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Abstract

The positive definite solutions of the nonlinear matrix equations
X+ A* X" A = @ are investigated. We extend and improve the results to the
equation X + A*X~2"A = I proved in [4]. We consider an iterative method
which defines different matrix sequences depending on an initial point. The
new results are illustrated by numerical examples.
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1 Introduction
Consider the nonlinear matrix equation
X+AX"TA=Q (1)

where @) is an m X m Hermitian positive definite matrix, A is an m x m complex
matrix and n is a positive integer.

Many authors have considered more general nonlinear matrix equations [1, 5].
We investigate a monotone iterative method for computing a positive definite so-
lution of this equation under some restrictions on the matrices A, Q. In the case
n = 2F where k is a positive integer we extend the results proved in [2, 3, 4]. In [2, 3]
the equation X + A*X2A = I is considered and one iterative method with three
different initial points is investigated. It is proved that the iterative method with
every initial point leads to a positive definite solution which is denoted X4, X, X 2

In [4] the equation X 4+ A*X 2" A = I is considered. The authors have proved that
there exists a positive definite solution.

*This work was partially supported by the Sofia University under research project 17,/2004.
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Properties of solutions of matrix equation 409

In this paper we consider the equation (1) assuming A is nonsingular and the
corresponding matrix sequence

Xo1 = VAQ—X,) 1A, s=0,1,2,...,

where X is suitably chosen. For a different initial point Xy we obtain three different
matrix sequences {Xs}. Two of these sequences are monotonic and convergent to
a positive definite solution of (1). Under additional restrictions on the matrices A
and @ the third sequence converges to a positive definite solution of the equation
X+ A" X 24 = (). The rate of convergence of these methods depends on two
parameters. Numerical examples are discussed and some results of the experiments
are given.

We start with some notations which we use throughout this paper. We shall
use || Al to denote the spectral norm of the matrix A, and 01(Q), om(Q) denote the
biggest and the smallest singular value of @), and \;(AA*) denotes the corresponding
eigenvalue of AA*. Let the matrices R and S be Hermitian. The notation R >
S (R > S) means that R — S is positive definite (semidefinite). The assumption
R> S >0 implies R~ < S~! and VR > V/S, where [ is a positive integer.

The equation X + A*X 2A = I and the matrix sequence

Xo=~I, Xg1 = VAT -X,)" LA, s=0,1,2,..., (2)

are considered in [3]. The following theorem is proved.

Theorem 1 (Theorem 3 [3], 2001) Let & and 3 be solutions of the scalar equations
a*(1 — @) = min\(AA*) and (%(1 — B) = max \i(AA*), respectively. Assume

0<@&<pB<2. Consider {X,} defined by (2). Then

(1) Ifvy €10,a], then {Xs} is monotonically increasing and converges to a positive
definite solution Xg;

(ii) Ify e [B, %], then { X} is monotonically decreasing and converges to a positive
definite solution XB;

(iii) If v € (&, fB) and 2&52_[;) < 1, then {Xs} converges to a positive definite
solution X .

Later, the equation X + A*X 2" A = I where k is integer was considered by the
authors El-Sayed and El-Alem [4]. They have proved the following theorems.



410 1. G. Ivanov

Theorem 2 (Theorem 4 [4], 2002) If there exist numbers o, 3 satisfying 0 < a <
B < 1 and the inequalities

o (1—a)l<AA* < B (1 - T
hold, then the equation X + A*X2A=1T has a positive definite solution.

Theorem 3 (Theorem 5 [4], 2002) If there exist numbers a, B satisfying 0 < a <
B < 1 and the following conditions

1) o (1—a)l < AA* < (1-p8)1,

ok

(i1) ¢q(a, B) = m <1
hold, then
1Xs = X|| < [g(e, B)] [ Xo — X|| < [g(e, B)]* (B — @),
where X is a positive definite solution of X + A*X2A =T and X is defined by
Xo=8I, Xe1 = NAIT—-X,) LA, 5=0,1,2,.... (3)

2 Properties and convergence of matrix sequences

Consider the iterative method

Xo=79Q, Xep1=1AQ-X) 14, s=0,1,2,.... (4)
Theorem 4 Let & and B be solutions of the scalar equations
a"(1—a)=0p(Q"2AQ7Y?)  and  B'(1-B) =0t (Q"2AQ7/?),
respectively. Assume 0 < & < f < 47 Consider {Xs} defined by (4). Then

(1) If Xo =y Q and v € [0,d], then {Xs} is monotonically increasing and con-
verges to a positive definite solution X5 with Xg < Q) ;

(i) If Xo = vQ and v € [, i1l, then {Xs} is monotonically decreasing and
converges to a positive definite solution X 5 with nL—i—l Q>X 52 aQ ;

(iii) Ify € (&, B),n = 2%, where k is an arbitrary integer and

(6,5) = (“%;”)k (W) <1

then {Xs} converges to a positive definite solution X .
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Proof. Since the function p(z) = z"(1 — x) is monotonically increasing, where

z € [0, nL_H], wehave 0 < a<a<pg<pg< nL+1 and the inequalities

a"(1—a) < Q™2AQ T A*Q ™ < p"(1 - B)I,
a"(1—a)Q" < AQ71A* < (1 - B)Q"

are satisfied. .
(1)  We have Xg =vQ < 8Q and v € [0,a]. Thus

A —lA*
Yo = YAQ QA = [

X1 < Y/livﬁn(l—B)QngﬁQ,

—1 A% AN _ A
X, = 7\1/M2 T\L/MQ"Z’YQ—XO-
11—~ 1—n

We have X < X < BQ. We assume
Xs—l S Xs S BQ .

Hence
1

QX)) '<(Q-X)'<(Q-5Q) ' = TBQA’

VAQ — Xom1) TA* < Y/A(Q - X,) 1A < W,

Xy < Xop1 < f\L/liBB"(l—B)anﬁQ.

The sequence {X,} is monotonically increasing and converges to a positive definite
solution X4 with X5 < Q.

(i1)  Let v € [, 747]. Hence ;15 @ > Xo =vQ > aQ. We have

[AQ-14x

X = YAQ Q) A = {5

Y

Xi < \/% Br(1-FQm <1Q = Xo,
-7



412 1. G. Ivanov

1 Ax*
X1=4 AQ 4 Y/l_ —a)Q" > aq.

Thus Xy > X7 > a@). We assume

Xsfl > Xs > &Qa
@-X)'2(Q-X) "> @-6Q) ' = 1=

VA@- XA 2 YAG- XA 2 A

an(l —a)Qr

1-a

X32X3+12n :&Q-

The sequence { X} is monotonically decreasing and converges to a positive definite
solution X[;, with the property 15 Q > XB > aqQ.

(iii)  Assume v € (d,ﬁ). Hence aQ < Xp = vQ < BQ. We will prove that
{Xs}isa Cauchy sequence. Following the proof of cases (1) and (ii) we obtain

a@ < X < 6Q.
Consider the difference X, — X for which

Xorp = Xo = AJAQ — Xorp1) 1A — 2/A(Q — Xo1) 1A
We put R = A(Q — Xsyp-1)1A* and S = A(Q — Xs_1) 1 A* and use the identity
VR (VR 5) + (VA V5) V5= *VE- Vs
We have that Y = zf/ﬁ — zf/g is a solution of the matrix equation
2k 2k 2]’671 2k71
VRY +Y %/S=" VR-* VS=C.

Thus the solution Y can be expressed
Y = /OO o= VEL G o= VSt gy
0

For the spectral norm of X, — X we have

2k ok
[ Xotp — Xl = em VR ERGH KD

VR~ V5| =) < /0°°
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We know that a@) < X; SBQforj:O,l,.... Hence
QT <(@Q-X) < ——Q
1—a - A

and

_ 1 _ T
l@ =Xl < 5 Q7 @ = Xe) T < 7= Q7

R=A(Q—Xe1p1) A" > ﬁ AQ7 A" > & Q% > & Mam(Q)? 1,
k

S =AQ ~ Xorp1) A" > & Qain(@Q))? 1.

Thus
Yoo =Xl < ] [ @@ e-arm@1e]| g
0
_ M
= |l S =il s.
So
1Xorp = Xsll = || VE- V5| < Jce=6 " VE- V3|
< 62 *VR - Zk_\Q/EH < ..
< *|R-9| .
Consider
IR=S| = [JA[@Q— Xepp-1) ™" — (@ — Xo1) '] 4|
= [JA@Q = Xo )T (Korpo1 — Xo1) (Q = Xopp1) - A7
2
AllllQ~T
G%@;%\WWH—&JL
We obtain
Allo-\>
[Xorp— Xl < MCLQ%J>H&W1—&1H
k 27 ¢
RN\ (Al
< {(T 15 1 Xp — Xol| -
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Since
BN 1 2
- (120" (12,
20 1-5
we have
1Xp = Xoll < [1Xp = Xpall + [|Xp-1 = Xp2 + -+ [[ X1 — Xo
< (r@B)P 1+ -+ 1) [ X1 = Xol
1
< — || X1 — X0 -
1—7“(04,6)

Hence the sequence { X} forms a Cauchy sequence considered in the Banach space
C™*™ (where X, are n X n positive definite matrices). Hence this sequence has a
positive definite limit which is a positive definite solution of (1). O

Theorem 5 Let oy and (1 be real for which the inequalities

(1) of(1—o)Q" < AQ™TA* < BY(1 - B1)Q",

_in\ k i\ 2
(15 (o, B) = (M) (%) <1

are satisfied.

For each two v1, v with) < a; <y <y <f1 < % the recurrence equation
(4) defines two matriz sequences {X.} and { X!} with initial points X = v1 @ and
X{ = 72 Q. These sequences converge to the same limit X, which is a positive
definite solution of (1).

Proof. We have a1 Q < X!/ < 1 Q and aq Q < X! < 81 Q. We put
R=AQ— X, )7 'A*and S = A(Q — X" ;)" A* and for || X} — X”|| we obtain

|xi-xt = |VR- 3|
[ (P ) ol
0

< |#VR- | [ et
0
1 ok—1 ok—1
20[1 )\min(Q) R- \/EH
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(@)k IR

<
k
< (I20) pare-xt -z
- 2041 s— s—1
k
— (HQlu) HA(Q_X// )—1( A e/ )(Q_Xl )—1A*H
- 201 s—1 s—1 s—1 s—1
QN (1AM
- (“2041“) ( Jﬁl H [ = Xl
But N )
(lg)" (1A,
2041 1- 61
Consequently, the sequences { X} } and {X}'} have a common limit. O

3 Numerical Experiments

We have made numerical experiments to compute a positive definite solution of the
equation X + A*X 2" 4 = @. The solution was computed for different matrices
A, Q and different values of m. Computations were done on a PENTIUM IV,
2.1GHz computer. All programs were written in MATLAB. We denote

e(2) =2+ A 27" A= Qoo

We have tested our iteration processes for solving the equation X 4+ A*X 44 =
Q (k = 2) on the following m x m matrices. We use the stopping criterion £(Z) <
tol (tol = 1.0e —15) and let sx, be the smallest number s for which £(X;) < tol for
the method (3) and (4) with an initial point Xj.

Example 1 (Example 1 [4]) Consider the equation X +A*X %A = Q (k = 2) with
Q=1 and
1 2 m

A= di
188 1+8m'24+8m" 'm+8m

The results are given in Table 1. We apply Theorem 3 for computing a positive
definite solution of X + A*X %A = I for different m. We compute ¢(&, 3) for &
such that G2" (1 —a) = 02,(A) and 8 = 0.477. For computing a positive definite
solution we use the recurrence equation (3) with Xo = g1 and Xy = B1I, where
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ng (1-— 5’) =0}(4) < 2E—L Further, we apply Theorem 4 for finding a positive
definite solution of the same equation with Xg = &I. According to Theorem 5 we
compute 7(aq, f1).

For the case m = 5 we obtain: the matrix sequence (3) with Xo = I converges
to Xp; the matrix sequence (3) with X = BI converges to X F; and the monotone
matrix sequence (4) with Xo = &l converges to X5. Calculating r(aq, 51) we
conclude that X3 = X5 = X5 because r(a1,B1) = 05695 < 1 (y = @, 1 =
B). Thus, all matrix sequences converge to the same positive definite solution of
X+ A X 1A=1

For the case m = 15 we obtain: the matrix sequence (3) with Xy = 81 does
not converge because q(&, ) = 2.8527 > 1; the matrix sequence (3) with Xy = BI
converges to X and the monotone matrix sequence (4) with Xy = &l converges to

Xg. Since r(ai, 1) =0.0137 < 1 (a1 = &, f1 = ), we obtain that X5 = Xa.

Table 1. Iterative method (3) with different initial points, tol = 1.0e — 15.

m q(a, B) initial point | number of error
iterations

5 | q(@,8)=09285 | B=0477 | sx, =18 | &(Xz) = 9.9920¢ — 16

q(6,B) = 02947 | B=0.3745 | sx, =17 | &(X5) = 3.3307e — 16

a=0.1633 | sx, =19 | e(Xs) =3.3307e — 16

15 | q(a, B) = 2.8527 | B =0.4770 * *

q(a,8) =0.9055 | 3=

1

) =5.5511e — 16

3745 | sxy; =17 e(X .
5.5011le — 16

0932 | sx. =19 | e(Xa)

Example 2 Consider the equation X + A*X 44 = Q with Q = I, m = 25 and
the elements a;; = % of the matrix A are computed by

j—i—2F

2 <,
i4+i—92k e . .
bij = % if 4> 7,

itj+2% s
moiras =7

The results are given in Table 2. For this example we obtain: the matrix
sequence (3) with Xy = SI does not converge because ¢(&,3) = 6.09¢ + 03 > 1;
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the matrix sequence (3) with Xo = BI converges to X 5 and the monotone matrix
sequence (4) with Xo = &l converges to X5. Since r(a1, 1) = 5.1239¢ — 16 <
1 (a1 = &, p1 = B), we obtain that X5 = Xa.

Table 2. Iterative method (3) with different initial points, tol = 1.0e — 14.

m q(a, B) initial point | number of error
Theorem 3 iterations

25 | q(&, ) = 6.09¢ + 03 | B =0.9927 * *

q(a,5) =0.7034 | 3

0.3196 5X; = 13 5(X6~) =2.9126e — 14

&=00738 | sx. =13 | e(Xz) =9.2511e — 14

Example 3 Consider the equation X + A*X 14 = @ and the elements a;; of the
matrix A are computed by

Hom < g,

420
i—i e .
Qi = *%0 it i > 7,
i+j—m/2 e .
T if i=7.

We define the m x m matrix ) as follows

m

1 2
= U*diag [1.2+ (=1 —— 124+ (=12 —, ... 124+ (-1)"—|U
Q= U ding 1.2+ (-1) PO 2 (e

20m’ 20m

where U = I — 2v'v and v = <\/—1m, ,\/—%>
We use the iterative method (4) for computing a positive definite solution with
different initial points. The results are given in Table 3. The convergence rate is
r(a, B) = 0.8388 (Theorem 4, (iii)). According to Theorem 5 we have q(aq, 1) =

0.8388 < 1 (a1 = &, /1 = () and thus X5 = X5 =X,

Table 3. Iterative method (4) with different initial points, tol = 1.0e — 14.

m initial point number of error
iterations

12 | Xo=aQ,a =0.0999 | sy, =38 | e(Xz) = 9.7647¢ — 15

Xo=PQ,B=03525 | sx, =69 | e(X;)=9.5893¢ — 15

Is)

Xo=1Q,y =2 | sx, =35 | e(X,) = 9.2079¢ — 15
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4 Conclusion

We consider the nonlinear matrix equation X + A*X"A = Q. We improve the
results proved by El-Sayed and El-Alem [4]. First, we consider this equation with a
right-hand Hermitian positive definite matrix () while they have considered the case
@ = I. Second, they have proved that the iterative method (3) where 0 < 5 < 1
(Theorems 2, 3) converges to a positive definite solution. Here we propose to choose
Xo = BQ (Theorem 4) where /3 is a solution of a special scalar equation and 3 < -
Examples 1 and 2 show that the choice Xy = 3Q instead of Xy = AI leads to a

smaller rate of convergence.
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