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Abstract

In this paper we will consider the substitution (weighted composition oper-
ators) on measurable function spaces and Fredholmness of these type operators
will be investigated.
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1 Preliminaries and notations

In the next section we investigate a necessary and sufficient condition for a weighted
composition operator W = uCϕ to be Fredholm. Fredholm weighted composition
operators have been studied by H. Takagi [7] in the Lp(Σ) setting. By using some
properties of conditional expectation operator we omit the continuity hypothesis
of Mu. In other words, we do not require that u ∈ L∞(Σ). This is stated as a
hypothesis in [7].

Let (X,Σ, µ) be a σ-finite measure space. By L(X), we denote the linear space
of all Σ-measurable functions on X. When we consider any sub-σ-algebra A of Σ,
we assume they are completed; i.e., µ(A) = 0 implies B ∈ A for any B ⊂ A. For any
σ-finite algebra A ⊆ Σ and 1 ≤ p ≤ ∞ we abbreviate the Lp-space Lp(X,A, µ|A)
to Lp(A), and denote its norm by k.kp. We define the support of a measurable
function f as σ(f) = {x ∈ X; f(x) 6= 0}. We understand Lp(A) as a subspace of
Lp(Σ) and as a Banach space. All comparisons between two functions or two sets
are to be interpreted as holding up to a µ-null set. An atom of the measure µ is
an element A ∈ Σ with µ(A) > 0 such that for each F ∈ Σ, if F ⊂ A then either
µ(F ) = 0 or µ(F ) = µ(A). It is easy to see that every A- measurable function
f ∈ L(X) is constant µ- almost everywhere on an atom A. So for each f ∈ L(X)
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and each atom A we have
R
A f dµ = f(A)µ(A). A measure with no atoms is called

non-atomic.

Associated with each σ-algebra A ⊆ Σ, there exists an operator E(·|A) = EA(·)
on the set of all non-negative measurable functions f or on the set of all functions
f ∈ Lp(Σ), 1 ≤ p ≤ ∞, that is uniquely determined by the conditions

(i) EA(f) is A- measurable, and
(ii) if A is any A- measurable set for which RA f dµ exists, we have

R
A f dµ =R

AEA(f) dµ.
The operator EA is called conditional expectation operator. This operator is at

the central idea of our work, and we list here some of its useful properties:

E1. EA(f.g ◦ T ) = EA(f)(g ◦ T ).
E2. EA(1) = 1.
E3. |EA(fg)|2 ≤ EA(|f |2)EA(|g|2).
E4. If f > 0, then EA(f) > 0.

Properties E1 and E2 imply that EA(·) is idempotent and EA(Lp(Σ)) = Lp(A).
So when A = Σ, we have EΣ = I where I is identity operator. Suppose that ϕ
is a mapping from X into X which is measurable, (i.e., ϕ−1(Σ) ⊆ Σ) and µ ◦ ϕ−1
is absolutely continuous with respect to µ (µ ◦ ϕ−1 ¿ µ). Let h be the Radon-
Nikodym derivative, h = dµ◦ϕ−1

dµ . If we put A = ϕ−1(Σ), it is easy to show that for
each non-negative Σ-measurable function f or for each f ∈ Lp(Σ) (p ≥ 1), there
exists a Σ-measurable function g such that Eϕ−1(Σ)(f) = g ◦ ϕ. We can assume
that the support of g lies in the support of h, and there exists only one g with this
property. We then write g = Eϕ−1(Σ)(f) ◦ ϕ−1, though we make no assumption
regarding the invertibility of ϕ (see [1]). For a deeper study of the properties of E
see the paper [5].

Take a function u in L(X) and let ϕ : X → X be a non-singular measurable
transformation; i.e., µ(ϕ−1(A)) = 0 for all A ∈ Σ such that µ(A) = 0. Then the
pair (u, ϕ) induces a linear operator uCϕ from Lp(Σ) into L(X) defined by

uCϕ(f) = u.f ◦ ϕ (f ∈ Lp(Σ)).

Here, the non-singularity of ϕ guarantees that uCϕ as a mapping of equivalence
classes of functions on support u is well defined. If uCϕ takes Lp(Σ) into Lq(Σ)
or uCϕ is equivalently bounded, then we say that uCϕ is a weighted composition
operator from Lp(Σ) into Lq(Σ) (1 ≤ p, q ≤ ∞). When u ≡ 1, we just have the
composition operator Cϕ defined by Cϕ(f) = f ◦ ϕ. For more details see [6].
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2 Fredholmweighted composition operators on Lp-spaces

Let 1 ≤ p <∞ , 1 ≤ q <∞ and 1
p +

1
q = 1. Then it is a well known fact that each

g∗ ∈ Lq(Σ) defines a bounded linear functional Fg∗ on Lp(Σ) by

Fg∗(f) =

Z
fg∗ dµ (f ∈ Lp(Σ)).

Moreover, the mapping g∗ → Fg∗ is an isometry from Lq(Σ) onto (Lp)∗(Σ), so the
norm dual of Lp(Σ) can be identified with Lq(Σ). In the following theorem we
compute the adjoint of uCϕ.

Proposition 1 Let W = uCϕ be a weighted composition operator on Lp(Σ) and
1
p +

1
q = 1. Then W ∗g∗ = hE(u.g∗) ◦ ϕ−1 for all g∗ ∈ Lq(Σ).

Proof. Take A ∈ Σ such that 0 < µ(A) < ∞. For g∗ ∈ Lq(Σ) consider a
bounded linear functional Fg∗ on Lp(Σ) as above. Then we have

(W ∗Fg∗)(χA) = Fg∗(WχA) =

Z
(WχA)g

∗ dµ

=

Z
u.χA ◦ ϕ g∗ dµ =

Z
hE(u.g∗) ◦ ϕ−1χA dµ = FhE(u.g∗)◦ϕ−1χA.

Hence, W ∗Fg∗ = FhE(u.g∗)◦ϕ−1 . After identifying (Lp)∗(Σ) with Lq(Σ) and g∗ with
Fg∗ , we can write W ∗g∗ = hE(u.g∗) ◦ ϕ−1 for all g∗ ∈ Lq(Σ). ¤

In the following theorem we investigate a necessary and sufficient condition for a
weighted composition operatorW = uCϕ to be Fredholm. The proof of the theorem
follows a similar method of proof as was used to prove Theorem 4.2 in [4] which
is similar to a theorem of Takagi [7]. We use the symbols N (W ) and R(W ) to
denote the kernel and the range ofW , respectively. We recall thatW is said to be a
Fredholm operator ifR(W ) is closed and if dim N (W ) <∞ and codimR(W ) <∞.

Theorem 2 Suppose that µ is a non-atomic measure. Let W = uCϕ be a weighted
composition operator on Lp(Σ). Then W is a Fredholm operator if and only if
J = hEϕ−1(Σ)(|u|p) ◦ ϕ−1 ≥ δ almost everywhere on X for some δ > 0.

Proof. Suppose that W is a Fredholm operator. We first claim that W is onto
and takes an fo ∈ Lp(Σ) \ R(W ). Since R(W ) is closed, we can find a functional
Lg∗ on Lp(Σ) corresponding to g∗ ∈ Lq(Σ) ( 1p +

1
q = 1) which is defined as

Lg∗(f) =

Z
X
fg∗ dµ such that Lg∗(f0) = 1 and Lg∗(R(W )) = 0. (1)



422 M. R. Jabbarzadeh

Hence the set Eδ = {x ∈ X : Re (f0g
∗)(x) ≥ δ} must have positive measure for

some δ > 0. Since µ is non-atomic we can choose a sequence {En} of subsets of
Eδ with 0 < µ(En) < µ(Eδ) and En ∩ Em = ∅ for n 6= m. Let g∗n = χEng

∗. Then
g∗n ∈ Lq(Σ) and is nonzero because

Re

Z
X
f0g

∗
n dµ ≥ δµ(En) > 0 .

Evidently for any f ∈ Lp(Σ), χEnf is in Lp(Σ), and so the right equality of (1)
yieldsZ

X
f(W ∗g∗n) dµ =

Z
X
fhE(ug∗n) ◦ ϕ−1 dµ =

Z
En

fE(ug∗) ◦ ϕ−1 dµ ◦ ϕ−1

=

Z
ϕ−1(En)

f ◦ ϕE(ug∗) dµ =
Z
ϕ−1(En)

ug∗f ◦ ϕdµ =

Z
X
g∗uf ◦ ϕ(χEn ◦ ϕ) dµ

=

Z
X
g∗u(fχEn) ◦ ϕdµ =

Z
X
g∗W (fχEn) dµ = 0.

This implies that g∗n ∈ N (W ∗). Thus the sequence {g∗n} forms a linearly indepen-
dent subset ofN (W ∗). This contradicts the fact that dim N (W ∗) = codimR(W ) <
∞. Hence W is onto. Next we put Z(J) = {x : J(x) = 0}. Now we claim
that µ(Z(J)) = 0. For, if µ(Z(J)) > 0, there exists a subset F of Z(J) with
0 < µ(F ) < ∞. If χF ∈ R(W ), then there exists f ∈ Lp(Σ) such that χF = Wf .
Then

µ(F ) =

Z
F
|Wf |p dµ

Z
F
J |f |p dµ = 0

and this is a contradiction. So χF ∈ Lp(Σ) \R(W ), which contradicts the fact that
W is onto. Also since µ(Z(J)) = 0 and µ ◦ ϕ−1 ¿ µ we have µ(Z(J ◦ ϕ)) = 0. For
each n = 1, 2, . . . let

Hn =

½
x ∈ X :

kJ ◦ ϕk∞
(n+ 1)2

< J ◦ ϕ(x) ≤ kJ ◦ ϕk∞
n2

¾
,

and H = {n : µ(Hn) > 0}. Then the Hn’s are pairwise disjoint and X = ∪∞n=1Hn.
Define

f(x) =


³
J◦ϕ(x)
µ(Hn)

´ 1
p
if x ∈ Hn, n ∈ H,

0 elsewhere.

ThenZ
X
|f |p dµ =

X
n∈H

Z
Hn

J ◦ ϕ(x)
µ(Hn)

dµ ≤
X
n∈H

kJ ◦ ϕk∞
n2

≤ kJ ◦ ϕk∞
∞X
n=1

1

n2
<∞,
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so f ∈ Lp(Σ). If g ∈ Lp(Σ) is such that Wg = f , thenZ
X
Eϕ−1(Σ)(|u|p)|g|p ◦ ϕdµ =

Z
X
Eϕ−1(Σ)(|f |p) dµ.

It follows thatZ
X
hEϕ−1(Σ)(|u|p) ◦ ϕ−1|g|p dµ =

Z
X
hEϕ−1(Σ)(|f |p) ◦ ϕ−1 dµ.

Thus |g|p = hEϕ−1(Σ)(|f |p)◦ϕ−1
J on off Z(J). Since µ(Z(J)) = 0, it follows that

Z
X
|g|p dµ =

Z
X

Eϕ−1(Σ)(|f |p) ◦ ϕ−1
J

dµ ◦ ϕ−1 =
Z
X

Eϕ−1(Σ)(|f |p)
J ◦ ϕ dµ

=

Z
X

|f |p
J ◦ ϕ dµ =

X
n∈H

Z
Hn

dµ

µ(Hn)
=
X
n∈H

1.

This implies that H must be a finite set. Thus there is an n0 such that n ≥ n0
implies µ(Hn) = 0 and so

µ

µ½
x ∈ X : J ◦ ϕ(x) ≤ kJ ◦ ϕk∞

n20

¾¶
= µ

Ã ∞[
n=n0

Hn ∪ Z(J ◦ ϕ)
!
= 0.

Therefore we obtain J ◦ ϕ ≥ kJ◦ϕk∞
n20

almost everywhere on X. Since N (W ) =

Lp(Z(J)), µ(Z(J)) = 0, so dim N (W ) = {0} and then ϕ is essentially surjective.
Hence J ≥ kJk∞

n20
(= δ) almost everywhere on X.

Conversely, suppose that J ≥ δ almost everywhere for some δ > 0. Since
h > 0 and for each f ∈ Lp(Σ), kWfkp = (

R
X J |f |p dµ)1/P ≥ δ1/pkfkp, it follows

that W and Cϕ are injective and R(W ) is closed. Also since W = MuCϕ, we
deduce that Mu is injective and so µ(Z(u)) = 0. Now let g∗ ∈ N (W ∗). Then
W ∗g∗ = hEϕ−1(Σ)(ug∗) ◦ ϕ−1 = 0 and so Eϕ−1(Σ)(ug∗) ◦ ϕ−1 = 0. It follows that
g∗ = 0. Thus codimR(W ) = dim N (W ∗) = 0. Therefore the theorem is proved. ¤

Corollary 3 Suppose Mu and Cϕ are both bounded linear operators on Lp(Σ) and
µ is a non-atomic measure. Then

(i) Mu is Fredholm if and only if |u| ≥ δ on X for some δ > 0.
(ii) Cϕ is Fredholm if and only if h ≥ δ on X for some δ > 0.
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Remark 4 One of the interesting features of a weighted composition operator is
that the multiplication operator alone may not define a bounded operator between
two Lp(Σ) spaces. As an example, let X be (0, 1), Σ be the Borel sets, and µ be the
Lebesgue measure. Let ϕ be the map ϕ(x) = 3

√
x and u(x) = 1/

√
x on (0, 1). Then

Mu dos not define a bounded operator from L1(Σ) into L1(Σ). However a simple
computation shows that J(x) = 3

√
x ∈ L∞(Σ) and so Wf(x) = 1/

√
xf( 3
√
x) is

bounded operator on L1(Σ).
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