Decomposition of Prime Ideals in the Extensions

B. Kendirli
Department of Mathematics, Fatih University, Istanbul, Turkey
E-mail: bkendirli@fatih.edu.tr

Abstract

The factorization of primes in abelian extensions are examined by examples and remarks are given concerning the extension to nonabelian field extensions.

Key words: Factorization, Class field theory.

1 Introduction

Let us try to solve the equation $p=x^{2}+y^{2}$ in integers for a given prime integer p. It is easily seen that $2=1^{2}+1^{2}, 5=2^{2}+1^{2}, 13=3^{2}+2^{2}$. But we cannot find integers x and y such that $7=x^{2}+y^{2}$ or $11=x^{2}+y^{2}$. In fact, it is known that if $p=2$ or $p \equiv 1(\bmod 4)$, then $p=x^{2}+y^{2}$ has solutions but if $p \equiv 3(\bmod 4)$, there exists no solution. In complex numbers: $2=(1+\sqrt{-1})(1-\sqrt{-1}), 5=(2+\sqrt{-1})(2-\sqrt{-1})$, $13=(3+2 \sqrt{-1})(3-2 \sqrt{-1}), 17=(4+\sqrt{-1})(4-\sqrt{-1})$ are clear. But we cannot find similiar expression for 7 and 11. Hence we are trying to factorize the prime integers in the ring of integers $\mathbb{Z}[\sqrt{-1}]$ of the field $\mathbb{Q}(\sqrt{-1}) .1+\sqrt{-1}, 2+\sqrt{-1}$, $2-\sqrt{-1}, 3+2 \sqrt{-1}, 3-2 \sqrt{-1}, 4+\sqrt{-1}, 4-\sqrt{-1}$ are prime integers in $\mathbb{Z}[\sqrt{-1}]$. We observe that the factorization of p in $\mathbb{Z}[\sqrt{-1}]$ is equivalent to finding integer solutions x, y of the equation $p=x^{2}+y^{2}$. In fact, in general finding the integer solutions of the equation $n=x^{2}+y^{2}$ can be reduced to the factorization of n in $\mathbb{Z}[\sqrt{-1}]$ for an arbitrary integer n. In fact, as it is well known if $n=s^{2} m, m$ a square free integer, m has only prime factors $p=2$ or $p \equiv 1(\bmod 4)$ if and only if the equation $n=x^{2}+y^{2}$ has integer solutions x and y.

Now let us look at $p=x^{2}+2 y^{2}$. We can see immediately that $3=1^{2}+2 \cdot 1^{2}$, $11=3^{2}+2 \cdot 1^{2}, 17=3^{2}+2 \cdot 2^{2}$. In other words, $3=(1+\sqrt{-2})(1-\sqrt{-2})$, $11=(3+\sqrt{-2})(3-\sqrt{-2}), 17=(3+2 \sqrt{-2})(3-2 \sqrt{-2})$. Hence the solutions of the equation $p=x^{2}+2 y^{2}$ can be reduced to the factorization of p in $\mathbb{Z}[\sqrt{-2}]$. In fact, $p \equiv 1(\bmod 8)$ or $p \equiv 3(\bmod 8)$ is a necessary and sufficient condition.

Now let us look at $p=x^{2}-2 y^{2} .7=3^{2}-2 \cdot 1^{2}, 17=5^{2}-2 \cdot 2^{2}, 23=5^{2}-2 \cdot 1^{2}$ are obvious. In other words, $7=(3+\sqrt{2})(3-\sqrt{2}), 17=(5+2 \sqrt{2})(5-2 \sqrt{2})$,
$23=(5+\sqrt{2})(5-\sqrt{2})$ in $\mathbb{Z}[\sqrt{2}]$. In fact, $p \equiv 1(\bmod 8)$ or $p \equiv 7(\bmod 8)$ is a necessary and sufficient condition for the existence of integer solutions x, y of $p=x^{2}-2 y^{2}$.

In general, the integer solutions of $n=a x^{2}+b x y+c y^{2}$ for given integers a, b, c, n can be obtained as follows. Calculate the discriminant $D=b^{2}-4 a c$. If $D=s^{2}$ for some integer s, then it can be solved easily. If $D=s^{2} d$, where d is a square-free integer, then we look at the factorization of $n a=\left(a x+\frac{b+s \sqrt{d}}{2} y\right)\left(a x+\frac{b-s \sqrt{d}}{2} y\right)$ in the ring of integers I_{d} of $\mathbb{Q}(\sqrt{d})$. For instance, if $65=x^{2}+3 x y-5 y^{2}$, then $D=3^{2}+4 \cdot 5=29$. Therefore $s=1, d=29$. Hence we can obtain the solutions $65=7^{2}+3 \cdot 7 \cdot 1-5 \cdot 1^{2}, 65=10^{2}+3 \cdot 10 \cdot(-1)-5(-1)^{2}, 65=10^{2}+3 \cdot 10 \cdot 7-5 \cdot 7^{2}$, $65=31^{2}+3 \cdot 31 \cdot(-7)-5 \cdot(-7)^{2}$ from the factorization of $65=x^{2}+3 x y-5 y^{2}=$ $\left(x+\frac{3+\sqrt{29}}{2} y\right)\left(x+\frac{3-\sqrt{29}}{2} y\right)$ in the ring of integers I_{29} of $\mathbb{Q}(\sqrt{29})$. After that we can obtain all other infinitely many solutions by a simple formula.

As we observe from the above examples the factorization of a prime integer p in $\mathbb{Q}(\sqrt{-1}), \mathbb{Q}(\sqrt{-2}), \mathbb{Q}(\sqrt{2})$ or, in general, in $\mathbb{Q}(\sqrt{d})$ is equivalent to the following fact: Find a divisor α of p in I_{d} such that p is equal to the product of α and the conjugate of α. If we define the Norm function on $\mathbb{Q}(\sqrt{d})$ as $N(a+b \sqrt{d})=$ $(a+b \sqrt{d})(a-b \sqrt{d})$, then we can interpret the fact of factorization as finding the image of I_{d} under the Norm function:

$$
\begin{aligned}
& 5=(2+\sqrt{-1})(2-\sqrt{-1}) \quad \Longleftrightarrow \quad 5=N(2+\sqrt{-1}), \\
& 13=(2+3 \sqrt{-1})(2-3 \sqrt{-1}) \quad \Longleftrightarrow \quad 13=N(2+3 \sqrt{-1}), \\
& 7=(2+\sqrt{-3})(2-\sqrt{-3}) \quad \Longleftrightarrow \quad 7=N(2+\sqrt{-3}), \\
& 65=7^{2}+3 \cdot 7 \cdot 1-5 \cdot 1^{2} \quad \Longleftrightarrow \quad 65=N\left(7+\frac{3+\sqrt{29}}{2} \cdot 1\right) .
\end{aligned}
$$

2 Factorization of ideals

Let us look at the situation in $\mathbb{Q}(\sqrt{-5})$. Here we do not have a unique factorization as $6=2 \cdot 3=(1+\sqrt{-5})(1-\sqrt{-5})$. But the factorization of ideals is unique. $6 \mathbb{Z}[\sqrt{-5}]=2 \mathbb{Z}[\sqrt{-5}] 3 \mathbb{Z}[\sqrt{-5}]=\left((2,1+\sqrt{-5})^{2}\right)((3,1+\sqrt{-5})(3,1-\sqrt{-5}))$ and

$$
\begin{aligned}
6 \mathbb{Z}[\sqrt{-5}] & =(1+\sqrt{-5}) \mathbb{Z}[\sqrt{-5}](1-\sqrt{-5}) \mathbb{Z}[\sqrt{-5}] \\
& =((2,1+\sqrt{-5})(3,1+\sqrt{-5}))((2,1+\sqrt{-5})(3,1-\sqrt{-5}))
\end{aligned}
$$

as factorizations of prime ideals are unique. It is known that if the class number of $\mathbb{Q}(\sqrt{d})$ is 1 , we have the unique factorization in I_{d}. If not, we do not have a
unique factorization of elements in I_{d} but we have a unique factorization of ideals in I_{d}.

3 The relation of factorization with the solutions of quadratic equations

It is known that the ideal generated by a prime p which is different from 2 and does not divide d, is a product of two prime ideals if and only if $x^{2} \equiv d(\bmod p)$ has integer solutions, i.e., $x^{2}-d$ is factorizable in the finite field $\mathbb{Z}_{p}=\{0,1,2, \ldots, p-1\}$.
In fact, it is generally true that a factorization of an unramified ideal in an abelian extension corresponds to the factorizaton of a polynomial in a finite field. For instance, 2 is a solution of $x^{2} \equiv-5(\bmod 3)$, therefore $3 \mathbb{Z}[\sqrt{-5}]=(3,1+\sqrt{-5})(3,1-\sqrt{-5})$ is written as a product of prime ideals. On the other hand, since there is no integer satisfying $x^{2} \equiv-5(\bmod 11)$, the ideal $11 \mathbb{Z}[\sqrt{-5}]$ cannot be factorized in $\mathbb{Z}[\sqrt{-5}]$ but it is still prime.

It is known that for a prime $p, a x^{2}+b x+c \equiv 0(\bmod p)$ can be reduced to the equation $x^{2} \equiv d(\bmod p)$, hence its solution depends on the factorization of the ideal generated by p in I_{d}. The solutions of $a x^{2}+b x+c \equiv d\left(\bmod p^{m}\right)$ can be obtained from the solutions of $a x^{2}+b x+c \equiv 0(\bmod p)$. The general case $a x^{2}+b x+c \equiv 0$ $(\bmod n)$ for $n=p_{1}^{m_{1}} p_{2}^{m_{2}} \cdots p_{k}^{m_{k}}$ can be obtained from the solutions of $a x^{2}+b x+c \equiv 0$ $\left(\bmod p_{i}^{m_{i}}\right)$ for $i=1,2, \ldots, k$ by the Chinese remainder theorem. Of course, it is essential for the study of solutions of the quadratic equation $a x^{2}+b x+c=0$.

Now let us take two distinct prime integers p and q different from 2. The factorization of the ideal generated by p in $\mathbb{Q}(\sqrt{q})$ is closely connected with the factorization of the ideal generated by q in $\mathbb{Q}(\sqrt{p})$ and, in fact, it is expressed as the quadratic reciprocity law $\left(\frac{q}{p}\right)=\left(\frac{p}{q}\right)(-1)^{\frac{(p-1)(q-1)}{4}}$.

4 The case of cyclotomic field extension

Let us look at the factorization of the ideal generated by a prime integer p in the ring of integers $\mathbb{Z}\left[e^{2 \pi i / 16}\right]$ of $\mathbb{Q}\left(e^{2 \pi i / 16}\right)$.
$2 \mathbb{Z}\left[e^{2 \pi i / 16}\right]=\left(\left(1-e^{2 \pi i / 16}\right) \mathbb{Z}\left[e^{2 \pi i / 16}\right]\right)^{8}$ as the 8th power of a single prime ideal,
$7 \mathbb{Z}\left[e^{2 \pi i / 16}\right]=A_{1} A_{2}$ as the product of two prime ideals since $\overline{\operatorname{Irr}\left(e^{2 \pi i / 16}, \mathbb{Q}\right)(x)}=$ $\overline{x^{8}+1}(\bmod 7)$ can be factorized as the product of two irreducible polynomials in \mathbb{Z}_{7},
$31 \mathbb{Z}\left[e^{2 \pi i / 16}\right]=B_{1} B_{2}$ as the product of two prime ideals,
$3 \mathbb{Z}\left[e^{2 \pi i / 16}\right]=C_{1} C_{2} C_{3} C_{4}$ as the product of four prime ideals,
$5 \mathbb{Z}\left[e^{2 \pi i / 16}\right]=D_{1} D_{2} D_{3} D_{4}$ as the product of four prime ideals, and
$17 \mathbb{Z}\left[e^{2 \pi i / 16}\right]=E_{1} E_{2} E_{3} E_{4} E_{5} E_{6} E_{7} E_{8}$ as the product of 8 prime ideals, can be verified easily. Hence if the prime integer p is different from 2, then the ideal generated by p is the product of 2 or 4 or 8 prime ideals in $\mathbb{Z}\left[e^{2 \pi i / 16}\right]$.

5 General case

If the prime integer p does not divide n, then the ideal generated by p in the ring of integers $\mathbb{Z}\left[e^{2 \pi i / n}\right]$ of $\mathbb{Q}\left(e^{2 \pi i / n}\right)$ can be factorized as $\phi(n) / f$ different prime ideals. Here ϕ is the Euler function and f is the least positive integer satisfying the congruence equation $p^{f} \equiv 1(\bmod n) . \quad f=2$ if $n=16, p=7, f=4$ if $n=16, p=3$ and $f=1$ if $n=16, p=17$.

In particular, the ideal generated by p is a product of $\phi(n)$ (which is equal to the degree of the extension) distinct prime ideals if and only if $p \equiv 1(\bmod n)$.

In such a case where the degree of extension is equal to the number of factors we say that p splits completely in the ring of integers of the extension. Let us denote by $\operatorname{Sp}(\mathbb{K} / \mathbb{Q})$ the set of all prime integers whose ideal splits completely in the ring of integers of \mathbb{K}. Then the following table is clear:

\mathbb{K}	$\operatorname{Sp}(\mathbb{K} / \mathbb{Q})$
$\mathbb{Q}(\sqrt{-1})$	$p \equiv 1(\bmod 4)$
$\mathbb{Q}(\sqrt{2})$	$p \equiv 1(\bmod 8)$ and $p \equiv 7(\bmod 8)$
$\mathbb{Q}(\sqrt{-2})$	$p \equiv 1(\bmod 8)$ and $p \equiv 3(\bmod 8)$
$\mathbb{Q}\left(e^{2 \pi i / 16}\right)$	$p \equiv 1(\bmod 16)$
$\mathbb{Q}\left(e^{2 \pi i / n}\right)$	$p \equiv 1(\bmod n)$

Now we can ask the following important question: Which subsets of the set of prime integers can be $\operatorname{Sp}(\mathbb{K} / \mathbb{Q})$ for a finite Galois extension \mathbb{K} of \mathbb{Q} ? We can find the answer by defining Frobenius automorphism with the class field theory.

Example 1 Obviously $G(\mathbb{Q}(\sqrt{-1}) / \mathbb{Q})=\{x+y i \longmapsto x+y i, x+y i \longmapsto x-$ $y i\}$. Here $2=-i(1+i)^{2}$ is a ramified prime but all other prime integers are unramified. There exists an automorphism Fr_{p} in $\mathbb{Q}(\sqrt{-1})$ such that $\operatorname{Fr}_{p}(x+y i) \equiv$ $(x+y i)^{p}(\bmod p) \forall x, y \in \mathbb{Z}$ for a given prime integer p. It is called the Frobenius automorphism corresponding to the unramified prime p.

$$
\begin{aligned}
& \operatorname{Fr}_{3}(x+y i) \equiv(x+y i)^{3}(\bmod 3) \text { can be calculated by }(x+y i)^{3} \equiv x^{3}+\binom{3}{1} x^{2} y i+ \\
& \binom{3}{2} x(y i)^{2}+(y i)^{3} \equiv x^{3}-y^{3} i \equiv x-y i(\bmod 3) \text { as } \operatorname{Fr}_{3}(x+y i)=x-y i . \\
& \operatorname{Fr}_{5}(x+y i) \equiv(x+y i)^{5}(\bmod (2+i)),(x+y i)^{5} \equiv x^{5}+\binom{5}{1} x^{4} y i+\binom{5}{2} x^{3}(y i)^{2}+ \\
& \cdots+(y i)^{5} \equiv x^{5}+y^{5} i \equiv x+y i(\bmod (2+i)) \Longrightarrow \operatorname{Fr}_{5}(x+y i)=x+y i .
\end{aligned}
$$

In fact, it is known that Fr_{p} is the identity automorphism if and only if $p \equiv 1$ $(\bmod 4)$ and $\operatorname{Fr}_{p}(x+y i)=x-y i$ if and only if $p \equiv 3(\bmod 4)$. In terms of factorization we can say that
Fr_{p} is identity $\Longleftrightarrow p$ splits completely in $\mathbb{Q}(\sqrt{-1}), \operatorname{Fr}_{p}(x+y i)=(x-y i) \Longleftrightarrow p$ remains prime in $\mathbb{Z}[\sqrt{-1}]$.

Now let a and b be integers different from 2. If $a=p_{1}^{m_{1}} p_{2}^{m_{2}} \cdots p_{k}^{m_{k}}, b=$ $q_{1}^{n_{1}} q_{2}^{n_{2}} \cdots q_{l}^{n_{l}}$, then we define $\mathrm{Ar}_{a / b}$ as the composition of Frobenius automorphisms corresponding to the primes. $\operatorname{Ar}_{a / b}$ is an onto map from $\{(a / b) \mathbb{Z}: a$ and b are odd integers $\}$ to $G(\mathbb{Q}(\sqrt{-1}) / \mathbb{Q})$. The kernel of Ar is $\operatorname{Ker}(\operatorname{Ar})=\{(a / b) \mathbb{Z}: a$ and b are odd integers, the number of prime integers which are 3 modulo 4 and which divide a or b is even $\}$ or in brief $\operatorname{Ker}(\operatorname{Ar})=\{(a / b) \mathbb{Z}: a$ and b are odd integers and $a \equiv b(\bmod 4)\}$. For instance, $5,13,17,49,77=7 \cdot 11$ are in $\operatorname{Ker}(\operatorname{Ar})$. The most important property of $\operatorname{Ker}(\operatorname{Ar})$ is that $\operatorname{Sp}(\mathbb{Q}(\sqrt{-1}) / \mathbb{Q})=\{p: p$ is prime and $p \equiv 1(\bmod 4)\}=\{p: p$ is prime and $p \in \operatorname{Ker}(\operatorname{Ar})\}$. Another property of $\operatorname{Ker}(\operatorname{Ar})$ is that it is generated by $\mathbb{Q}_{(4) \infty, 1}=\{(1+4 a / b) \mathbb{Z}: 1+4 a / b$ is a positive integer and b is an odd integer $\}$ and the group
$N_{\mathbb{Q}(\sqrt{-1}) / \mathbb{Q}}(\mathbb{Z}[\sqrt{-1}])=\{N(x+y i) \mathbb{Z}: x, y \in \mathbb{Z}\}=\left\{n \mathbb{Z}: n=x^{2}+y^{2}, x, y \in \mathbb{Z}\right\}$. The most important property is that $\mathbb{Q}_{(4) \infty, 1} \subseteq \operatorname{Ker}(\operatorname{Ar}) \subseteq I_{(4)}$. Here the symbol ∞ points out that the extension of \mathbb{Q} is a nonreal complex extension, hence the numbers of the form $1+4 a / b$ are positive.

Example $2 G(\mathbb{Q}(\sqrt{2}) / \mathbb{Q})=\{x+y \sqrt{2} \longmapsto x+y \sqrt{2}, x+y \sqrt{2} \longrightarrow x-y \sqrt{2}\} .2$ is the only ramified prime.

We can define Frobenius automorphisms for odd prime integers.
$\operatorname{Fr}_{3}(x+y \sqrt{2}) \equiv(x+y \sqrt{2})^{3}(\bmod 3),(x+y \sqrt{2})^{3} \equiv x^{3}+2 \sqrt{2} y^{3} \equiv x-y \sqrt{2}$ $(\bmod 3) \Longrightarrow \operatorname{Fr}_{3}(x+y \sqrt{2})=x-y \sqrt{2}$.
$\operatorname{Fr}_{7}(x+y \sqrt{2}) \equiv(x+y \sqrt{2})^{7} \equiv x^{7}+8 \sqrt{2} y^{7} \equiv x+\sqrt{2} y(\bmod (3+\sqrt{2})) \Longrightarrow$ $\operatorname{Fr}_{7}(x+y \sqrt{2}) \equiv(x+y \sqrt{2})$. In fact, the following is true:
$p \equiv 1$ or $7(\bmod 8) \Longleftrightarrow \operatorname{Fr}_{p}$ is identity $\Longleftrightarrow p$ splits completely in $\mathbb{Z}[\sqrt{2}]$.
$p \equiv 3$ or $5(\bmod 8) \Longleftrightarrow \operatorname{Fr}_{p}(x+y \sqrt{2})=x-y \sqrt{2} \Longleftrightarrow p$ remains prime in $\mathbb{Z}[\sqrt{2}]$.
$\operatorname{Ker}(\operatorname{Ar})=\{(a / b) \mathbb{Z}: a$ and b are odd integers and the number of prime factors of a and b of the form $p \equiv 3$ or $5(\bmod 8)$ is even $\}$.
$\mathbb{Q}_{(8), 1}=\{(1+8 c / d) \mathbb{Z}: d$ is an odd integer $\} \subseteq \operatorname{Ker}(\operatorname{Ar}) \subseteq I_{(8)}=\{(a / b) \mathbb{Z}: a, b$ are odd integers $\}$.

Example $3 G(\mathbb{Q}(\sqrt{-5}) / \mathbb{Q})=\{x+y \sqrt{-5} \longrightarrow x+y \sqrt{-5}, x+y \sqrt{-5} \longrightarrow x-$ $y \sqrt{-5}\}$. 2 and 5 are the only ramified primes since the discriminant is -20 .
$\operatorname{Fr}_{3}(x+y \sqrt{-5}) \equiv(x+y \sqrt{-5})^{3} \bmod (3,1+\sqrt{-5})$, but $(x+y \sqrt{-5})^{3} \equiv x^{3}-$ $5 \sqrt{-5} y^{3} \equiv x+\sqrt{-5} y(\bmod 3)$, hence $\operatorname{Fr}_{3}(x+y \sqrt{-5}) \equiv(x+y \sqrt{-5})$ which is the identity automorphism.
$\operatorname{Fr}_{11}(x+y \sqrt{-5}) \equiv(x+y \sqrt{-5})^{11} \bmod (3,1+\sqrt{-5})$, but $(x+y \sqrt{-5})^{11} \equiv x^{11}-$ $3125 \sqrt{-5} y^{11} \equiv x-\sqrt{-5} y(\bmod 11)$, hence $\operatorname{Fr}_{11}(x+y \sqrt{-5}) \equiv(x-y \sqrt{-5})$.

Here for an unramified prime integer p we have $\left(\frac{-5}{p}\right)=1 \Longleftrightarrow \operatorname{Fr}_{p}$ is the identity automorphism $\Longleftrightarrow p$ splits completely in $\mathbb{Z}[\sqrt{-5}]$. By the Chinese remainder theorem and quadratic reciprocity $\left(\frac{-5}{p}\right)=1 \Longleftrightarrow p \equiv 1,3,7,9(\bmod 20)$.
$\operatorname{Ker}(\operatorname{Ar})=\{(a / b) \mathbb{Z}: \quad b \neq 0, a, b$ are not divisible by 2 and 5 , the number of prime divisors of a and b which are $\equiv 1,3,7,9(\bmod 20)$ is even $\}$.
$\mathbb{Q}_{(2) \infty, 1}=\{(1+20 a / b) \mathbb{Z}: 1+20 a / b$ is a positive integer, a and b are not divisible by 2 and 5$\}$ and $I_{(20)}=I_{(4)}=\{(a / b) \mathbb{Z}: a, b$ are not divisible by 2 and 5$\}$.

Here we have again $\mathbb{Q}_{(2) \infty, 1} \subseteq \operatorname{Ker}(\operatorname{Ar}) \subseteq I_{(4)}$ and $\operatorname{Sp}(\mathbb{Q}(\sqrt{-5}) / \mathbb{Q})=\{p$ prime: $p \equiv 1$ or 3 or 7 or 9$\}$.

Example $4 G\left(\mathbb{Q}\left(\zeta_{m}\right) / \mathbb{Q}\right)=\left\{\zeta_{m} \longrightarrow\left(\zeta_{m}\right)^{k}: k\right.$ is a positive integer less than m and relatively prime to $m\}$, where ζ_{m} is a primitive m-th root of unity. It is known that the primes p which are not divisors of m are unramified and $\operatorname{Fr}_{p}(\alpha)=\alpha^{p}$ $\forall \alpha \in \mathbb{Q}\left(\zeta_{m}\right)$. If the order of the Frobenius automorphism is f, then the number of prime divisors of p in $\mathbb{Z}\left[\zeta_{m}\right]$ is $\phi(m) / f$, where f is the least positive integer such that $p^{f} \equiv 1(\bmod m)$. Hence for the prime integer which is not a divisor of p we can say that $p \equiv 1(\bmod m) \Longleftrightarrow \operatorname{Fr}_{p}$ is the identity automorphism $\Longleftrightarrow p$ splits completely in $\mathbb{Z}\left[\zeta_{m}\right]$.

In general, f is the least positive integer such that $p^{f} \equiv 1(\bmod m) \Longleftrightarrow$ the order of Fr_{p} is $f \Longleftrightarrow$ the ideal generated by p in $\mathbb{Z}\left[\zeta_{m}\right]$ is a product of $\phi(m) / f$ distinct prime ideals.
$\operatorname{Ker}(\operatorname{Ar})=\{(a / b) \mathbb{Z}: b \neq 0 ; a, b$ are relatively prime to m and $a \equiv b(\bmod m)\}$.
$\mathbb{Q}_{(m) \infty, 1}=\{(1+m a / b) \mathbb{Z}: 1+m a / b$ is a positive integer and a, b are relatively prime to $m\}$.
$I_{(m)}=\{(a / b) \mathbb{Z}: b \neq 0 ; a, b$ are relatively prime to $m\}$.
Here we also have $\mathbb{Q}_{(m) \infty, 1} \subseteq \operatorname{Ker}(\operatorname{Ar}) \subseteq I_{(m)}$ and $\operatorname{Sp}\left(\mathbb{Q}\left(\zeta_{m}\right) / \mathbb{Q}\right)=\{p$ prime: $p \equiv 1(\bmod m)\}$.

6 The case of abelian field extension

As the generalization of these examples the Artin map is also onto for a finite abelian extension of \mathbb{Q} and $\operatorname{Ker}(\mathrm{Ar})$ is contained in $\mathbb{Q}_{(m), 1}$ or $\mathbb{Q}_{(m) \infty, 1}$ for a positive integer m. This is the Artin Reciprocity Law as a generalization of quadratic and
other reciprocity laws. $\operatorname{Ker}(\operatorname{Ar})=\mathbb{Q}_{(m), 1} \cdot N_{\mathbb{K} / \mathbb{Q}}\left[I_{(m)}(\mathbb{K})\right]$ or $\operatorname{Ker}(\operatorname{Ar})=\mathbb{Q}_{(m) \infty, 1}$. $N_{\mathbb{K} / \mathbb{Q}}\left[I_{(m)}(\mathbb{K})\right] . N_{\mathbb{K} / \mathbb{Q}}\left[I_{(m)}(\mathbb{K})\right]$ is the image of the prime ideals which are relatively prime to the ideal in the ring of integers of \mathbb{K} generated by m, under the norm map.

Conversely, there exists a finite abelian extension \mathbb{K} of \mathbb{Q} such that for a given positive integer $\left\{\begin{array}{c}m \\ m \infty\end{array}\right\}$ and a subgroup H such that $\left\{\begin{array}{c}\mathbb{Q}_{(m), 1} \subseteq H \subseteq I_{(m)} \\ \mathbb{Q}_{(m) \infty, 1} \subseteq H \subseteq I_{(m)}\end{array}\right\}$ and $H=\left\{\begin{array}{c}\mathbb{Q}_{(m), 1} \cdot N_{\mathbb{K} / \mathbb{Q}}\left[I_{(m)}(\mathbb{K})\right] \\ \mathbb{Q}_{(m) \infty, 1} \cdot N_{\mathbb{K} / \mathbb{Q}}\left[I_{(m)}(\mathbb{K})\right]\end{array}\right\}$. It is called the class field corresponding to the class group H.

We have also $\operatorname{Sp}(\mathbb{K} / \mathbb{Q}) \subseteq H$. We see also that the integers which can be written as $x^{2}+y^{2}$ are in $\operatorname{Ker}(\operatorname{Ar})$ which is between $\mathbb{Q}_{(4) \infty, 1}$ and $I_{(4)}$ as we mentioned in the beginning of the article.

The results are true if we replace \mathbb{Q} by a finite extension of \mathbb{Q}.

7 The case of nonabelian field extension

Unfortunately, it is not possible to characterize the $\operatorname{set} \operatorname{Sp}(\mathbb{K} / \mathbb{Q})$ by the same method for a nonabelian finite Galois extension. As an example we take the Galois group of the polynomial $x^{5}+10 x^{3}-10 x^{2}+35 x-18$. The Galois group is not abelian. The only ramified primes are $2,5,11$ since the discriminant $D=2^{6} 5^{8} 11^{2}$. Here $7,13,19,29,43,47$ and 59 remain prime but $2063,2213,2953,3631$ split completely. What kind of pattern does there exist here if any?

The answer is given as some conjectures by the Langland's functoriality principle formulated in 1960 which includes a formulation of a nonabelian reciprocity law (local and global) as a special case. The global reciprocity law is formulated as a general conjectural correspondence between Galois representations and automorphic forms. Hecke character for the definition of Hecke L function is replaced by a cuspidal representation for a general automorphic L function. The global reciprocity law then is a statement relating Galois representations and cuspidal representations.

References

[1] Knapp A. W., Introduction to Langlands Program, Proceedings of Symposia in Pure Mathematics, Volume 61, 1997, pp. 245-302.
[2] Janusz G. J., Algebraic Number Fields, 2nd ed., Graduate Studies in Mathematics, 7, American Mathematical Society, Providence, RI, 1996.

