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Abstract

The factorization of primes in abelian extensions are examined by examples
and remarks are given concerning the extension to nonabelian field extensions.
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1 Introduction

Let us try to solve the equation p = x2+y2 in integers for a given prime integer p. It
is easily seen that 2 = 12+12, 5 = 22+12, 13 = 32+22. But we cannot find integers
x and y such that 7 = x2 + y2 or 11 = x2 + y2. In fact, it is known that if p = 2 or
p ≡ 1 (mod 4), then p = x2+ y2 has solutions but if p ≡ 3 (mod 4), there exists no
solution. In complex numbers: 2 = (1+

√−1)(1−√−1), 5 = (2+√−1)(2−√−1),
13 = (3 + 2

√−1)(3− 2√−1), 17 = (4 +√−1)(4−√−1) are clear. But we cannot
find similiar expression for 7 and 11. Hence we are trying to factorize the prime
integers in the ring of integers Z

£√−1¤ of the field Q(√−1). 1 +√−1, 2 +√−1,
2−√−1, 3 + 2√−1, 3− 2√−1, 4 +√−1, 4−√−1 are prime integers in Z £√−1¤.
We observe that the factorization of p in Z

£√−1¤ is equivalent to finding integer
solutions x, y of the equation p = x2 + y2. In fact, in general finding the integer
solutions of the equation n = x2 + y2 can be reduced to the factorization of n in
Z
£√−1¤ for an arbitrary integer n. In fact, as it is well known if n = s2m, m a

square free integer, m has only prime factors p = 2 or p ≡ 1 (mod 4) if and only if
the equation n = x2 + y2 has integer solutions x and y.

Now let us look at p = x2 + 2y2. We can see immediately that 3 = 12 + 2 · 12,
11 = 32 + 2 · 12, 17 = 32 + 2 · 22. In other words, 3 = (1 +

√−2)(1 − √−2),
11 = (3 +

√−2)(3 − √−2), 17 = (3 + 2
√−2)(3 − 2√−2). Hence the solutions of

the equation p = x2 + 2y2 can be reduced to the factorization of p in Z
£√−2¤. In

fact, p ≡ 1 (mod 8) or p ≡ 3 (mod 8) is a necessary and sufficient condition.
Now let us look at p = x2− 2y2. 7 = 32− 2 · 12, 17 = 52− 2 · 22, 23 = 52− 2 · 12

are obvious. In other words, 7 =
¡
3 +
√
2
¢ ¡
3−√2¢, 17 = (5 + 2

√
2)
¡
5− 2√2¢,
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23 = (5 +
√
2)
¡
5−√2¢ in Z £√2¤. In fact, p ≡ 1 (mod 8) or p ≡ 7 (mod 8) is

a necessary and sufficient condition for the existence of integer solutions x, y of
p = x2 − 2y2.

In general, the integer solutions of n = ax2+bxy+cy2 for given integers a, b, c, n
can be obtained as follows. Calculate the discriminant D = b2 − 4ac. If D = s2 for
some integer s, then it can be solved easily. If D = s2d, where d is a square-free
integer, then we look at the factorization of na =

³
ax+ b+s

√
d

2 y
´³

ax+ b−s√d
2 y

´
in the ring of integers Id of Q

³√
d
´
. For instance, if 65 = x2 + 3xy − 5y2, then

D = 32 + 4 · 5 = 29. Therefore s = 1, d = 29. Hence we can obtain the solutions
65 = 72+3 ·7 ·1−5 ·12, 65 = 102+3 ·10 · (−1)−5(−1)2, 65 = 102+3 ·10 ·7−5 ·72,
65 = 312 + 3 · 31 · (−7)− 5 · (−7)2 from the factorization of 65 = x2 + 3xy − 5y2 =³
x+ 3+

√
29

2 y
´³

x+ 3−√29
2 y

´
in the ring of integers I29 of Q(

√
29). After that we

can obtain all other infinitely many solutions by a simple formula.
As we observe from the above examples the factorization of a prime integer p in

Q
¡√−1¢, Q ¡√−2¢, Q ¡√2¢ or, in general, in Q³√d´ is equivalent to the following

fact: Find a divisor α of p in Id such that p is equal to the product of α and
the conjugate of α. If we define the Norm function on Q

³√
d
´
as N(a + b

√
d) =³

a+ b
√
d
´³

a− b
√
d
´
, then we can interpret the fact of factorization as finding the

image of Id under the Norm function:

5 =
¡
2 +
√−1¢ ¡2−√−1¢ ⇐⇒ 5 = N(2 +

√−1),
13 =

¡
2 + 3

√−1¢ ¡2− 3√−1¢ ⇐⇒ 13 = N
¡
2 + 3

√−1¢ ,
7 =

¡
2 +
√−3¢ ¡2−√−3¢ ⇐⇒ 7 = N

¡
2 +
√−3¢ ,

65 = 72 + 3 · 7 · 1− 5 · 12 ⇐⇒ 65 = N

Ã
7 +

3 +
√
29

2
· 1
!
.

2 Factorization of ideals

Let us look at the situation in Q
¡√−5¢. Here we do not have a unique factorization

as 6 = 2 · 3 = (1 +
√−5) ¡1−√−5¢. But the factorization of ideals is unique.

6Z[
√−5] = 2Z[√−5]3Z[√−5] = (¡2, 1 +√−5¢2)(¡3, 1 +√−5¢ ¡3, 1−√−5¢) and
6Z[
√−5] =

¡
1 +
√−5¢Z[√−5] ¡1−√−5¢Z[√−5]

= (
¡
2, 1 +

√−5¢ ¡3, 1 +√−5¢)((2, 1 +√−5) ¡3, 1−√−5¢)
as factorizations of prime ideals are unique. It is known that if the class number
of Q

³√
d
´
is 1, we have the unique factorization in Id. If not, we do not have a
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unique factorization of elements in Id but we have a unique factorization of ideals
in Id.

3 The relation of factorization with the solutions of
quadratic equations

It is known that the ideal generated by a prime p which is different from 2 and does
not divide d, is a product of two prime ideals if and only if x2 ≡ d (mod p) has
integer solutions, i.e., x2−d is factorizable in the finite field Zp = {0, 1, 2, . . . , p−1}.
In fact, it is generally true that a factorization of an unramified ideal in
an abelian extension corresponds to the factorizaton of a polynomial
in a finite field. For instance, 2 is a solution of x2 ≡ −5 (mod 3), therefore
3Z[
√−5] = ¡3, 1 +√−5¢ ¡3, 1−√−5¢ is written as a product of prime ideals. On

the other hand, since there is no integer satisfying x2 ≡ −5 (mod 11), the ideal
11Z[
√−5] cannot be factorized in Z[√−5] but it is still prime.
It is known that for a prime p, ax2 + bx+ c ≡ 0 (mod p) can be reduced to the

equation x2 ≡ d (mod p), hence its solution depends on the factorization of the ideal
generated by p in Id. The solutions of ax2 + bx+ c ≡ d (mod pm) can be obtained
from the solutions of ax2 + bx+ c ≡ 0 (mod p). The general case ax2 + bx+ c ≡ 0
(mod n) for n = pm1

1 pm2
2 · · · pmk

k can be obtained from the solutions of ax2+bx+c ≡ 0
(mod pmi

i ) for i = 1, 2, . . . , k by the Chinese remainder theorem. Of course, it is
essential for the study of solutions of the quadratic equation ax2 + bx+ c = 0.

Now let us take two distinct prime integers p and q different from 2. The
factorization of the ideal generated by p in Q

¡√
q
¢
is closely connected with the

factorization of the ideal generated by q in Q
¡√

p
¢
and, in fact, it is expressed as

the quadratic reciprocity law
³
q
p

´
=
³
p
q

´
(−1) (p−1)(q−1)4 .

4 The case of cyclotomic field extension

Let us look at the factorization of the ideal generated by a prime integer p in the
ring of integers Z

£
e2πi/16

¤
of Q(e2πi/16).

2Z
£
e2πi/16

¤
=
¡
(1− e2πi/16)Z

£
e2πi/16

¤¢8
as the 8th power of a single prime ideal,

7Z
£
e2πi/16

¤
= A1A2 as the product of two prime ideals since Irr(e2πi/16,Q)(x) =

x8 + 1 (mod 7) can be factorized as the product of two irreducible polynomials in
Z7,

31Z
£
e2πi/16

¤
= B1B2 as the product of two prime ideals,

3Z
£
e2πi/16

¤
= C1C2C3C4 as the product of four prime ideals,

5Z
£
e2πi/16

¤
= D1D2D3D4 as the product of four prime ideals, and
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17Z
£
e2πi/16

¤
= E1E2E3E4E5E6E7E8 as the product of 8 prime ideals, can be

verified easily. Hence if the prime integer p is different from 2, then the ideal
generated by p is the product of 2 or 4 or 8 prime ideals in Z

£
e2πi/16

¤
.

5 General case

If the prime integer p does not divide n, then the ideal generated by p in the ring
of integers Z

£
e2πi/n

¤
of Q

¡
e2πi/n

¢
can be factorized as φ(n)/f different prime

ideals. Here φ is the Euler function and f is the least positive integer satisfying
the congruence equation pf ≡ 1 (mod n). f = 2 if n = 16, p = 7, f = 4 if
n = 16, p = 3 and f = 1 if n = 16, p = 17.

In particular, the ideal generated by p is a product of φ(n) (which is equal to
the degree of the extension) distinct prime ideals if and only if p ≡ 1 (mod n).

In such a case where the degree of extension is equal to the number of factors we
say that p splits completely in the ring of integers of the extension. Let us denote
by Sp(K/Q) the set of all prime integers whose ideal splits completely in the ring
of integers of K. Then the following table is clear:

K Sp(K/Q)

Q
¡√−1¢ p ≡ 1 (mod 4)
Q
¡√
2
¢

p ≡ 1 (mod 8) and p ≡ 7 (mod 8)
Q
¡√−2¢ p ≡ 1 (mod 8) and p ≡ 3 (mod 8)

Q
¡
e2πi/16

¢
p ≡ 1 (mod 16)

Q
¡
e2πi/n

¢
p ≡ 1 (mod n)

Now we can ask the following important question: Which subsets of the set
of prime integers can be Sp(K/Q) for a finite Galois extension K of Q? We
can find the answer by defining Frobenius automorphism with the class field theory.

Example 1 Obviously G
¡
Q
¡√−1¢ /Q¢ = {x + yi 7−→ x + yi, x + yi 7−→ x −

yi}. Here 2 = −i(1 + i)2 is a ramified prime but all other prime integers are
unramified. There exists an automorphism Frp in Q

¡√−1¢ such that Frp(x+yi) ≡
(x + yi)p (mod p)∀x, y ∈ Z for a given prime integer p. It is called the Frobenius
automorphism corresponding to the unramified prime p.

Fr3(x+ yi) ≡ (x+ yi)3 (mod 3) can be calculated by (x+ yi)3 ≡ x3+
¡3
1

¢
x2yi+¡3

2

¢
x(yi)2 + (yi)3 ≡ x3 − y3i ≡ x− yi (mod 3) as Fr3(x+ yi) = x− yi.
Fr5(x+ yi) ≡ (x+ yi)5 (mod (2 + i)), (x+ yi)5 ≡ x5 +

¡5
1

¢
x4yi +

¡5
2

¢
x3(yi)2 +

· · ·+ (yi)5 ≡ x5 + y5i ≡ x+ yi (mod (2 + i)) =⇒ Fr5(x+ yi) = x+ yi.
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In fact, it is known that Frp is the identity automorphism if and only if p ≡ 1
(mod 4) and Frp(x + yi) = x − yi if and only if p ≡ 3 (mod 4). In terms of
factorization we can say that

Frp is identity⇐⇒ p splits completely in Q
¡√−1¢, Frp(x+yi) = (x−yi)⇐⇒ p

remains prime in Z
£√−1¤.

Now let a and b be integers different from 2. If a = pm1
1 pm2

2 · · · pmk
k , b =

qn11 qn22 · · · qnll , then we define Ara/b as the composition of Frobenius automorphisms
corresponding to the primes. Ara/b is an onto map from {(a/b)Z : a and b are
odd integers} to G ¡Q ¡√−1¢ /Q¢. The kernel of Ar is Ker(Ar) = {(a/b)Z : a and
b are odd integers, the number of prime integers which are 3 modulo 4 and which
divide a or b is even} or in brief Ker(Ar) = {(a/b)Z : a and b are odd integers and
a ≡ b (mod 4)}. For instance, 5, 13, 17, 49, 77 = 7 · 11 are in Ker(Ar). The most
important property of Ker(Ar) is that Sp

¡
Q
¡√−1¢ /Q¢ = {p : p is prime and

p ≡ 1 (mod 4)} = {p : p is prime and p ∈ Ker(Ar)}. Another property of Ker(Ar)
is that it is generated by Q(4)∞,1 = {(1 + 4a/b)Z : 1 + 4a/b is a positive integer
and b is an odd integer} and the group
NQ(

√−1)/Q(Z[
√−1]) = {N(x + yi)Z : x, y ∈ Z} = {nZ : n = x2 + y2, x, y ∈ Z}.

The most important property is that Q(4)∞,1 ⊆ Ker(Ar) ⊆ I(4). Here the symbol
∞ points out that the extension of Q is a nonreal complex extension, hence the
numbers of the form 1 + 4a/b are positive.

Example 2 G
¡
Q(
√
2)/Q

¢
= {x+ y

√
2 7−→ x+ y

√
2, x+ y

√
2 −→ x− y

√
2}. 2 is

the only ramified prime.

We can define Frobenius automorphisms for odd prime integers.
Fr3(x + y

√
2) ≡ (x + y

√
2)3 (mod 3), (x + y

√
2)3 ≡ x3 + 2

√
2y3 ≡ x − y

√
2

(mod 3) =⇒ Fr3(x+ y
√
2) = x− y

√
2.

Fr7(x + y
√
2) ≡ (x + y

√
2)7 ≡ x7 + 8

√
2y7 ≡ x +

√
2y (mod (3 +

√
2)) =⇒

Fr7(x+ y
√
2) ≡ (x+ y

√
2). In fact, the following is true:

p ≡ 1 or 7 (mod 8)⇐⇒ Frp is identity ⇐⇒ p splits completely in Z
£√
2
¤
.

p ≡ 3 or 5 (mod 8) ⇐⇒ Frp(x + y
√
2) = x − y

√
2 ⇐⇒ p remains prime in

Z
£√
2
¤
.

Ker(Ar) = {(a/b)Z : a and b are odd integers and the number of prime factors
of a and b of the form p ≡ 3 or 5 (mod 8) is even}.

Q(8),1 = {(1 + 8c/d)Z : d is an odd integer } ⊆ Ker(Ar) ⊆ I(8) = {(a/b)Z : a, b
are odd integers}.

Example 3 G
¡
Q
¡√−5¢ /Q¢ = {x + y

√−5 −→ x + y
√−5, x + y

√−5 −→ x −
y
√−5}. 2 and 5 are the only ramified primes since the discriminant is −20.
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Fr3(x + y
√−5) ≡ (x + y

√−5)3 mod (3, 1 +√−5), but (x + y
√−5)3 ≡ x3 −

5
√−5y3 ≡ x +

√−5y (mod 3), hence Fr3(x + y
√−5) ≡ (x + y

√−5) which is the
identity automorphism.

Fr11(x+ y
√−5) ≡ (x+ y

√−5)11 mod (3, 1 +√−5), but (x+ y
√−5)11 ≡ x11 −

3125
√−5y11 ≡ x−√−5y (mod 11), hence Fr11(x+ y

√−5) ≡ (x− y
√−5).

Here for an unramified prime integer p we have
³
−5
p

´
= 1⇐⇒ Frp is the identity

automorphism ⇐⇒ p splits completely in Z
£√−5¤. By the Chinese remainder

theorem and quadratic reciprocity
³
−5
p

´
= 1⇐⇒ p ≡ 1, 3, 7, 9 (mod 20).

Ker(Ar) = {(a/b)Z : b 6= 0, a, b are not divisible by 2 and 5, the number of
prime divisors of a and b which are ≡ 1, 3, 7, 9 (mod 20) is even}.

Q(2)∞,1 = {(1 + 20a/b)Z : 1 + 20a/b is a positive integer, a and b are not
divisible by 2 and 5} and I(20) = I(4) = {(a/b)Z : a, b are not divisible by 2 and 5}.

Here we have again Q(2)∞,1 ⊆ Ker(Ar) ⊆ I(4) and Sp(Q(
√−5)/Q) = {p prime:

p ≡ 1 or 3 or 7 or 9}.

Example 4 G (Q(ζm) /Q) = {ζm −→ (ζm)
k : k is a positive integer less than m

and relatively prime to m}, where ζm is a primitive m-th root of unity. It is known
that the primes p which are not divisors of m are unramified and Frp (α) = αp

∀α ∈ Q(ζm). If the order of the Frobenius automorphism is f , then the number of
prime divisors of p in Z [ζm] is φ(m)/f , where f is the least positive integer such
that pf ≡ 1 (mod m). Hence for the prime integer which is not a divisor of p we
can say that p ≡ 1 (mod m) ⇐⇒ Frp is the identity automorphism ⇐⇒ p splits
completely in Z[ζm].

In general, f is the least positive integer such that pf ≡ 1 (mod m) ⇐⇒ the
order of Frp is f ⇐⇒ the ideal generated by p in Z [ζm] is a product of φ(m)/f
distinct prime ideals.

Ker(Ar) = {(a/b)Z : b 6= 0; a, b are relatively prime to m and a ≡ b (mod m)}.
Q(m)∞,1 = {(1 +ma/b)Z : 1 +ma/b is a positive integer and a, b are relatively

prime to m}.
I(m) = {(a/b)Z : b 6= 0; a, b are relatively prime to m}.
Here we also have Q(m)∞,1 ⊆ Ker(Ar) ⊆ I(m) and Sp (Q (ζm) /Q) = {p prime:

p ≡ 1 (mod m)}.

6 The case of abelian field extension

As the generalization of these examples the Artin map is also onto for a finite
abelian extension of Q and Ker(Ar) is contained in Q(m),1 or Q(m)∞,1 for a positive
integer m. This is the Artin Reciprocity Law as a generalization of quadratic and
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other reciprocity laws. Ker(Ar) = Q(m),1 · NK/Q
£
I(m)(K)

¤
or Ker(Ar) = Q(m)∞,1 ·

NK/Q
£
I(m)(K)

¤
. NK/Q

£
I(m)(K)

¤
is the image of the prime ideals which are relatively

prime to the ideal in the ring of integers of K generated by m, under the norm map.
Conversely, there exists a finite abelian extension K of Q such that for a given

positive integer
½

m
m∞

¾
and a subgroup H such that

½
Q(m),1 ⊆ H ⊆ I(m)
Q(m)∞,1 ⊆ H ⊆ I(m)

¾
and H =

½
Q(m),1. ·NK/Q

£
I(m)(K)

¤
Q(m)∞,1 ·NK/Q

£
I(m)(K)

¤ ¾. It is called the class field corresponding
to the class group H.

We have also Sp(K/Q) ⊆ H. We see also that the integers which can be written
as x2+ y2 are in Ker(Ar) which is between Q(4)∞,1 and I(4) as we mentioned in the
beginning of the article.

The results are true if we replace Q by a finite extension of Q.

7 The case of nonabelian field extension

Unfortunately, it is not possible to characterize the set Sp(K/Q) by the same method
for a nonabelian finite Galois extension. As an example we take the Galois group
of the polynomial x5 + 10x3 − 10x2 + 35x − 18. The Galois group is not abelian.
The only ramified primes are 2, 5, 11 since the discriminant D = 2658112. Here
7, 13, 19, 29, 43, 47 and 59 remain prime but 2063, 2213, 2953, 3631 split
completely. What kind of pattern does there exist here if any?

The answer is given as some conjectures by the Langland’s functoriality principle
formulated in 1960 which includes a formulation of a nonabelian reciprocity law
(local and global) as a special case. The global reciprocity law is formulated as a
general conjectural correspondence between Galois representations and automorphic
forms. Hecke character for the definition of Hecke L function is replaced by a
cuspidal representation for a general automorphic L function. The global reciprocity
law then is a statement relating Galois representations and cuspidal representations.
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