
Generators of Probability Dynamical Systems

M. Ebrahimi
Department of Mathematics, Vali-Asr University, Rafsandjan, Iran

E-mail: mohamad_ebrahimi@hotmail.com

5—10 July 2004, Antalya, Turkey – Dynamical Systems and Applications,
Proceedings, pp. 386—394

Abstract

One of the important concepts in physics and mathematics is entropy. The
concerning results can be improved by dynamical systems and entropy the-
ory techniques. In this paper the concept of entropy will be extended to the
countable partitions and we investigate the ergodic properties of probability
dynamical systems. In this respect we introduce the generators of probability
dynamical systems. A version of Kolmogorov-Sinai theorem concerning the
entropy of a probability dynamical system is given.

Introduction and preliminaries

We assume the reader is familiar with the definition of measure [5], dynamical
system [9] and ergodic theory [8]. In physics, entropy of a system with a finite
number of quantum states is defined as follows:

S = −k
X
ν

fν log(fν);
X
ν

fν = 1,

where k is the Boltzmann constant and the sum is over all quantum states.
This formula can be interpreted as a degree of disordering of the system. A

system has a unique quantum state with complete ordering and attains zero entropy
in this state.

For N different microstates, if fν =
1

N
, then

S = −k
NX
ν=1

1

N
log

1

N
= k logN, .

As N becomes larger, the disordering of the system rises up.
The information about the system is proportional to this disordering factor. In

mathematics, the entropy of a finite partition, p, of a probability space (X,β,m) is
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defined as

H(p) = −
nX
i=1

m(Ai) logm(Ai),

where p = {A1, . . . , An} ⊂ β. One can find a nice relation between the mathematical
and physical definitions of entropy. In this paper we introduce a definition for the
entropy of a countable partition ξ = {Ai : i ∈ N} and we discuss ergodic theory
properties.

1 Entropy of a countable partition of (X,β,m)

1.1. Definition. Let (X,β,m) be a probability space, a partition of (X,β,m) is
a disjoint collection of elements of β whose union is X.

We are interested in countable partitions which we denote by Greek letters, e.g.,
ξ = {Ai : i ∈ N}. We use the convention log 0 = 0.

As in probability theory, we consider a partition ξ = {Ai : i ∈ N} of (X,β,m) as
listing the possible outcomes of an experiment where the probability of the outcome
Ai is m(Ai). We associate to this experiment a number H(ξ) which measures the
uncertainty removed by performing the experiment mentioned.
1.2. Definition. Let ξ = {Ai : i ∈ N} be a countable partition of a probability
space (X,β,m). The entropy of ξ is defined as

H(ξ) = − log sup
i∈N

m(Ai).

1.3. Corollary. H(ξ0) = 0 where ξ0 = {X, ∅}, and for each countable partition η
with η 6= ξ0; H(η) > 0.
1.4. Definition. Let ξ = {Ai : i ∈ N} be a countable partition of a probability
space (X,β,m) and let C be a measurable set in β. The conditional entropy of ξ
given C is defined by

H(ξ|C) = − log sup
i∈N

m(Ai|C)

where

m(Ai|C) = m(Ai ∩ C)
m(C)

, (m(C) 6= 0).

1.5. Definition. Two members A, C of β are called independent if m(A ∩ C) =
m(A)m(C).

If ξ = {Ai : i ∈ N} is a countable partition of (X,β,m) and C is a measurable
set independent of each Ai, we have H(ξ|C) = H(ξ).
1.6. Convention. H(ξ|∅) = 0.
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1.7. Definition. Let ξ and η be countable partitions of (X,β,m). We say η is
a refinement of ξ, denoted by ξ < η, if each member of ξ is a finite union of some
members of η.
1.8. Theorem. Let ξ = {Ai : i ∈ N} and η = {Bj : j ∈ N} be two countable
partitions of (X,β,m). Then
i) ξ < η ⇐⇒ H(ξ|C) ≤ H(η|C) ∀C ∈ β;
ii) ξ < η ⇐⇒ H(ξ) ≤ H(η).

Proof. i) Suppose ξ < η, and then for each Bj ∈ η there exists Ai ∈ ξ such
that Bj ⊆ Ai. This implies that Bj ∩ C ⊂ Ai ∩C, ∀C ∈ β. Then

m(Bj ∩ C) ≤ m(Ai ∩ C) =⇒ sup
j∈N

m(Bj ∩ C)
m(C)

≤ sup
i∈N

m(Ai ∩ C)
m(C)

=⇒ log sup
j∈N

m(Bj ∩ C)
m(C)

≤ log sup
i∈N

m(Ai ∩ C)
m(C)

=⇒ H(η|C) ≥ H(ξ|C).
Conversely, if H(η|C) ≥ H(ξ|C), we have sup

j∈N
m(Bj ∩ C) ≤ sup

i∈N
m(Ai ∩ C) and

hence for each j ∈ N, Bj ⊂ Ai, for some i ∈ N, i.e., ξ < η.
ii) It is clear.

1.9. Definition. Let ξ = {Ai : i ∈ N} and η = {Bj : j ∈ N} be countable
partitions of (X,β,m). Their joining is the partition

ξ∇η = {Ai ∩Bj : i, j ∈ N}
with lexicographic ordering. If C ∈ β, then ξ∇C = {Ai ∩ C : i ∈ N}.
1.10. Corollary.
i)H(ξ∇η) ≥ H(ξ), H(ξ∇η) ≥ H(η) and if ξ and η are independent, thenH(ξ∇η) =
H(ξ) +H(η);
ii) H(ξ∇C) ≥ H(ξ), ∀C ∈ β;
iii) H(ξ∇C) ≥ H(ξ|C) ∀C ∈ β;
iv) ξ < η ⇐⇒ H(η∇C) ≥ H(ξ∇C), ∀C ∈ β.

Proof. i) If ξ and η are independent, then

H(ξ∇η) = − log sup
i,j∈N

m(Ai ∩Bj)

= − log sup
i,j∈N

m(Ai)m(Bj)

= − log sup
i∈N

m(Ai) sup
j∈N

m(Bj)

= − log sup
i∈N

m(Ai) + (− log sup
j∈N

m(Bj))

= H(ξ) +H(η).
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1.11. Definition. Let (X,β,m) be as above. We define the entropy function of a
measurable set C by

H(C) = − logm(C).
1.12. Corollary. Let ξ be a countable partition of (X,β,m) and C,D ∈ β. Then
i) H(C) ≥ 0;
ii) H(ξ∇C) ≥ H(C);
iii) D ⊆ C ⇐⇒ H(D) ≥ H(C);
iv) D ⊆ C ⇐⇒ H(ξ∇D) ≥ H(ξ∇C);
iv) H(ξ∇C) = H(ξ|C) +H(C).
1.13. Definition. If ξ is a countable partition of (X,β,m), the diameter of ξ is
defined as follows:

diam ξ = sup
Ai∈ξ

m(Ai).

1.14. Definition. Let ξ = {Ai : i ∈ N} and η = {Bj : j ∈ N} be two countable
partitions of (X,β,m). The conditional entropy of ξ given η is defined as:

H(ξ|η) = − log sup
i∈N

diam (Ai∇η)
diam η

= − log sup
j∈N

diam (ξ∇Bj)

diam η
.

Since ξ0 = {X, ∅} represents the outcome of the trivial experiment, H(ξ|ξ0) = H(ξ)
and H(ξ0|ξ) = 0 where ξ 6= ξ0.
1.15. Proposition. If ξ, η and ζ are countable partitions of a probability space
(X,β,m), then
i) H(ξ|η) ≥ 0;
ii) If η < ζ, then H(ξ|η) ≤ H(ξ∇ζ), especially H(ξ|η) ≤ H(ξ∇η);
iii) If ξ < η, then H(ξ|ζ) ≤ H(η|ζ);
iv) If ξ and η∇ζ are independent, then

H(ξ∇η|ζ) = H(ξ) +H(η|ζ).

Proof. iii) Since ξ < η, for each Bj ∈ η, there exists Ai ∈ ξ such that Bj ⊆ Ai.
Then Bj ∩Ck ⊆ Ai ∩ Ck, ∀Ck ∈ ζ. Therefore

m(Bj ∩Ck) ≤ m(Ai ∩ Ck) ∀Ck ∈ ζ

⇐⇒
sup
j∈N

m(Bj ∩ Ck)

sup
k∈N

m(Ck)
≤
sup
i∈N

m(Ai ∩Ck)

sup
k∈N

m(Ck)
∀Ck ∈ ζ

⇐⇒ H(ξ|ζ) ≤ H(η|ζ).
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Now we prove (iv):

H(ξ∇η|ζ) = − log sup
k∈N

diam (ξ∇η∇Ck)

diam ζ

= − log sup
k∈N

sup
i,j∈N

m(Ai ∩Bj ∩ Ck)

diam ζ

= − log sup
k∈N

sup
i∈N

m(Ai) sup
j∈N
(Bj ∩Ck)

diam ζ

= − log sup
i∈N

m(Ai) sup
k∈N

sup
j∈N

m(Bj ∩Ck)

diam ζ

= − log sup
i∈N

m(Ai)− log sup
k∈N

sup
j∈N

m(Bj ∩Ck)

diam ζ

= H(ξ) +H(η|ζ).

2 Entropy of a measure-preserving
transformation

2.1. Definition. Suppose (X1, β1,m1) and (X2, β2,m2) are probability spaces. A
transformation T : X1 −→ X2 is measure-preserving if
i) T−1β2 ⊂ β1;
ii) m1(T

−1B2) = m2(B2), ∀B2 ∈ β2.
2.2. Definition. Suppose T : X −→ X is a measure-preserving transformation of
the probability space (X,β,m). If ξ is a countable partition of (X,β,m), we define
the entropy of T with respect to ξ as

h(T, ξ) = lim
n→+∞

1

n
H(∇n−1

i=0 T
−iξ)

where T−iξ = {T−iAj : j ∈ N}, for ξ = {Aj : j ∈ N}, a countable partition of
(X,β,m).

To see that h(T, ξ) always exists, let an = H(∇n−1
i=0 T

−iξ) ≥ 0. Then

an+p = H(∇n+p−1
i=0 T−iξ) ≤ H(∇n−1

i=0 T
−iξ) +H(∇n+p−1

i=n T−iξ) = an + ap.

So an+p ≤ an + ap, ∀n, p. Hence lim
n→∞

an
n
exists.

2.3. Theorem. Let ξ, η and ζ be countable partitions of the probability space
(X,β,m). Let T be a measure preserving transformation of (X,β,m). Then the
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following properties hold:
i) h(T, ξ) ≤ h(ξ);
ii) ξ < η =⇒ h(T, ξ) ≤ h(T, η);
iii) h(T, T−1ξ) = h(T, ξ);
iv) h(T,∇r−1

i=0T
−iξ) = h(T, ξ), ∀r ≥ 1.

Proof. See [1].
2.4. Theorem. Let T be a measure-preserving transformation of the probability
space (X,β,m). Then
i) For k > 0, h(T k) = kh(T );
ii) If T is invertible, then h(T k) = |k|h(T ), ∀k ∈ Z.

Proof. i) lim
n→∞

1

n
H(∇n−1

j=0T
−kj(∇k−1

i=0 T
−iξ))= lim

n→∞
k

nk
H(∇nk−1

i=0 T−iξ)= kh(T, ξ).

Then
h(T k,∇k−1

i=0 T
−iξ) = kh(T, ξ).

We have

lim
n→∞

1

n
H(∇n−1

j=0T
−k(∇k−1

i=0 T
−iξ)) = lim

n→+∞
k

nk
H(∇nk−1

i=0 T−iξ) = kh(T, ξ).

Thus

kh(T ) = k sup
ξ countable

h(T, ξ) = sup
ξ

h(T−k,∇k−1
i=0 T

−iξ)

= sup
η countable

h(T k, η) = h(T k).

Also h(T k, ξ) ≤ h(T k,∇k−1
i=0 T

−iξ) = kh(T, ξ), and so h(T k) ≤ kh(T ).
ii) We show that h(T−1, ξ) = h(T, ξ) for each countable partition ξ. But

h(T−1, ξ) = lim
n→∞

1

n
H(∇n−1

i=0 T
iξ) = lim

n→∞
1

n
H(T−(n−1)(∇n−1

i=0 T
iξ))

= lim
n→∞

1

n
H(∇n−1

j=0T
−jξ)

= h(T, ξ).

3 Entropy and generators of probability
dynamical systems

3.1. Definition. A probability dynamical system is a complex (X,β,m, T ) where
(X,β,m) is a probability space and T : X −→ X is a measure-preserving transfor-
mation.
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Remark. The probability dynamical system is a discrete-time system with T i :
X −→ X, i = 1, 2, 3, . . ., considered as T ◦T ◦ · · ·◦T , i-times. Consequently T 0 = id
and T i+j = T i ◦ T j , ∀i, j ∈ N.
3.2. Definition. Let (X,β,m, T ) be a probability dynamical system. The entropy
of the probability dynamical system (X,β,m, T ) is defined as

h(T ) = sup
ξ

h(T, ξ)

where the supremum is taken over all countable partitions of (X,β,m, T ).
Let (Xi, βi,mi, Ti), i = 1, 2 be a probability dynamical system.
The probability dynamical system (X2, β2,m2, T2) is said to be a homomorphic

image of the probability dynamical system (X1, β1,m1, T1) if there exists a measure-
preserving transformation f : X1 −→ X2 such that f ◦ T1 = T2 ◦ f .

(X1, β1,m1, T1) and (X2, β2,m2, T2) are called isomorphic if
i) (X2, β2,m2, T2) is a homomorphic image of (X1, β1,m1, T1) under a transforma-
tion f .
ii) f is invertible and (X1, β1,m1, T1) is a homomorphic image of (X2, β2,m2, T2)
under the transformation f−1.
3.3. Theorem. If (Xi, βi,mi, Ti), i = 1, 2, are isomorphic dynamical systems,
then h(T1) = h(T2).

Proof. Since (Xi, βi,mi, Ti) are isomorphic, there exists an invertible measure
preserving transformation f : X1 −→ X2 such that f ◦ T1 = T2 ◦ f .

Let η be any countable partition of (X2, β2,m2, T2), we get

h(T, η) = lim
n→∞

1

n
H(∇n−1

i=0 T
−i
2 η)

= lim
n→∞

1

n
H(f−1(∇n−1

i=0 T
−i
2 η))

= lim
n→∞

1

n
H(∇n−1

i=0 f
−1(T−i2 η))

= lim
n→∞

1

n
H(∇n−1

i=0 T
−i
1 (f

−1η))

= h(T1, f
−1η).

Then h(T2) = sup
η

h(T2, η) = sup
η

h(T1, f
−1η) ≤ sup

ξ
h(T1, ξ) = h(T1) where ξ is any

countable partition of (X1, β1,m1, T1).
Similarly h(T1) ≤ h(T2) and hence h(T1) = h(T2).

3.4. Definition. Let (X,β,m) be a probability space and T : X −→ X be an
invertible measure-preserving transformation. A countable partition ξ of (X,β,m)
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is said to be a generator of the probability dynamical system (X,β,m, T ) if there
exists an integer r > 0 such that

η < ∇r
i=0T

−iξ

for each countable partition η of (X,β,m).
3.5. Theorem. If ξ is a generator of the probability dynamical system (X,β,m, T ),
then

h(T, η) ≤ h(T, ξ)

for each countable partition η of (X,β,m).
Proof. Let η be any countable partition of (X,β,m). Since ξ is a generator,

η < ∇r
i=0T

−iξ.
From Theorem 2.3, h(T, η) ≤ h(T,∇r

i=0T
−iξ) = h(T, ξ).

Now we can deduce the following version of Kolmogorov-Sinai theorem.
3.6. Theorem. If ξ is a generator of the probability dynamical system (X,β,m, T ),
then

h(T ) = h(T, ξ).

Proof. Obvious.
3.7. Theorem. Consider the transformation T : X −→ X; T = id. Then
h(T ) = 0.

Proof. Since T = id, T−1ξ = {T−1Ai : i ∈ N} = {Ai : i ∈ N} = ξ for each
countable partition ξ of (X,β,m). Hence T−iξ = ξ, i = 0, 1, 2, 3, . . ., and

h(T, η) = lim
n→∞

1

n
H(∇n−1

i=0 T
−iξ)

= lim
n→∞

1

n
H(∇n−1

i=0 ξ)

= lim
n→∞

1

n
H(ξ)

= 0

for each countable partition ξ of (X,β,m). It follows that

h(T ) = sup
ξ countable

h(T, ξ) = 0.

3.9. Corollary. If T : X −→ X is a measure-preserving transformation on the
probability space (X,β,m) with T k = id for some k 6= 0, then h(T ) = 0.

Proof. Since T k = id, h(T k) = 0, and h(T ) =
1

|k|h(T
k) = 0.
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