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Abstract

The positive definite solutions of the nonlinear matrix equations
X+A∗X−nA = Q are investigated. We extend and improve the results to the
equation X + A∗X−2

k

A = I proved in [4]. We consider an iterative method
which defines different matrix sequences depending on an initial point. The
new results are illustrated by numerical examples.
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1 Introduction

Consider the nonlinear matrix equation

X +A∗X−nA = Q (1)

where Q is an m ×m Hermitian positive definite matrix, A is an m ×m complex
matrix and n is a positive integer.

Many authors have considered more general nonlinear matrix equations [1, 5].
We investigate a monotone iterative method for computing a positive definite so-
lution of this equation under some restrictions on the matrices A,Q. In the case
n = 2k where k is a positive integer we extend the results proved in [2, 3, 4]. In [2, 3]
the equation X + A∗X−2A = I is considered and one iterative method with three
different initial points is investigated. It is proved that the iterative method with
every initial point leads to a positive definite solution which is denoted Xα̃,Xγ ,Xβ̃.

In [4] the equation X +A∗X−2kA = I is considered. The authors have proved that
there exists a positive definite solution.

∗This work was partially supported by the Sofia University under research project 17/2004.
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In this paper we consider the equation (1) assuming A is nonsingular and the
corresponding matrix sequence

Xs+1 =
n
p
A(Q−Xs)−1A∗ , s = 0, 1, 2, . . . ,

whereX0 is suitably chosen. For a different initial pointX0 we obtain three different
matrix sequences {Xs}. Two of these sequences are monotonic and convergent to
a positive definite solution of (1). Under additional restrictions on the matrices A
and Q the third sequence converges to a positive definite solution of the equation
X + A∗X−2kA = Q. The rate of convergence of these methods depends on two
parameters. Numerical examples are discussed and some results of the experiments
are given.

We start with some notations which we use throughout this paper. We shall
use kAk to denote the spectral norm of the matrix A, and σ1(Q), σm(Q) denote the
biggest and the smallest singular value of Q, and λi(AA∗) denotes the corresponding
eigenvalue of AA∗. Let the matrices R and S be Hermitian. The notation R >
S (R ≥ S) means that R − S is positive definite (semidefinite). The assumption
R ≥ S > 0 implies R−1 ≤ S−1 and l

√
R ≥ l

√
S, where l is a positive integer.

The equation X +A∗X−2A = I and the matrix sequence

X0 = γI, Xs+1 =
p
A (I −Xs)−1 A∗, s = 0, 1, 2, . . . , (2)

are considered in [3]. The following theorem is proved.

Theorem 1 (Theorem 3 [3], 2001) Let α̃ and β̃ be solutions of the scalar equations
α̃2(1 − α̃) = minλi(AA

∗) and β̃2(1 − β̃) = maxλi(AA
∗), respectively. Assume

0 < α̃ ≤ β̃ ≤ 2
3 . Consider {Xs} defined by (2). Then

(i) If γ ∈ [0, α̃], then {Xs} is monotonically increasing and converges to a positive
definite solution Xα̃;

(ii) If γ ∈ [β̃, 23 ], then {Xs} is monotonically decreasing and converges to a positive
definite solution Xβ̃;

(iii) If γ ∈ (α̃, β̃) and β̃2

2α̃(1−β̃) < 1, then {Xs} converges to a positive definite
solution Xγ.

Later, the equation X+A∗X−2kA = I where k is integer was considered by the
authors El-Sayed and El-Alem [4]. They have proved the following theorems.
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Theorem 2 (Theorem 4 [4], 2002) If there exist numbers α, β satisfying 0 < α <
β < 1 and the inequalities

α2
k
(1− α) I < AA∗ < β2

k
(1− β) I

hold, then the equation X +A∗X−2kA = I has a positive definite solution.

Theorem 3 (Theorem 5 [4], 2002) If there exist numbers α, β satisfying 0 < α <
β < 1 and the following conditions

(i) α2
k
(1− α) I < AA∗ < β2

k
(1− β) I ,

(ii) q(α, β) = β2
k

2k αk (1−β) < 1

hold, then

kXs −Xk ≤ [q(α, β)]s kX0 −Xk ≤ [q(α, β)]s (β − α) ,

where X is a positive definite solution of X +A∗X−2kA = I and Xs is defined by

X0 = β I, Xs+1 =
2k
p
A (I −Xs)−1 A∗, s = 0, 1, 2, . . . . (3)

2 Properties and convergence of matrix sequences

Consider the iterative method

X0 = γ Q , Xs+1 =
n

q
A (Q−Xs)

−1A∗ , s = 0, 1, 2, . . . . (4)

Theorem 4 Let α̃ and β̃ be solutions of the scalar equations

αn(1− α) = σ2m(Q
−n/2AQ−1/2) and βn(1− β) = σ21(Q

−n/2AQ−1/2),

respectively. Assume 0 < α̃ ≤ β̃ ≤ n
n+1 . Consider {Xs} defined by (4). Then

(i) If X0 = γ Q and γ ∈ [0, α̃], then {Xs} is monotonically increasing and con-
verges to a positive definite solution Xα̃ with Xα̃ ≤ β̃Q ;

(ii) If X0 = γ Q and γ ∈ [β̃, n
n+1 ], then {Xs} is monotonically decreasing and

converges to a positive definite solution Xβ̃ with
n

n+1 Q ≥ Xβ̃ ≥ α̃Q ;

(iii) If γ ∈ (α̃, β̃) , n = 2k, where k is an arbitrary integer and

r(α̃, β̃) =

Ã°°Q−1°°
2α̃

!k ÃkAk°°Q−1°°
1− β̃

!2
< 1,

then {Xs} converges to a positive definite solution Xγ.
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Proof. Since the function ϕ(x) = xn(1− x) is monotonically increasing, where
x ∈ [0, n

n+1 ], we have 0 < α ≤ α̃ ≤ β̃ ≤ β ≤ n
n+1 and the inequalities

αn(1− α)I ≤ Q−n/2AQ−1A∗Q−n/2 ≤ βn(1− β)I,

αn(1− α)Qn ≤ AQ−1A∗ ≤ βn(1− β)Qn

are satisfied.
(i) We have X0 = γ Q ≤ β̃Q and γ ∈ [0, α̃]. Thus

X1 =
n
p
A(Q− γ Q)−1A∗ = n

s
AQ−1A∗

1− γ
,

X1 ≤ n

r
1

1− γ
β̃n(1− β̃)Qn ≤ β̃Q,

X1 =
n

s
AQ−1A∗

1− γ
≥ n

s
α̃n(1− α̃)

1− γ
Qn ≥ γQ = X0 .

We have X0 ≤ X1 ≤ β̃Q. We assume

Xs−1 ≤ Xs ≤ β̃Q .

Hence
(Q−Xs−1)−1 ≤ (Q−Xs)

−1 ≤ (Q− β̃Q)−1 =
1

1− β̃
Q−1,

n
p
A(Q−Xs−1)−1A∗ ≤ n

p
A(Q−Xs)−1A∗ ≤ n

s
1

1− β̃
AQ−1A∗,

Xs ≤ Xs+1 ≤ n

s
1

1− β̃
β̃n(1− β̃)Qn = β̃Q .

The sequence {Xs} is monotonically increasing and converges to a positive definite
solution Xα̃ with Xα̃ ≤ β̃Q .

(ii) Let γ ∈ [β̃, n
n+1 ]. Hence

n
n+1 Q ≥ X0 = γQ ≥ α̃Q. We have

X1 =
n
p
A(Q− γ Q)−1A∗ = n

s
AQ−1A∗

1− γ
,

X1 ≤ n

r
1

1− γ
β̃n(1− β̃)Qn ≤ γQ = X0,
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X1 =
n

s
AQ−1A∗

1− γ
≥ n

r
1

1− γ
α̃n(1− α̃)Qn ≥ α̃Q .

Thus X0 ≥ X1 ≥ α̃Q. We assume

Xs−1 ≥ Xs ≥ α̃Q,

(Q−Xs−1)−1 ≥ (Q−Xs)
−1 ≥ (Q− α̃Q)−1 =

1

1− α̃
Q−1,

n
p
A(Q−Xs−1)−1A∗ ≥ n

p
A(Q−Xs)−1A∗ ≥ n

r
AQ−1A∗

1− α̃
,

Xs ≥ Xs+1 ≥ n

r
α̃n(1− α̃)Qn

1− α̃
= α̃Q .

The sequence {Xs} is monotonically decreasing and converges to a positive definite
solution Xβ̃ with the property

n
n+1 Q ≥ Xβ̃ ≥ α̃Q .

(iii) Assume γ ∈ (α̃, β̃). Hence α̃Q < X0 = γQ < β̃Q. We will prove that
{Xs} is a Cauchy sequence. Following the proof of cases (i) and (ii) we obtain
α̃Q < Xs < β̃Q.

Consider the difference Xs+p −Xs for which

Xs+p −Xs =
2k
q
A(Q−Xs+p−1)−1A∗ − 2k

p
A(Q−Xs−1)−1A∗ .

We put R = A(Q−Xs+p−1)−1A∗ and S = A(Q−Xs−1)−1A∗ and use the identity

2k
√
R
³

2k
√
R− 2k

√
S
´
+
³

2k
√
R− 2k

√
S
´

2k
√
S =

2k−1√
R− 2k−1√

S .

We have that Y = 2k
√
R− 2k

√
S is a solution of the matrix equation

2k
√
R Y + Y

2k
√
S =

2k−1√
R− 2k−1√

S = C .

Thus the solution Y can be expressed

Y =

Z ∞

0
e−

2k√RtC e−
2k√S t dt .

For the spectral norm of Xs+p −Xs we have

kXs+p −Xsk =
°°° 2k
√
R− 2k

√
S
°°° = kY k ≤ Z ∞

0
kCk

°°°°e− 2k√Rt

°°°° °°°°e− 2k√S t

°°°° dt .
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We know that α̃Q ≤ Xj ≤ β̃ Q for j = 0, 1, . . .. Hence

1

1− α̃
Q−1 ≤ (Q−Xj)

−1 ≤ 1

1− β̃
Q−1

and °°(Q−Xs+p−1)−1
°° ≤ 1

1− β̃

°°Q−1°° ,
°°(Q−Xs−1)−1

°° ≤ 1

1− β̃

°°Q−1°° ,

R = A(Q−Xs+p−1)−1A∗ ≥ 1

1− α̃
AQ−1A∗ ≥ α̃2

k
Q2

k ≥ α̃2
k
(λmin(Q))

2k I ,

S = A(Q−Xs+p−1)−1A∗ ≥ α̃2
k
(λmin(Q))

2k I .

Thus

kXs+p −Xsk ≤ kCk
Z ∞

0

°°°e−α̃ λmin(Q) I t°°° °°°e−α̃ λmin(Q) I t°°° dt

= kCk
°°Q−1°°
2α̃

= kCk δ .

So

kXs+p −Xsk =
°°° 2k
√
R− 2k

√
S
°°° ≤ kCk δ = δ

°°° 2k−1√
R− 2k−1√

S
°°°

≤ δ2
°°° 2k−2√

R− 2k−2√
S
°°° ≤ · · ·

≤ δk kR− Sk .
Consider

kR− Sk =
°°A £(Q−Xs+p−1)−1 − (Q−Xs−1)−1

¤
A∗
°°

=
°°A (Q−Xs−1)−1 (Xs+p−1 −Xs−1) (Q−Xs+p−1)−1A∗

°°
≤

Ã
kAk°°Q−1°°
1− β̃

!2
kXs+p−1 −Xs−1k .

We obtain

kXs+p −Xsk ≤ δk

Ã
kAk°°Q−1°°
1− β̃

!2
kXs+p−1 −Xs−1k

≤ · · ·

≤
Ã°°Q−1°°

2α̃

!k ÃkAk°°Q−1°°
1− β̃

!2s kXp −X0k .
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Since

r(α̃, β̃) =

Ã°°Q−1°°
2α̃

!k ÃkAk°°Q−1°°
1− β̃

!2
< 1,

we have

kXp −X0k ≤ kXp −Xp−1k+ kXp−1 −Xp−2k+ · · ·+ kX1 −X0k
≤ ([r(α̃, β̃)]p−1 + · · ·+ 1) kX1 −X0k
<

1

1− r(α̃, β̃)
kX1 −X0k .

Hence the sequence {Xs} forms a Cauchy sequence considered in the Banach space
Cn×n (where Xs are n × n positive definite matrices). Hence this sequence has a
positive definite limit which is a positive definite solution of (1). ¤

Theorem 5 Let α1 and β1 be real for which the inequalities

(i) αn1 (1− α1)Q
n ≤ AQ−1A∗ ≤ βn1 (1− β1)Q

n,

(ii) r(α1, β1) =

µkQ−1k
2α1

¶k µkAkkQ−1k
1−β1

¶2
< 1,

are satisfied.
For each two γ1, γ2 with 0 < α1 ≤ γ1 ≤ γ2 ≤ β1 ≤ 2k

2k+1
the recurrence equation

(4) defines two matrix sequences {X 0
s} and {X 00

s } with initial points X 0
0 = γ1Q and

X 00
0 = γ2Q. These sequences converge to the same limit Xγ which is a positive

definite solution of (1).

Proof. We have α1Q ≤ X 0
s ≤ β1Q and α1Q ≤ X 00

s ≤ β1Q. We put
R = A(Q−X 0

s−1)−1A∗ and S = A(Q−X 00
s−1)−1A∗ and for kX 0

s −X 00
s k we obtain°°X 0

s −X 00
s

°° =
°°° 2k
√
R− 2k

√
S
°°°

=

°°°°Z ∞

0
e−

2k√R t
³

2k−1√
R− 2k−1√

S
´
e−

2k√S t dt

°°°°
≤

°°° 2k−1√
R− 2k−1√

S
°°° Z ∞

0
e−2α1 λmin(Q) t dt

≤ 1

2α1 λmin(Q)

°°° 2k−1√
R− 2k−1√

S
°°°
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≤
Ã°°Q−1°°

2α1

!k

kR− Sk

≤
Ã°°Q−1°°

2α1

!k °°A £(Q−X 0
s−1)

−1 − (Q−X 00
s−1)

−1¤A∗°°
=

Ã°°Q−1°°
2α1

!k °°A(Q−X 00
s−1)

−1 (X 0
s−1 −X 00

s−1) (Q−X 0
s−1)

−1A∗
°°

≤
Ã°°Q−1°°

2α1

!k ÃkAk°°Q−1°°
1− β1

!2 °°X 0
s−1 −X 00

s−1
°° .

But Ã°°Q−1°°
2α1

!k ÃkAk°°Q−1°°
1− β1

!2
< 1 .

Consequently, the sequences {X 0
k} and {X 00

k} have a common limit. ¤

3 Numerical Experiments

We have made numerical experiments to compute a positive definite solution of the
equation X + A∗X−2kA = Q. The solution was computed for different matrices
A ,Q and different values of m. Computations were done on a PENTIUM IV,
2.1GHz computer. All programs were written in MATLAB. We denote

ε(Z) = kZ +A∗Z−2
k
A−Qk∞.

We have tested our iteration processes for solving the equation X +A∗X−4A =
Q (k = 2) on the following m×m matrices. We use the stopping criterion ε(Z) <
tol (tol = 1.0e− 15) and let sX0 be the smallest number s for which ε(Xs) < tol for
the method (3) and (4) with an initial point X0.

Example 1 (Example 1 [4]) Consider the equation X+A∗X−4A = Q (k = 2) with
Q = I and

A = diag

·
1

1 + 8m
,

2

2 + 8m
, · · · , m

m+ 8m

¸
.

The results are given in Table 1. We apply Theorem 3 for computing a positive
definite solution of X + A∗X−4A = I for different m. We compute q(α̃, β) for α̃
such that α̃2

k
(1 − α̃) = σ2m(A) and β = 0.477. For computing a positive definite

solution we use the recurrence equation (3) with X0 = βI and X0 = β̃ I, where
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β̃2
k
(1 − β̃) = σ21(A) <

2k

2k+1
. Further, we apply Theorem 4 for finding a positive

definite solution of the same equation with X0 = α̃ I. According to Theorem 5 we
compute r(α1, β1).

For the case m = 5 we obtain: the matrix sequence (3) with X0 = βI converges
to Xβ; the matrix sequence (3) with X0 = β̃I converges to Xβ̃ and the monotone
matrix sequence (4) with X0 = α̃I converges to Xα̃. Calculating r(α1, β1) we
conclude that Xβ ≡ Xβ̃ ≡ Xα̃ because r(α1, β1) = 0.5695 < 1 (α1 = α̃, β1 =
β). Thus, all matrix sequences converge to the same positive definite solution of
X +A∗X−4A = I.

For the case m = 15 we obtain: the matrix sequence (3) with X0 = βI does
not converge because q(α̃, β) = 2.8527 > 1; the matrix sequence (3) with X0 = β̃I
converges to Xβ̃ and the monotone matrix sequence (4) with X0 = α̃I converges to

Xα̃. Since r(α1, β1) = 0.0137 < 1 (α1 = α̃, β1 = β̃), we obtain that Xβ̃ ≡ Xα̃.

Table 1. Iterative method (3) with different initial points, tol = 1.0e− 15.
m q(α, β) initial point number of error

iterations

5 q(α̃, β) = 0.9285 β = 0.477 sXβ
= 18 ε(Xβ) = 9.9920e− 16

q(α̃, β̃) = 0.2947 β̃ = 0.3745 sXβ̃
= 17 ε(Xβ̃) = 3.3307e− 16

α̃ = 0.1633 sXα̃ = 19 ε(Xα̃) = 3.3307e− 16

15 q(α̃, β) = 2.8527 β = 0.4770 * *

q(α̃, β̃) = 0.9055 β̃ = 0.3745 sXβ̃
= 17 ε(Xβ̃) = 5.5511e− 16

α̃ = 0.0932 sXα̃
= 19 ε(Xα̃) = 5.5511e− 16

Example 2 Consider the equation X + A∗X−4A = Q with Q = I, m = 25 and
the elements aij =

bij
6 of the matrix A are computed by

bij =


j−i−2k
900 if i < j,

i+j−2k
900 if i > j,

i+j+2k

m 2k+400
if i = j.

The results are given in Table 2. For this example we obtain: the matrix
sequence (3) with X0 = βI does not converge because q(α̃, β) = 6.09e + 03 > 1;
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the matrix sequence (3) with X0 = β̃I converges to Xβ̃ and the monotone matrix
sequence (4) with X0 = α̃I converges to Xα̃. Since r(α1, β1) = 5.1239e − 16 <
1 (α1 = α̃, β1 = β̃), we obtain that Xβ̃ ≡ Xα̃.

Table 2. Iterative method (3) with different initial points, tol = 1.0e− 14.
m q(α, β) initial point number of error

Theorem 3 iterations

25 q(α̃, β) = 6.09e+ 03 β = 0.9927 * *

q(α̃, β̃) = 0.7034 β̃ = 0.3196 sXβ̃
= 13 ε(Xβ̃) = 2.9126e− 14

α̃ = 0.0738 sXα̃ = 13 ε(Xα̃) = 9.2511e− 14

Example 3 Consider the equation X +A∗X−4A = Q and the elements aij of the
matrix A are computed by

aij =


i+j−m
420 if i < j,

j−i
420 if i > j,

i+j−m/2
m 2k 2k

if i = j.

We define the m×m matrix Q as follows

Q = U∗ diag
·
1.2 + (−1)1 1

20m
, 1.2 + (−1)2 2

20m
, · · · , 1.2 + (−1)m m

20m

¸
U ,

where U = I − 2v0v and v =
³

1√
m
, · · · , 1√

m

´
.

We use the iterative method (4) for computing a positive definite solution with
different initial points. The results are given in Table 3. The convergence rate is
r(α̃, β̃) = 0.8388 (Theorem 4, (iii)). According to Theorem 5 we have q(α1, β1) =
0.8388 < 1 (α1 = α̃, β1 = β̃) and thus Xα̃ ≡ Xβ̃ ≡ Xγ .

Table 3. Iterative method (4) with different initial points, tol = 1.0e− 14.
m initial point number of error

iterations

12 X0 = α̃Q, α̃ = 0.0999 sXα̃ = 38 ε(Xα̃) = 9.7647e− 15

X0 = β̃Q, β̃ = 0.3525 sXβ̃
= 69 ε(Xβ̃) = 9.5893e− 15

X0 = γQ, γ = α̃+β̃
2 sXγ = 35 ε(Xγ) = 9.2079e− 15
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4 Conclusion

We consider the nonlinear matrix equation X + A∗X−nA = Q. We improve the
results proved by El-Sayed and El-Alem [4]. First, we consider this equation with a
right-hand Hermitian positive definite matrix Q while they have considered the case
Q = I. Second, they have proved that the iterative method (3) where 0 < β < 1
(Theorems 2, 3) converges to a positive definite solution. Here we propose to choose
X0 = β̃Q (Theorem 4) where β̃ is a solution of a special scalar equation and β̃ < n

n+1 .
Examples 1 and 2 show that the choice X0 = β̃Q instead of X0 = βI leads to a
smaller rate of convergence.
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