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Abstract
In this paper, we describe the Petrov-Galerkin method and use Lagrange-

type k−0 elements for solving Fredholm integral equations of the second kind on
[0, 1] and for showing the efficiency of the method, we use numerical examples.
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1 Introduction

Let X be a Hilbert space with inner product and norm k.k. We assume that
K : X → X is a compact operator and consider a Fredholm inegral equation of
the second kind,

u−Ku = f, f ∈ X. (1)

Numerical methods including quadrature, collocation and Galerkin and least square
methods for equation (1) are used and their analysis may be found in [1, 2, 4, 5].
The Petrov-Galerkin method is established in [3] for equation (1) on [0, 1]. One of
the advantages of the Petrov-Galerkin method is that it allows us to achieve the
same order of convergence as the Galerkin method with much less computational
cost by choosing the test spaces to be spaces of piecewise polynomials of lower
degree.

This paper is organized as follows: In Section 2, we review the Petrov-Galerkin
method for equation (1). In Section 3 we describe Lagrange-type k − 0 elements
with numerical results.
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2 The Petrov-Galerkin method

In this section we follow the paper [3] with a brief review of the Petrov-Galerkin
method. A similar idea has been used in solving differential equations in [6, 7].

Let X be a Banach space and X∗ be its dual space of continuous linear func-
tionals. For each positive integer n, we assume that Xn ⊂ X, Yn ⊂ X∗ and Xn, Yn
are finite dimensional vector spaces with

dimXn = dimYn, n = 1, 2, . . . (2)

Also Xn, Yn satisfy condition (H) : For each x ∈ X and y ∈ X∗, there exist xn ∈ Xn

and yn ∈ Yn such that kxn − xk→ 0 and kyn − yk→ 0 as n→∞.
The Petrov-Galerkin method for equation (1) is a numerical method for finding

un ∈ Xn such that

(un −Kun, yn) = (f, yn) for all yn ∈ Yn. (3)

Define, for x ∈ X, an element Pnx ∈ Xn called the generalized best approximation
from Xn to x with respect to Yn by the equation

(x− Pnx, yn) = 0 for all yn ∈ Yn. (4)

It is proved in [3] that for each x ∈ X, the generalized best approximation from Xn

to x with respect to Yn exists uniquely if and only if

Yn ∩X⊥
n = {0}. (5)

Under this condition, Pn is a projection, i.e., P 2n = Pn.
Assume that, for each n, there is a linear operator Πn : Xn → Yn with ΠnXn =

Yn satisfying the following two conditions

(H-1) for all xn ∈ Xn, kxnk ≤ C1(xn,Πnxn)
1/2,

(H-2) for all xn ∈ Xn, kΠnxnk ≤ C2kxnk.
If a pair of sequences of spaces {Xn} and {Yn} satisfies (H-1) and (H-2), we call
{Xn, Yn} a regular pair. It is proved in [3] that, if a regular pair {Xn, Yn} satisfies
dimXn = dimYn and condition (H), then the corresponding generalized projection
Pn satisfies:

(1) for all x ∈ X, kPnx− xk→ 0 as n→∞,
(2) there is a constant C > 0 such that kPnk < C, n = 1, 2, . . .,
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(3) for some constant C > 0 independent of n, kPnx− xk ≤ CkQnx− xk, where
Qnx is the best approximation from Xn to x.

The Petrov-Galerkin methods using regular pairs {Xn, Yn} of piecewise polyno-
mial spaces are called Petrov-Galerkin elements. If we use piecewise polynomials
of degree k and k0 for the spaces Xn and Yn respectively, we call the corresponding
Petrov-Galerkin elements k−k0 elements. In Section 3, 4, we solve the equation (1)
using continuous and discontinuous Lagrange-type k − 0 elements.

3 Lagrange-type k − 0 elements
We subdivide the interval [0, 1] into n subintervals by a sequence of points 0 = t0 <
t1 < · · · < tn = 1. Denote Ii = [ti−1, ti] and hi = ti−ti−1 for i = 1, . . . , n and let Xn

be the space of piecewise polynomials of degree ≤ k with knots at ti, i = 1, . . . , n−1.
Let τj =

2j+1
2k+2 , j = 0, 1, . . . , k, and define

t
(i)
j = ti−1 + τjhi, j = 0, 1, . . . , k, i = 1, . . . , n. (6)

We define n(k + 1) functions Φ(i)j (t) by letting

Φ
(i)
j (t) =


kY
c=0
c6=j

t− t
(i)
c

t
(i)
j − t

(i)
c

, t ∈ Ii,

0, t 6∈ Ii,

i = 1, . . . , n,
j = 0, 1, . . . , k.

(7)

Then, for each xn ∈ Xn, we have

xn(t) =
kX

j=0

xn(t
(i)
j )Φ

(i)
j (t), t ∈ Ii, i = 1, . . . , n. (8)

We then construct the test space Yn by

ψ
(i)
j (t) =

(
1, ti−1 + jhi

k+1 ≤ t ≤ ti−1 +
(j+1)hi
k+1 , j = 0, 1, . . . , k,

0, otherwise, i = 1, . . . , n.
(9)

Now, we define a linear operator Πn : Xn → Yn as follows:

Πnxn(t) =
kX

j=0

xn(t
(i)
j )ψ

(i)
j (t), t ∈ Ii, i = 1, . . . , n. (10)
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Then dimXn = dimYn = n(k + 1) and ΠnXn = Yn and in [3] it is proved that for
1 ≤ k ≤ 5 these two space sequences form a regular pair.

Now, assume un ∈ Xn and {bi}ni=1 is a basis for Xn and {b∗j}nj=1 is a basis for
Yn. Therefore the Petrov-Galerkin method on [0, 1] for equation (1) is

(un −Kun, b
∗
j ) = (f, b

∗
j ), j = 1, . . . , n. (11)

Let un(t) =
nP
i=1

aibi(t). Then equation (1) leads to determining {a1, a2, . . . , an} as
the solution of the linear system

nX
i=1

ai

½Z 1

0
bi(t)b

∗
j (t) dt−

Z 1

0

Z 1

0
K(s, t)bi(s)b

∗
j (t) ds dt

¾
=

Z 1

0
f(t)b∗j(t) dt, j = 1, . . . , n. (12)

Example

u(t)−
Z 1

0
(−1
3
e2t−5s/3)u(s) ds = e2t+1/3, 0 ≤ t ≤ 1,

with exact solution u(t) = e2t. In the following table we computed kun(t(i)j ) −
u(t

(i)
j )k2 for n = 1, 2, 4, 10 with equally spaced points and k = 1, 2, . . . , 5.

k \ n 1 2 4 10

1 0.0711045 0.0224796 0.0071885 0.00193661
2 0.00960519 0.000812911 0.0000710505 2.86684 ∗ 10−6
3 0.00287936 0.000216985 0.0000183828 7.35154 ∗ 10−7
4 0.000238635 4.94556 ∗ 10−6 1.07522 ∗ 10−7 6.93185 ∗ 10−10
5 0.0000458096 8.48186 ∗ 10−7 1.78763 ∗ 10−8 1.14221 ∗ 10−10
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