5–10 July 2004, Antalya, Turkey — Dynamical Systems and Applications, Proceedings, pp. 419–424

Substitution Operators between Measurable Function Spaces

M. R. Jabbarzadeh

Department of Mathematics, University of Tabriz, Tabriz, IRAN E-mail: mjabbar@tabrizu.ac.ir

Abstract

In this paper we will consider the substitution (weighted composition operators) on measurable function spaces and Fredholmness of these type operators will be investigated.

AMS Subject Classification: Primary 47B20; Secondary 47B38.

Key words: Weighted composition operator, Conditional expectation, Multiplication operator, Fredholm operator.

1 Preliminaries and notations

In the next section we investigate a necessary and sufficient condition for a weighted composition operator $W = uC_{\varphi}$ to be Fredholm. Fredholm weighted composition operators have been studied by H. Takagi [7] in the $L^p(\Sigma)$ setting. By using some properties of conditional expectation operator we omit the continuity hypothesis of M_u . In other words, we do not require that $u \in L^{\infty}(\Sigma)$. This is stated as a hypothesis in [7].

Let (X, Σ, μ) be a σ -finite measure space. By L(X), we denote the linear space of all Σ -measurable functions on X. When we consider any sub- σ -algebra \mathcal{A} of Σ , we assume they are completed; *i.e.*, $\mu(A) = 0$ implies $B \in \mathcal{A}$ for any $B \subset A$. For any σ -finite algebra $\mathcal{A} \subseteq \Sigma$ and $1 \leq p \leq \infty$ we abbreviate the L^p -space $L^p(X, \mathcal{A}, \mu|_{\mathcal{A}})$ to $L^p(\mathcal{A})$, and denote its norm by $\|.\|_p$. We define the support of a measurable function f as $\sigma(f) = \{x \in X; f(x) \neq 0\}$. We understand $L^p(\mathcal{A})$ as a subspace of $L^p(\Sigma)$ and as a Banach space. All comparisons between two functions or two sets are to be interpreted as holding up to a μ -null set. An atom of the measure μ is an element $A \in \Sigma$ with $\mu(A) > 0$ such that for each $F \in \Sigma$, if $F \subset A$ then either $\mu(F) = 0$ or $\mu(F) = \mu(A)$. It is easy to see that every \mathcal{A} - measurable function $f \in L(X)$ is constant μ - almost everywhere on an atom A. So for each $f \in L(X)$ and each atom A we have $\int_A f d\mu = f(A)\mu(A)$. A measure with no atoms is called non-atomic.

Associated with each σ -algebra $\mathcal{A} \subseteq \Sigma$, there exists an operator $E(\cdot|\mathcal{A}) = E^{\mathcal{A}}(\cdot)$ on the set of all non-negative measurable functions f or on the set of all functions $f \in L^p(\Sigma), 1 \leq p \leq \infty$, that is uniquely determined by the conditions

(i) $E^{\mathcal{A}}(f)$ is \mathcal{A} - measurable, and

(ii) if A is any \mathcal{A} - measurable set for which $\int_A f d\mu$ exists, we have $\int_A f d\mu = \int_A E^{\mathcal{A}}(f) d\mu$.

The operator $E^{\mathcal{A}}$ is called conditional expectation operator. This operator is at the central idea of our work, and we list here some of its useful properties:

- E1. $E^{\mathcal{A}}(f.g \circ T) = E^{\mathcal{A}}(f)(g \circ T).$ E2. $E^{\mathcal{A}}(1) = 1.$ E3. $|E^{\mathcal{A}}(fg)|^2 \leq E^{\mathcal{A}}(|f|^2)E^{\mathcal{A}}(|g|^2).$
- E4. If f > 0, then $E^{\mathcal{A}}(f) > 0$.

Properties E1 and E2 imply that $E^{\mathcal{A}}(\cdot)$ is idempotent and $E^{\mathcal{A}}(L^p(\Sigma)) = L^p(\mathcal{A})$. So when $\mathcal{A} = \Sigma$, we have $E^{\Sigma} = I$ where I is identity operator. Suppose that φ is a mapping from X into X which is measurable, $(i.e., \varphi^{-1}(\Sigma) \subseteq \Sigma)$ and $\mu \circ \varphi^{-1}$ is absolutely continuous with respect to μ ($\mu \circ \varphi^{-1} \ll \mu$). Let h be the Radon-Nikodym derivative, $h = \frac{d\mu \circ \varphi^{-1}}{d\mu}$. If we put $\mathcal{A} = \varphi^{-1}(\Sigma)$, it is easy to show that for each non-negative Σ -measurable function f or for each $f \in L^p(\Sigma)$ ($p \ge 1$), there exists a Σ -measurable function g such that $E^{\varphi^{-1}(\Sigma)}(f) = g \circ \varphi$. We can assume that the support of g lies in the support of h, and there exists only one g with this property. We then write $g = E^{\varphi^{-1}(\Sigma)}(f) \circ \varphi^{-1}$, though we make no assumption regarding the invertibility of φ (see [1]). For a deeper study of the properties of E see the paper [5].

Take a function u in L(X) and let $\varphi : X \to X$ be a non-singular measurable transformation; *i.e.*, $\mu(\varphi^{-1}(A)) = 0$ for all $A \in \Sigma$ such that $\mu(A) = 0$. Then the pair (u, φ) induces a linear operator uC_{φ} from $L^p(\Sigma)$ into L(X) defined by

$$uC_{\varphi}(f) = u.f \circ \varphi \qquad (f \in L^p(\Sigma)).$$

Here, the non-singularity of φ guarantees that uC_{φ} as a mapping of equivalence classes of functions on support u is well defined. If uC_{φ} takes $L^p(\Sigma)$ into $L^q(\Sigma)$ or uC_{φ} is equivalently bounded, then we say that uC_{φ} is a weighted composition operator from $L^p(\Sigma)$ into $L^q(\Sigma)$ $(1 \leq p, q \leq \infty)$. When $u \equiv 1$, we just have the composition operator C_{φ} defined by $C_{\varphi}(f) = f \circ \varphi$. For more details see [6].

2 Fredholm weighted composition operators on L^p-spaces

Let $1 \leq p < \infty$, $1 \leq q < \infty$ and $\frac{1}{p} + \frac{1}{q} = 1$. Then it is a well known fact that each $g^* \in L^q(\Sigma)$ defines a bounded linear functional F_{g^*} on $L^p(\Sigma)$ by

$$F_{g^*}(f) = \int fg^* d\mu \qquad (f \in L^p(\Sigma)).$$

Moreover, the mapping $g^* \to F_{g^*}$ is an isometry from $L^q(\Sigma)$ onto $(L^p)^*(\Sigma)$, so the norm dual of $L^p(\Sigma)$ can be identified with $L^q(\Sigma)$. In the following theorem we compute the adjoint of uC_{ω} .

Proposition 1 Let $W = uC_{\varphi}$ be a weighted composition operator on $L^{p}(\Sigma)$ and $\frac{1}{p} + \frac{1}{q} = 1$. Then $W^{*}g^{*} = hE(u.g^{*}) \circ \varphi^{-1}$ for all $g^{*} \in L^{q}(\Sigma)$.

Proof. Take $A \in \Sigma$ such that $0 < \mu(A) < \infty$. For $g^* \in L^q(\Sigma)$ consider a bounded linear functional F_{g^*} on $L^p(\Sigma)$ as above. Then we have

$$(W^*F_{g^*})(\chi_A) = F_{g^*}(W\chi_A) = \int (W\chi_A)g^* d\mu$$
$$= \int u.\chi_A \circ \varphi \ g^* d\mu = \int hE(u.g^*) \circ \varphi^{-1}\chi_A d\mu = F_{hE(u.g^*)\circ\varphi^{-1}}\chi_A.$$

Hence, $W^*F_{g^*} = F_{hE(u,g^*)\circ\varphi^{-1}}$. After identifying $(L^p)^*(\Sigma)$ with $L^q(\Sigma)$ and g^* with F_{g^*} , we can write $W^*g^* = hE(u,g^*)\circ\varphi^{-1}$ for all $g^* \in L^q(\Sigma)$.

In the following theorem we investigate a necessary and sufficient condition for a weighted composition operator $W = uC_{\varphi}$ to be Fredholm. The proof of the theorem follows a similar method of proof as was used to prove Theorem 4.2 in [4] which is similar to a theorem of Takagi [7]. We use the symbols $\mathcal{N}(W)$ and $\mathcal{R}(W)$ to denote the kernel and the range of W, respectively. We recall that W is said to be a Fredholm operator if $\mathcal{R}(W)$ is closed and if dim $\mathcal{N}(W) < \infty$ and codim $\mathcal{R}(W) < \infty$.

Theorem 2 Suppose that μ is a non-atomic measure. Let $W = uC_{\varphi}$ be a weighted composition operator on $L^{p}(\Sigma)$. Then W is a Fredholm operator if and only if $J = hE^{\varphi^{-1}(\Sigma)}(|u|^{p}) \circ \varphi^{-1} \geq \delta$ almost everywhere on X for some $\delta > 0$.

Proof. Suppose that W is a Fredholm operator. We first claim that W is onto and takes an $f_o \in L^p(\Sigma) \setminus \mathcal{R}(W)$. Since $\mathcal{R}(W)$ is closed, we can find a functional L_{g^*} on $L^p(\Sigma)$ corresponding to $g^* \in L^q(\Sigma)$ $(\frac{1}{p} + \frac{1}{q} = 1)$ which is defined as

$$L_{g^*}(f) = \int_X fg^* d\mu$$
 such that $L_{g^*}(f_0) = 1$ and $L_{g^*}(\mathcal{R}(W)) = 0.$ (1)

Hence the set $E_{\delta} = \{x \in X : \operatorname{Re}(f_0g^*)(x) \geq \delta\}$ must have positive measure for some $\delta > 0$. Since μ is non-atomic we can choose a sequence $\{E_n\}$ of subsets of E_{δ} with $0 < \mu(E_n) < \mu(E_{\delta})$ and $E_n \cap E_m = \emptyset$ for $n \neq m$. Let $g_n^* = \chi_{E_n}g^*$. Then $g_n^* \in L^q(\Sigma)$ and is nonzero because

$$\operatorname{Re} \int_X f_0 g_n^* d\mu \ge \delta \mu(E_n) > 0 \; .$$

Evidently for any $f \in L^p(\Sigma)$, $\chi_{E_n} f$ is in $L^p(\Sigma)$, and so the right equality of (1) yields

$$\int_X f(W^*g_n^*) d\mu = \int_X fhE(ug_n^*) \circ \varphi^{-1} d\mu = \int_{E_n} fE(ug^*) \circ \varphi^{-1} d\mu \circ \varphi^{-1}$$
$$= \int_{\varphi^{-1}(E_n)} f \circ \varphi E(ug^*) d\mu = \int_{\varphi^{-1}(E_n)} ug^*f \circ \varphi d\mu = \int_X g^*uf \circ \varphi(\chi_{E_n} \circ \varphi) d\mu$$
$$= \int_X g^*u(f\chi_{E_n}) \circ \varphi d\mu = \int_X g^*W(f\chi_{E_n}) d\mu = 0.$$

This implies that $g_n^* \in \mathcal{N}(W^*)$. Thus the sequence $\{g_n^*\}$ forms a linearly independent subset of $\mathcal{N}(W^*)$. This contradicts the fact that dim $\mathcal{N}(W^*) = \operatorname{codim} \mathcal{R}(W) < \infty$. Hence W is onto. Next we put $Z(J) = \{x : J(x) = 0\}$. Now we claim that $\mu(Z(J)) = 0$. For, if $\mu(Z(J)) > 0$, there exists a subset F of Z(J) with $0 < \mu(F) < \infty$. If $\chi_F \in \mathcal{R}(W)$, then there exists $f \in L^p(\Sigma)$ such that $\chi_F = Wf$. Then

$$\mu(F) = \int_F |Wf|^p \, d\mu \int_F J|f|^p \, d\mu = 0$$

and this is a contradiction. So $\chi_F \in L^p(\Sigma) \setminus \mathcal{R}(W)$, which contradicts the fact that W is onto. Also since $\mu(Z(J)) = 0$ and $\mu \circ \varphi^{-1} \ll \mu$ we have $\mu(Z(J \circ \varphi)) = 0$. For each $n = 1, 2, \ldots$ let

$$H_n = \left\{ x \in X : \frac{\|J \circ \varphi\|_{\infty}}{(n+1)^2} < J \circ \varphi(x) \le \frac{\|J \circ \varphi\|_{\infty}}{n^2} \right\},\$$

and $H = \{n : \mu(H_n) > 0\}$. Then the H_n 's are pairwise disjoint and $X = \bigcup_{n=1}^{\infty} H_n$. Define

$$f(x) = \begin{cases} \left(\frac{J \circ \varphi(x)}{\mu(H_n)}\right)^{\frac{1}{p}} & \text{if } x \in H_n, n \in H, \\ 0 & \text{elsewhere.} \end{cases}$$

Then

$$\int_X |f|^p \, d\mu = \sum_{n \in H} \int_{H_n} \frac{J \circ \varphi(x)}{\mu(H_n)} \, d\mu \le \sum_{n \in H} \frac{\|J \circ \varphi\|_\infty}{n^2} \le \|J \circ \varphi\|_\infty \sum_{n=1}^\infty \frac{1}{n^2} < \infty,$$

so $f \in L^p(\Sigma)$. If $g \in L^p(\Sigma)$ is such that Wg = f, then

$$\int_X E^{\varphi^{-1}(\Sigma)}(|u|^p)|g|^p \circ \varphi \, d\mu = \int_X E^{\varphi^{-1}(\Sigma)}(|f|^p) \, d\mu.$$

It follows that

$$\int_X h E^{\varphi^{-1}(\Sigma)}(|u|^p) \circ \varphi^{-1}|g|^p \, d\mu = \int_X h E^{\varphi^{-1}(\Sigma)}(|f|^p) \circ \varphi^{-1} \, d\mu$$

Thus $|g|^p = \frac{hE^{\varphi^{-1}(\Sigma)}(|f|^p)\circ\varphi^{-1}}{J}$ on off Z(J). Since $\mu(Z(J)) = 0$, it follows that

$$\int_X |g|^p d\mu = \int_X \frac{E^{\varphi^{-1}(\Sigma)}(|f|^p) \circ \varphi^{-1}}{J} d\mu \circ \varphi^{-1} = \int_X \frac{E^{\varphi^{-1}(\Sigma)}(|f|^p)}{J \circ \varphi} d\mu$$
$$= \int_X \frac{|f|^p}{J \circ \varphi} d\mu = \sum_{n \in H} \int_{H_n} \frac{d\mu}{\mu(H_n)} = \sum_{n \in H} 1.$$

This implies that H must be a finite set. Thus there is an n_0 such that $n \ge n_0$ implies $\mu(H_n) = 0$ and so

$$\mu\left(\left\{x\in X: J\circ\varphi(x)\leq \frac{\|J\circ\varphi\|_{\infty}}{n_0^2}\right\}\right)=\mu\left(\bigcup_{n=n_0}^{\infty}H_n\cup Z(J\circ\varphi)\right)=0.$$

Therefore we obtain $J \circ \varphi \geq \frac{\|J \circ \varphi\|_{\infty}}{n_0^2}$ almost everywhere on X. Since $\mathcal{N}(W) = L^p(Z(J)), \ \mu(Z(J)) = 0$, so dim $\mathcal{N}(W) = \{0\}$ and then φ is essentially surjective. Hence $J \geq \frac{\|J\|_{\infty}}{n_0^2} \ (= \delta)$ almost everywhere on X.

Conversely, suppose that $J \geq \delta$ almost everywhere for some $\delta > 0$. Since h > 0 and for each $f \in L^p(\Sigma)$, $||Wf||_p = (\int_X J|f|^p d\mu)^{1/P} \geq \delta^{1/p} ||f||_p$, it follows that W and C_{φ} are injective and $\mathcal{R}(W)$ is closed. Also since $W = M_u C_{\varphi}$, we deduce that M_u is injective and so $\mu(Z(u)) = 0$. Now let $g^* \in \mathcal{N}(W^*)$. Then $W^*g^* = hE^{\varphi^{-1}(\Sigma)}(ug^*) \circ \varphi^{-1} = 0$ and so $E^{\varphi^{-1}(\Sigma)}(ug^*) \circ \varphi^{-1} = 0$. It follows that $g^* = 0$. Thus codim $\mathcal{R}(W) = \dim \mathcal{N}(W^*) = 0$. Therefore the theorem is proved. \Box

Corollary 3 Suppose M_u and C_{φ} are both bounded linear operators on $L^p(\Sigma)$ and μ is a non-atomic measure. Then

- (i) M_u is Fredholm if and only if $|u| \ge \delta$ on X for some $\delta > 0$.
- (ii) C_{φ} is Fredholm if and only if $h \geq \delta$ on X for some $\delta > 0$.

Remark 4 One of the interesting features of a weighted composition operator is that the multiplication operator alone may not define a bounded operator between two $L^p(\Sigma)$ spaces. As an example, let X be (0,1), Σ be the Borel sets, and μ be the Lebesgue measure. Let φ be the map $\varphi(x) = \sqrt[3]{x}$ and $u(x) = 1/\sqrt{x}$ on (0,1). Then M_u dos not define a bounded operator from $L^1(\Sigma)$ into $L^1(\Sigma)$. However a simple computation shows that $J(x) = 3\sqrt{x} \in L^{\infty}(\Sigma)$ and so $Wf(x) = 1/\sqrt{x}f(\sqrt[3]{x})$ is bounded operator on $L^1(\Sigma)$.

References

- CAMPBELL J. AND JAMISON J., On some classes of weighted composition operators, Glasgow Math. J., 32 (1990), 87–94.
- [2] HOOVER T., LAMBERT A. AND QUINN J., The Markov process determined by a weighted composition operator, Studia Math. (Poland), LXXII (1982), 225–235.
- [3] JABBARZADEH M. R. AND POURREZA E., A note on weighted composition operators on L^p-spaces, Bull. Iranian Math. Soc., 29 (2002), 1–8.
- [4] KOMAL B. S. AND GUPTA S., Multiplication operators between Orlicz spaces, Integr. Eqns. Oper. Theory, 41 (2001), 324–330.
- [5] LAMBERT A., Localising sets for sigma-algebras and related point transformations, Proc. Royal Soc. of Edinburgh Ser. A, 118 (1991), 111–118.
- [6] SINGH R. K. AND MANHAS J. S., Composition Operators on Function Spaces, North-Holland, 1993.
- [7] TAKAGI H., Fredholm weighted composition operators, Integr. Eqns. Oper. Theory, 16 (1993), 267–276.
- [8] TAKAGI H. AND YOKOUCHI K., Multiplication and composition operators between two L^p-spaces, Contemporary Math., 232 (1999), 321–338.
- [9] TAYLOR A. E. AND LAY D. C., Introduction to Functional Analysis, 2nd ed., Wiley, 1980.
- [10] ZAANEN A. C., Integration, 2nd ed., North-Holland, Amsterdam, 1967.