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Abstract

In this paper, we use the Petrov-Galerkin method for solving Fredholm in-
tegral equations of the second kind on [0, 1] that the trial space is piecewise
Hermite-type cubic polynomials and the test space is piecewise linear polyno-
mials, and for showing the efficiency of method, we use numerical examples.
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1 Introduction

In this paper, we solve Fredholm integral equations of the second kind given in the
form

u(t)− (Ku)(t) = f(t), t ∈ [0, 1], (1)

where

(Ku)(t) =

Z 1

0
k(t, s)u(s) ds,

the function f ∈ L2[0, 1], the kernel k ∈ L2([0, 1]× [0, 1]) are given and u ∈ L2[0, 1]
is the unknown function to be determined.

Numerical methods including least square, collocation and Galerkin methods
for equation (1) are used and their analysis may be found in [1, 2, 3]. The Petrov-
Galerkin method is established in [4] for equation (1). In [4] it has been shown that
the Petrov-Galerkin method includes the Galerkin, collocation and least square
methods. One of the advantages of the Petrov-Galerkin method is that it allows us
to achieve the same order of convergence as the Galerkin method with much less
computational cost by choosing the test spaces to be spaces of piecewise polynomials
of lower degree. In [5] we used continuous and discontinuous Lagrange-type k − 0
elements for solving equation (1) on [0, 1].
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This paper is organized as follows: In Section 2, we review the Petrov-Galerkin
method for equation (1). In Section 3 we use Hermite-type 3−1 elements for solving
equation (1) on [0, 1].

2 The Petrov-Galerkin method

In this section we follow the paper [4] with a brief review of the Petrov-Galerkin
method.

Let X be a Banach space and X∗ be its dual space of continuous linear func-
tionals. For each positive integer n, we assume that Xn ⊂ X, Yn ⊂ X∗ and Xn, Yn
are finite dimensional vector spaces with

dimXn = dimYn, n = 1, 2, . . . (2)

Also Xn, Yn satisfy condition (H) : For each x ∈ X and y ∈ X∗, there exist xn ∈ Xn

and yn ∈ Yn such that kxn − xk→ 0 and kyn − yk→ 0 as n→∞.
Define, for x ∈ X, an element Pnx ∈ Xn called the generalized best approxima-

tion from Xn to x with respect to Yn, by the equation

(x− Pnx, yn) = 0 for all yn ∈ Yn. (3)

It is proved in [4] that, for each x ∈ X, the generalized best approximation from
Xn to x with respect to Yn exists uniquely if and only if

Yn ∩X⊥
n = {0}. (4)

Under this condition, Pn is a projection, i.e., P 2n = Pn.
Assume that, for each n, there is a linear operator Πn : Xn → Yn with ΠnXn =

Yn satisfying the following two conditions:

(H-1) for all xn ∈ Xn, kxnk ≤ C1(xn,Πnxn)
1/2,

(H-2) for all xn ∈ Xn, kΠnxnk ≤ C2kxnk.
If a pair of sequences of spaces {Xn} and {Yn} satisfy (H-1) and (H-2), we call
{Xn, Yn} a regular pair. It is proved in [4] that, if a regular pair {Xn, Yn} satisfies
dimXn = dimYn and condition (H), then the corresponding generalized projection
Pn satisfies:

(1) for all x ∈ X, kPnx− xk→ 0 as n→∞,
(2) there is a constant C > 0 such that kPnk < C, n = 1, 2, . . .,
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(3) for some constant C > 0 independent of n, kPnx− xk ≤ CkQnx− xk,

where Qnx is the best approximation from Xn to x.
The Petrov-Galerkin method for equation (1) is a numerical method for finding

un ∈ Xn such that

(un −Kun, yn) = (f, yn) for all yn ∈ Yn. (5)

If {Xn, Yn} is a regular pair with a linear operator Πn : Xn → Yn, then equation
(5) may be rewritten as

(un −Kun,Πnxn) = (f,Πnxn) for all xn ∈ Xn. (6)

Furthermore, equation (5) is equivalent to

un − PnKun = Pnf. (7)

Equation (7) can also be derived from the fact that Pnx = 0 for an x ∈ X if and
only if (x, yn) = 0 for all yn ∈ Yn.

Now, assume un ∈ Xn and {bi}ni=1 is a basis for Xn and {b∗j}nj=1 is a basis for
Yn. Therefore the Petrov-Galerkin method on [0, 1] for equation (1) is

(un −Kun, b
∗
j ) = (f, b

∗
j ), j = 1, . . . , n. (8)

Let un(t) =
nP
i=1

aibi(t). Then equation (1) leads to determining {a1, a2, . . . , an} as
the solution of the linear system

nX
i=1

ai

½Z 1

0
bi(t)b

∗
j (t) dt−

Z 1

0

Z 1

0
K(s, t)bi(s)b

∗
j (t) ds dt

¾
=

Z 1

0
f(t)b∗j(t) dt, j = 1, . . . , n. (9)

The Petrov-Galerkin methods using regular pairs {Xn, Yn} of piecewise polynomial
spaces are called Petrov-Galerkin elements. If we use piecewise polynomials of
degree k and k0 for the spaces Xn and Yn respectively, we call the corresponding
Petrov-Galerkin elements k − k0 elements. In Section 3 we solve the equation (1)
using Hermite-type 3− 1 elements.
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3 Hermite-type 3-1 elements

We subdivide the interval [0, 1] into n subintervals by a sequence of points 0 = t0 <
t1 < · · · < tn = 1. Denote Ii = [ti−1, ti] and hi = ti − ti−1 and let Xn be the space
of piecewise Hermite-type cubic polynomials, that is:

Xn = {xn ∈ C1[0, 1] : xn|||Ii
is a cubic polynomial determined by

xln(ti−1), x
l
n(ti), l = 0, 1, i = 1, . . . , n}

= span {b1(t), b2(t), . . . , b2n+2(t)}.
Using Hermite interpolation, for each xn ∈ Xn it holds that

xn(t) =
n+1X
j=1

{xn(tj−1)b2j−1(t) + x0n(tj−1)b2j(t)},

where

bj(t) =


φj(τ)(h1)

j−1, τ = t−t0
h1

, t ∈ I1,

0, t 6∈ I1,

j = 1, 2,

b2i+j(t) =



φj+2(τ)(hi)
j−1, τ = t−ti−1

hi
, t ∈ Ii,

φj(τ)(hi+1)
j−1, τ = t−ti

hi+1
, t ∈ Ii+1,

0, t 6∈ Ii
S
Ii+1,

(
i = 1, . . . , n− 1,
j = 1, 2,

b2n+j(t) =


φj+2(τ)(hn)

j−1, τ = t−tn−1
hn

, t ∈ In,

0, t 6∈ In,

j = 1, 2,

and

φ1(τ) = (1− τ)2(2τ + 1),

φ2(τ) = τ(1− τ)2,

φ3(τ) = τ2(3− 2τ),
φ4(τ) = (τ − 1)τ2.

Now, let Yn be the space of piecewise linear polynomials, that is,

Yn = span {b∗1(t), b∗2(t), . . . , b∗2n+2(t)},
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where

b∗2i+1(t) =


1, t ∈ [ti − hi

2 , ti +
hi+1
2 ],

0, otherwise,

i = 0, 1, . . . , n,

b∗2i+2(t) =


t− ti, t ∈ [ti − hi

2 , ti +
hi+1
2 ],

0, otherwise,

i = 0, 1, . . . , n,

h0 = hn+1 = 0.

Then dimXn = dimYn = 2n + 2 and in [4] it is proved that {Xn, Yn} form a
regular pair.

Let B be a (2n+ 2)× (2n+ 2) matrix with entries

bij = (bi(t), b
∗
j (t)), i, j = 1, . . . , 2n+ 2.

A direct computation gives

B =



L0 N1 0 0 0 · · · 0 0 0 0
M1 L1 N2 0 0 · · · 0 0 0 0
0 M2 L2 N3 0 · · · 0 0 0 0
...

...
...

...
...
...

...
...

...
...

0 0 0 0 0 · · · Mn−2 Ln−2 Nn−1 0
0 0 0 0 0 · · · 0 Mn−1 Ln−1 Nn

0 0 0 0 0 · · · 0 0 Mn Ln


,

where

L0 =

 13
32h1

29
320h

2
1

11
192h

2
1

1
60h

3
1

 , Ln =

 13
32hn

−29
320 h

2
n

−11
192 h

2
n

1
60h

3
n

 ,

Li =

 13
32hi +

13
32hi+1

−29
320 h

2
i +

29
320h

2
i+1

−11
192 h

2
i +

11
192h

2
i+1

1
60h

3
i +

1
60h

3
i+1,

 , i = 1, 2, . . . , n− 1,

Mi =

 3
32hi

11
320h

2
i

−5
192h

2
i

−3
320h

3
i

 , Ni =

 3
32hi

−11
320 h

2
i

5
192h

2
i

−3
320h

3
i

 , i = 1, . . . , n.
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For solving equation (1), we seek a function un ∈ Xn, and it can be written as

un(t) =
2n+2X
j=1

cjbj(t). (10)

From (5), the Petrov-Galerkin method for equation (1) isµ
un(t)−

Z 1

0
k(t, s)un(s) ds, b

∗
i (t)

¶
=
¡
f(t), b∗i (t)

¢
, (11)

i = 1, . . . , 2n+ 2.

If we substitute (10) in (11), we have

2n+2X
j=1

cj

½
(bj(t), b

∗
i (t))−

µZ 1

0
k(t, s)bj(t) ds, b

∗
i (t)

¶¾
=
¡
f(t), b∗i (t)

¢
, (12)

i = 1, . . . , 2n+ 2.

Now, we approximate k(t, s) and f(t) in Xn:

k(t, s) =
n+1X
p=1

{k(tp−1, s)b2p−1(t) + kt(tp−1, s)b2p(t)},

f(t) =
n+1X
q=1

{f(tq−1)b2q−1(t) + f 0(tq−1)b2q(t)},

and then substitute in (12). Therefore, this leads to determining {c1, c2, · · · , c2n+2}
as the solution of the linear system

2n+2X
j=1

cj{bji −
n+1X
p=1

dpjb2p−1,i + epjb2p,i} =
n+1X
q=1

f(tq−1)b2q−1,i + f 0(tq−1)b2q,i,

i = 1, 2, . . . , 2n+ 2,

where 
dpj =

R 1
0 k(tp−1, s)bj(s) ds,

epj =
R 1
0 kt(tp−1, s)bj(s) ds,

j = 1, . . . , 2n+ 2,
p = 1, . . . , n+ 1.

Example 1

u(t)−
Z 1

0
(t+ s)u(s) ds = (t/2)− (1/3), 0 ≤ t ≤ 1,

with exact solution u(t) = t.
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Example 2

u(t)−
Z 1

0
(t2es(t−1))u(s) ds = (1− t)et + t, 0 ≤ t ≤ 1,

with exact solution u(t) = et.

Example 3

u(t)−
Z 1

0
(−1
3
e2t−5s/3)u(s) ds = e2t+1/3, 0 ≤ t ≤ 1,

with exact solution u(t) = e2t.
In the following table we computed kun(ti) − u(ti)k2 for n = 1, 2, 4, 10 with

equally spaced points:

n Example 1 Example 2 Example 3

1 4.66082 ∗ 10−15 0.00902821 0.116
2 2.28836 ∗ 10−14 0.00061158 0.00715332
4 1.17916 ∗ 10−13 0.0000443491 0.00051260
10 4.89515 ∗ 10−13 1.552805 ∗ 10−6 0.0000180318
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