄̄̄
∂u

∂x

¯̄̄̄2
+
1

2

¯̄̄̄
∂u

∂y

¯̄̄̄2
+
1

2
f(y, u)u

#
(x, y) dy

=
1

2

µ
u
∂u

∂y

¶¯̄̄̄y=β
y=α

= − 1
2ε

h
(u(x,α))2 + (u(x, β))2

i
,

which combined with (2.1) yields

λ

4

d2

dx2

 βZ
α

|u(x, y)|2 dy
 = βZ

α

"
λ

¯̄̄̄
∂u

∂x

¯̄̄̄2
+ F (y, u)− 1

2
uf(y, u)

#
dy.

The hypothesis (B) implies that

λ

4

d2

dx2

 βZ
α

|u(x, y)|2 dy
 ≥ λ

βZ
α

¯̄̄̄
∂u

∂x

¯̄̄̄2
dy

and λ > 0 implies the desired result. ¤

2.2 Elliptic equations

For the elliptic case, we have a nonexistence result stated in the following manner:

Theorem 3 Let u ∈ H2(Ω)∩L∞(Ω) be a solution of (P.1), λ < 0 and f satisfying

2F (y, u)− uf(y, u) ≤ 0, y ∈ ]α, β[ .
Then the function j(x) defined in Theorem 2 is convex on R.

Proof. Similar to the proof of Theorem 2. ¤

3 Examples

In this section, we present some examples illustrating the preceeding theorems.

Example 1 Let ρ be a function of C1, ρ :]α, β[→ R, λ ∈ R and f(y, u) ≡ ρ(y)u.
For u ∈ H2(Ω) ∩ L∞(Ω) , the problem

λ
∂2u

∂x2
− ∂2u

∂y2
+ ρ(y)u = 0 in Ω,

u+ ε
∂u

∂n
= 0 on ∂Ω,

(3.1)

does not have nontrivial solutions.
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Example 2 Let us consider the Klein-Gordon equation
∂2u

∂x2
− ∂2u

∂y2
+mu− θ1 |u|p−1 u− θ2 |u|q−1 u = 0 in Ω,

u+ ε
∂u

∂n
= 0 on ∂Ω

(3.2)

where m > 0 is the mass of a particle, θ1, θ2 are positive constants, p and q are
numbers greater than one. The problem (3.2) does not possess nontrivial solutions
in H2(Ω) ∩ L∞(Ω). It suffices to note that

F (y, u)− 1
2
uf(y, u) = θ1

µ
1

2
− 1

p+ 1

¶
|u|p+1 + θ2

µ
1

2
− 1

q + 1

¶
|u|q+1 .

Example 3 Let ρ be a nonnegative function of class C1, and ω a parameter,
then the problem

−∂
2u

∂x2
− ∂2u

∂y2
+ ρ(y)

³
ωu+ |u|τ−1 u

´
= 0 in Ω,

u+ ε
∂u

∂n
= 0 on ∂Ω,

(3.3)

does not possess nontrivial solutions in H2(Ω) ∩ L∞(Ω).

Remark 3 If Ω = R×]α,+∞[, α ∈ R, we may get results on nonexistence of
solutions for the problem

λ
∂2u

∂x2
− ∂2u

∂y2
+ f(x, u) = 0 in Ω,

u+ ε
∂u

∂n
= 0 on ∂Ω.

(P.1)0

We find that

+∞Z
−∞

"
−λ
2

¯̄̄̄
∂u

∂x

¯̄̄̄2
− 1
2

¯̄̄̄
∂u

∂y

¯̄̄̄2
+ F (x, u)

#
(x, y) dx = 0.

Probably it would be interesting to study the problem
λ
∂2u

∂x2
− ∂2u

∂y2
+ f(x, y, u) = 0 in Ω,

u+ ε
∂u

∂n
= 0 on ∂Ω.

(P )
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4 Application to differential systems

In this last section we study both elliptic and hyperbolic differential systems in
Ω = R × R+. Pucci & Serrin [11] and Van der Vorst [13] have studied elliptic
systems on star-shaped domains in RN . Van der Vorst showed that

∆u = g(v) in Ω,

∆v = f(u) in Ω,

u = v = 0 on ∂Ω,

where f and g satisfy
f, g ∈ C(R),

f(u) > 0 if u > 0; f(u) < 0 if u < 0; f(0) = 0; NF (u)− a1uf(u) ≤ 0, u 6= 0,
g(v) > 0 if v > 0; g(v) < 0 if v < 0; g(0) = 0; NG(v)− a2vg(v) ≤ 0, v 6= 0,

N − a1 − a2 ≤ 0,
does not possess nontrivial solutions in C2(Ω) ∩ C1(Ω).

We consider the system
λ
∂2u

∂x2
+

∂2u

∂y2
= g(v) in Ω = R×R+,

λ
∂2v

∂x2
+

∂2v

∂y2
= f(u) in Ω = R×R+,

u = v = 0 on ∂Ω,

(P.2)

where f and g satisfy the following hypothesis:(
f, g ∈ C(R),

f(0) = g(0) = 0.

We have

Proposition 2 Let λ ∈ R and (u, v) ∈ H2(Ω) ∩ L∞(Ω) ×H2(Ω) ∩ L∞(Ω) be a
solution of problem (P.2), then, almost everywhere on R,

+∞Z
0

·µ
∂u

∂y

¶µ
∂v

∂y

¶
− λ

µ
∂u

∂x

¶µ
∂v

∂x

¶
+G(v) + F (u)

¸
(x, y) dy = 0, (4.1)

and almost everywhere on R+

+∞Z
−∞

·
−
µ
∂u

∂y

¶µ
∂v

∂y

¶
+ λ

µ
∂u

∂x

¶µ
∂v

∂x

¶
+G(v) + F (u)

¸
(x, y) dx = 0. (4.2)
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Theorem 4 Assume that f and g satisfy

F (u) ·G(v) ≥ 0. (C)

Then the problem (P.2) does not possess nontrivial solutions (u, v) in H2(Ω) ∩
L∞(Ω)×H2(Ω) ∩ L∞(Ω).

Proof of Proposition 2. Let us set

Λ(x) =

+∞Z
0

·µ
∂u

∂y

¶µ
∂v

∂y

¶
− λ

µ
∂u

∂x

¶µ
∂v

∂x

¶
+G(v) + F (u)

¸
(x, y) dy

and

Γ(y) =

+∞Z
−∞

·
−
µ
∂u

∂y

¶µ
∂v

∂y

¶
+ λ

µ
∂u

∂x

¶µ
∂v

∂x

¶
+G(v) + F (u)

¸
(x, y) dx.

Under the above hypothesis Λ(x) and Γ(y) are absolutely continuous and we have
almost everywhere on R and on R+ respectively

Λ0(x) = 0 and Γ0(y) = 0,

Λ(x) and Γ(y) are constants and as in Proposition 1, we obtain

Λ(x) ≡ 0 and Γ(y) ≡ 0.

The proof is complete. ¤
Proof of Theorem 4. From formulae (4.1) and (4.2), we obtainZ

Ω

·µ
∂u

∂y

¶µ
∂v

∂y

¶
− λ

µ
∂u

∂x

¶µ
∂v

∂x

¶
+G(v) + F (u)

¸
(x, y) dx dy = 0

and Z
Ω

·
−
µ
∂u

∂y

¶µ
∂v

∂y

¶
+ λ

µ
∂u

∂x

¶µ
∂v

∂x

¶
+G(v) + F (u)

¸
(x, y) dx dy = 0.

Adding both formulae, we findZ
Ω

[G(v) + F (u)] (x, y) dx dy = 0.
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Hypotesis (C) implies that
F (u) = 0 in Ω

and
G(v) = 0 in Ω.

As in [6, Theorem 1], the problem (P.2) becomes
λ
∂2u

∂x2
+

∂2u

∂y2
= 0 in Ω = R×R+,

λ
∂2v

∂x2
+

∂2v

∂y2
= 0 in Ω = R×R+,

u = v = 0 on ∂Ω.

For any one of these equations we check that

+∞Z
0

"
λ

¯̄̄̄
∂u

∂x

¯̄̄̄2
−
¯̄̄̄
∂u

∂y

¯̄̄̄2#
(x, y) dy = 0. (4.3)

The multiplication by u and integration over ]0,+∞[ yield
+∞Z
0

"
λ

2

d2

dx2

³
|u|2

´
− λ

¯̄̄̄
∂u

∂x

¯̄̄̄2
−
¯̄̄̄
∂u

∂y

¯̄̄̄2#
(x, y) dy = 0. (4.4)

Combining formulae (4.3) and (4.4), we get

λ
d2

dx2

+∞Z
0

|u(x, y)|2 (x, y) dy
 = 4+∞Z

0

¯̄̄̄
∂u

∂y

¯̄̄̄2
(x, y) dy ≥ 0.

If λ > 0, we conclude as in Theorem 3.
If λ < 0, (4.3) yields

∂u

∂x
(x, y) = 0 =

∂u

∂y
(x, y),

and we conclude as in Theorem 2. ¤

Example 4 Let g(v) = v and f(u) be such that such that F (u) ≥ 0, then the
following problem 

∆2u = f(u) in Ω = R×R+,
∆u = 0 on ∂Ω,

u = 0 on ∂Ω,

(P.2)0

does not have nontrivial solutions in H2(Ω) ∩ L∞(Ω).
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Proof. Let
∆u = v.

(P.2)0 reduces to 
∆u = v in Ω = R×R+,
∆v = f(u) in Ω = R×R+,
u = ∆u = 0 on ∂Ω.

The conclusion follows from Theorem 4. ¤

Example 5 Let

f(u) = u(u+ a)(u+ b) with ab ≥ 2
5
(a2 + b2), a, b ∈ R

and
g(v) = v.

The system (P.2) does not possess nontrivial solutions, and it is clear that the result
of Van der Vorst does not permit to conclude it.
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