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Abstract

A discrete analogue of an impulsive system with a small delay is considered.
If the corresponding system without delay has an isolated ω-periodic solution,
then in any neighbourhood of this orbit the discrete system also has a periodic
solution.

1 Introduction

In the mathematical simulation of the evolution of real processes in physics, chem-
istry, population dynamics, radio engineering etc. which are subject to disturbances
of negligible duration with respect to the total duration of the process, it is often
convenient to assume that the disturbances are instantaneous, in the form of im-
pulses. This leads to the investigation of differential equations and systems with
discontinuous trajectories, or with impulse effect, called for the sake of brevity im-
pulsive differential equations and systems.

Impulsive differential equations with delay describe models of real processes and
phenomena where both dependence on the past and instantaneous disturbances are
observed. For instance, the size of a given population may be normally described
by a delay differential equation and, at certain instants, the number of individuals
can be abruptly changed. The interaction of the impulsive perturbation and the
delay makes difficult the qualitative investigation of such equations. In particular,
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the solutions are not smooth at the instants of impulse effect shifted by the delay
[2].

In the present paper we derive a discrete analogue of an impulsive system with
a small delay. If the corresponding system without delay has an isolated ω-periodic
solution, then in any neighbourhood of this orbit the discrete system is shown to
have a periodic solution.

2 Statement of the problem. Main result

Consider the system with impulses at fixed instants
ẋ(t) = f(t, x(t), x(t− h)), t 6= tj , tj + h,

∆x(tj) = Ij(x(tj), x(tj − h)), j ∈ Z,
∆x(tj + h) = 0,

(1)

where x ∈ Ω ⊂ Rn, f : R × Ω × Ω → Rn, Ω is a domain in Rn; Z is the set of
all integers, N is the set of positive integers; ∆x(tj) = x(tj + 0) − x(tj − 0) are
the impulses at instants tj and {tj}j∈Z is a strictly increasing sequence such that
lim

j→±∞
ti = ±∞; Ij : Ω×Ω→ Rn (j ∈ Z); h > 0 is the delay.

As usual in the theory of the impulsive differential equations [1, 4], at the points
of discontinuity tj of the solution x(t) we assume that x(tj) ≡ x(tj − 0). It is clear
that, in general, the derivatives ẋ(tj), j ∈ Z, do not exist. On the other hand,
there do exist the limits ẋ(tj ± 0). According to the above convention, we assume
ẋ(tj) ≡ ẋ(tj − 0).

Similarly, the derivative ẋ does not exist at the other points of discontinuity
of the right-hand side f(t, x(t), x(t − h)), i.e., at the points tj + h, j ∈ Z. We
require the continuity of the solution x(t) at such points if they are distinct from
the moments of impulse effect tj .

For the sake of brevity we shall use the notation x̄(t) = x(t − h), and we will
denote by x̄ the last argument of the functions f and Ij .

In the sequel we require the fulfillment of the following assumptions:

A1. The function f(t, x, x̄) is continuous (or piecewise continuous, with disconti-
nuities of the first kind at the points tj) and ω-periodic with respect to t,
continuously differentiable with respect to x, x̄ ∈ Ω, with locally Lipschitz
continuous with respect to x, x̄ first derivatives.

A2. The functions Ij(x, x̄), j ∈ Z, are continuously differentiable with respect to
x, x̄ ∈ Ω, with locally Lipschitz continuous with respect to x, x̄ first derivatives.
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A3. There exists a positive integerm such that tj+m = tj+ω, Ij+m(x, x̄) = Ij(x, x̄)
for j ∈ Z and x, x̄ ∈ Ω.

Suppose, for the sake of definiteness, that

0 < t1 < t2 < · · · < tm < ω.

Let h0 > 0 be so small that for any h ∈ [0, h0] we should have
h < t1, tj + 2h ≤ tj+1, j = 1,m− 1, tm + h < ω. (2)

If in system (1) we put h = 0, we obtain the so called generating system(
ẋ(t) = f(t, x(t), x(t)), t 6= tj ,

∆x(tj) = Ij(x(tj), x(tj)), j ∈ Z,
(3)

and suppose that

A4. The generating system (3) has an ω-periodic solution ψ(t) such that ψ(t) ∈ Ω
for all t ∈ R.

There exists a positive number µ0 such that Ω contains a closed µ0-neighbourhood
Ω1 of the periodic orbit {x = ψ(t); t ∈ R}. We also denote by Ω1/2 a closed
µ0/2-neighbourhood of this orbit.

One of the most widely used techniques in the study of models involving ordinary
differential equations is to approximate the system by means of a system of difference
equations, whose solutions are expected to be samples of the solutions of differential
equations at discrete instants of time as in the case of Euler-type methods and
Runge-Kutta methods. Let us recall that convergent difference approximations
for nonlinear impulsive systems of differential equations in a Banach space were
obtained in [3].

We choose a uniform discretization step size h equal to the delay in system (1)
and such that N = ω/h is an integer. For convenience we denote [t/h] = i (the
integer part of t/h), x(ih) = xi, i ∈ Z, [tj/h] = nj , j ∈ Z. By virtue of (2) and A3
{nj}j∈Z is a strictly increasing sequence of integers such that nj+1 − nj > 1 and
nj+m = nj +N, j ∈ Z.

Now we approximate system (1) by the discrete system(
xi+1 = xi + hf(ih, xi, xi−1), i ∈ Z \ {nj}j∈Z,
xnj+1 = xnj + Ij(xnj , xnj−1), j ∈ Z.

(4)

By analogy with the continuous-time case we also consider the system(
xi+1 = xi + hf(ih, xi, xi), i ∈ Z \ {nj}j∈Z,
xnj+1 = xnj + Ij(xnj , xnj ), j ∈ Z,

(5)

which we also call generating system.
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A5. For each number N0 > 0 there exists an integer N ≥ N0 such that for h =
ω/N the generating system (5) has an N -periodic solution {ψi}i∈Z such that
ψi ∈ Ω1/2 for all i ∈ Z.

Here we may assume that N0 ≥ ω/h0.
So there exists a strictly increasing sequence of integers {Nk}k∈N such that for

each member of this sequence condition A5 is valid. Henceforth N is a member of
this sequence.

Now define the linearized system (also called system in variations) with respect
to {ψi}i∈Z: (

yi+1 = (E + hAi)yi, i ∈ Z \ {nj}j∈Z,
ynj+1 = (E +Bj)ynj , j ∈ Z,

(6)

where E is the unit (n× n)-matrix,

Ai =
∂

∂x
f(t, x, x)

¯̄̄̄
x=ψi

, Bj =
∂

∂x
Ij(x, x)

¯̄̄̄
x=ψnj

.

If h0 > 0 is small enough, i.e., if N0 is large enough, then for h ∈ (0, h0] the matrices
E + hAi are nonsingular. We also assume that

A6. The matrices E +Bj , j ∈ Z, are nonsingular.

Now we can write down system (6) in the form

yi+1 = (E +Di)yi, i ∈ Z, (7)

where

Di =

(
hAi for i /∈ {nj}j∈Z,
Bj for i = nj , j ∈ Z.

(8)

Obviously, Di+N = Di for i ∈ Z. The fundamental solution {Xi}i∈Z of system (7)
is given by

Xi =



iQ
ν=1
(E +Di−ν), i > 0,

E, i = 0,
−i−1Q
ν=0

(E +Di+ν)
−1, i < 0.

Now we make the additional assumption

A7. If {Xi}i∈Z is the fundamental solution of system (6), then the matrix E−XN

is nonsingular.
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This means that the only N -periodic solution of system (6) is yi = 0 for all i ∈ Z.
If conditions A6, A7 are valid, then the nonhomogeneous system

yi+1 = (E +Di)yi + gi, i ∈ Z, (9)

where Di are given by (8) and gi+N = gi, has a unique N -periodic solution

yi =
N−1X
ν=0

G(i, ν)gν , i = 0, 1, . . . , N − 1, (10)

where Green’s function G(i, ν) is defined by

G(i, ν) =

(
Xi(E −XN)

−1X−1
ν+1, ν = 0, 1, . . . , i− 1,

XN+i(E −XN)
−1X−1

ν+1, ν = i, i+ 1, . . . , N − 1,

and continued by periodicity for all i ∈ Z.
Our result in the present paper is the following

Theorem 1 Let conditions A1—A7 hold. Then there exists a number N1 > 0 so
that for any integer N ≥ N1 such that for h = ω/N the generating system (5) has
an N-periodic solution {ψi}i∈Z, system (4) has a unique N-periodic solution {xi}i∈Z
such that lim

N→∞
max

0≤i≤N−1
|xi − ψi| = 0.

3 Proof of the main result

In system (4) we change the variables according to the formula

xi = ψi + yi, i ∈ Z, (11)

and obtain the system(
yi+1 = (E + hAi)yi + hQi(yi) + hδf(ih, xi, xi−1), i ∈ Z \ {nj}j∈Z,
ynj+1 = (E +Bj)ynj + Jj(ynj ) + δIj(xnj , xnj−1), j ∈ Z,

(12)

where

Qi(y) ≡ f(ih, ψi + y, ψi + y)− f(ih, ψi, ψi)−Aiy,

Jj(y) ≡ Ij(ψnj + y, ψnj + y)− Ij(ψnj , ψnj )−Bjy

are nonlinearities inherent to the generating system (5), while

δf(ih, xi, xi−1) ≡ f(ih, xi, xi−1)− f(ih, xi, xi),

δIj(xnj , xnj−1) ≡ Ij(xnj , xnj−1)− Ij(xnj , xnj )
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are increments due to the delay.

We can formally consider (12) as a nonhomogeneous system of the form (9) with
nonhomogeneities

gi =

(
hQi(yi) + hδf(ih, xi, xi−1), i ∈ Z \ {nj}j∈Z,
Jj(ynj ) + δIj(xnj , xnj−1), j ∈ Z.

Now let us introduce the set I = {0, 1, . . . ,N − 1} \ {nj}mj=1. Clearly, I is a set of
N −m integers. Then the unique N -periodic solution y = {yi}i∈Z must satisfy the
operator equation

y = Uhy, (13)

where

(Uhy)i ≡ h
X
ν∈I

G(i, ν)Qν(yν) + h
X
ν∈I

G(i, ν)δf(νh, xν , xν−1)

+
mX
j=1

G(i, nj)Jj(ynj ) +
mX
j=1

G(i, nj)δIj(xnj , xnj−1)

≡ h(S1y)i + h(S2y)i + (S3y)i + (S4y)i.

For the sake of brevity we still write xi instead of ψi + yi in δf(ih, xi, xi−1) and
δIj(xnj , xnj−1) as well as in S2y and S4y. Moreover, in §3.2 we will further transform
the expressions S2y and S4y under the assumption that {xν}ν∈Z is a solution of
system (4).

AnN -periodic solution {xi}i∈Z of system (4) corresponds to a fixed point {yi}i∈Z
of the operator Uh in a suitable set of N -periodic sequences. To this end we shall
prove that Uh maps a suitably chosen set into itself (§3.2) as a contraction (§3.3).

We first need to introduce some

3.1 Notation

For a vector x = (x1, x2, . . . , xn)T we denote |x| = max
1≤k≤n

|xk|. Denote by PN,n the

space of all sequences w = {wi}i∈Z of n-vectors wi such that wi+N = wi for all
i ∈ Z, equipped with the norm

kwk = max
0≤i≤N−1

|wi|.

We recall that Ω1 and Ω1/2 are respectively closed µ0- and µ0/2-neighbourhoods
of the orbit {x = ψ(t); t ∈ R}. For x, x̄ ∈ Ω1 the functions f(t, x, x̄) (t ∈ [0, ω]) and
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Ij(x, x̄) (j = 1,m) are bounded, together with their first derivatives with respect
to x, x̄. Let us denote

M = sup
n
|G(i, ν)| : i, ν = 0, N − 1

o
,

M0 = max
n
sup
©
|f(t, x, x̄)| : t ∈ [0, ω], x, x̄ ∈ Ω1

ª
,

sup
©
|Ij(x, x̄)| : j = 1,m, x, x̄ ∈ Ω1

ªo
,

M1 = max
n
sup
©
|∂xf(t, x, x̄)| : t ∈ [0, ω], x, x̄ ∈ Ω1

ª
,

sup
©
|∂x̄f(t, x, x̄)| : t ∈ [0, ω], x, x̄ ∈ Ω1

ª
,

sup
©
|∂xIj(x, x̄)| : j = 1,m, x, x̄ ∈ Ω1

ª
,

sup
©
|∂x̄Ij(x, x̄)| : j = 1,m, x, y ∈ Ω1

ªo
.

Let L be the greatest Lipschitz constant for the first derivatives of f(t, x, x̄), t ∈
[0, ω], x, x̄ ∈ Ω1, and of Ij(x, x̄), j = 1,m, x, x̄ ∈ Ω1, whose existence is provided
by conditions A1, A2 and the compactness of the set Ω1.

For µ ∈ (0, µ0/2] define a set of sequences

Tµ = { y ∈ PN,n : kyk ≤ µ }.

We shall find a dependence between N ∈ {Nk}k∈N (or h = ω/N) and µ so that the
operator Uh in (13) maps the set Tµ into itself as a contraction.

3.2 Invariance of the set Tµ under the action of the operator Uh
Let y ∈ Tµ and N ∈ {Nk}k∈N. Then xi = ψi + yi ∈ Ω1. We shall estimate |(Uhy)i|
using the representation

Uhy = h
¡
S1y + S2y

¢
+ S3y + S4y

and system (4).

First we have

Jj(ynj ) =
nZ 1

0

£
∂xIj(ψnj + synj , ψnj + synj ) − ∂xIj(ψnj , ψnj )

¤
ds

+

Z 1

0

£
∂x̄Ij(ψnj + synj , ψnj + synj ) − ∂x̄Ij(ψnj , ψnj )

¤
ds
o
ynj .
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Here ψnj ∈ Ω1/2 and ψnj + synj ∈ Ω1 for 0 ≤ s ≤ 1, thus

|Jj(ynj )| ≤ 2
Z 1

0
L2s|ynj | ds · |ynj | = 2L|ynj |2

and for

(S3y)i ≡
mX
j=1

G(i, nj)Jj(ynj )

we have
kS3yk ≤ 2mMLµ2.

Similarly,

Qν(yν) =
nZ 1

0

£
∂xf(νh, ψν + syν , ψν + syν)− ∂xf(νh, ψν , ψν)

¤
ds

+

Z 1

0

£
∂x̄f(νh, ψν + syν , ψν + syν)− ∂x̄f(νh, ψν , ψν)

¤
ds
o
yν ,

thus

|Qν(yν)| ≤ 2
Z 1

0
L2s|yν | ds · |yν | = 2L|yν |2

and for
(S1y)i ≡

X
ν∈I

G(i, ν)Qν(yν)

we obtain
kS1yk ≤ 2(N −m)MLµ2.

Now

khS1y + S3yk ≤ (Nh−mh+m)2MLµ2

= [ω +m(1− h)]2MLµ2 < 2(ω +m)MLµ2

and we can choose µ̃0 ∈ (0, µ0/2] so that for any µ ∈ (0, µ̃0] we have

khS1y + S3yk ≤ µ/2. (14)

Further on, since nj − nj−1 > 1, we have

δIj(xnj , xnj−1) =
Z 1

0
∂x̄Ij(xnj , sxnj−1 + (1−s)xnj ) ds·(xnj−1−xnj ) (15)

= −h
Z 1

0
∂x̄Ij(xnj , sxnj−1 + (1−s)xnj ) ds·f((nj − 1)h, xnj−1, xnj−2),
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thus
|δIj(xnj , xnj−1)| ≤M0M1h

and for

(S4y)i ≡
mX
j=1

G(i, nj)δIj(xnj , xnj−1)

we have
kS4yk ≤ mMM0M1h. (16)

Similarly,

δf(νh, xν , xν−1) (17)

=

Z 1

0
∂x̄f(νh, xν , sxν−1 + (1− s)xν) ds · (xν−1 − xν).

If ν − 1 6= nj for any j = 1,m, then

xν−1 − xν = −hf(νh, xν−1, xν−2) (18)

and
|δf(νh, xν , xν−1)| ≤ M0M1h. (19)

If, however, ν − 1 = nj for some j ∈ {1, . . . ,m}, then
xν−1 − xν = −Ij(xnj , xnj−1) (20)

and
|δf(νh, xν , xν−1)| ≤M0M1. (21)

Now for
(S2y)i ≡

X
ν∈I

G(i, ν)δf(νh, xν , xν−1)

from (19) and (21) we find

kS2yk ≤
£
(N − 2m)h+m

¤
MM0M1. (22)

Adding together the estimates (22) and (16), we obtain

khS2y + S4yk ≤MM0M1

£
Nh+ (1− h)m

¤
h < (ω +m)MM0M1h.

Now we can choose N(µ) ≥ N0 so that for any N, N ∈ {Nk}k∈N, N ≥ N(µ), and
h = ω/N we have

khS2y + S4yk ≤ µ/2. (23)

Finally, by virtue of the estimates (14) and (23) we obtain

kUhyk ≤ µ,

i.e., the operator Uh maps the set Tµ into itself for µ ∈ (0, µ̃0] and h = ω/N , where
N ≥ N(µ) and N ∈ {Nk}k∈N.
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3.3 Contraction property of the operator Uh
Let y0, y00 ∈ Tµ. Then

Uhy0 − Uhy00 = h(S1y0 − S1y00) + h(S2y0 − S2y00)
+ (S3y0 − S3y00) + (S4y0 − S4y00).

First we consider

(S3y0 − S3y00)i =
mX
j=1

G(i, nj)
¡
Jj(y

0
nj ) − Jj(y

00
nj )
¢
.

We have

Jj(y
0
nj ) − Jj(y

00
nj )

=
¡
Ij(ψnj + y0nj , ψnj + y0nj ) − Ij(ψnj + y00nj , ψnj + y00nj )

¢
− Bj(y

0
nj − y00nj )

=

½Z 1

0

£
∂xIj(ψnj + sy0nj + (1− s)y00nj , ψnj + sy0nj + (1− s)y00nj )

− ∂xIj(ψnj , ψnj )
¤
ds

+

Z 1

0

£
∂x̄Ij(ψnj + sy0nj + (1− s)y00nj , ψnj + sy0nj + (1− s)y00nj )

− ∂x̄Ij(ψnj , ψnj )
¤
ds

¾
· (y0nj − y00nj ),

thus
|Jj(y0nj )− Jj(y

00
nj )| ≤ 2

Z 1

0
2L
£
s|y0nj |+ (1−s)|y

00
nj |
¤
ds · |y0nj − y00nj | ≤ 4Lµky

0 − y00k

and kS3y0 − S3y00k ≤ 4mMLµky0 − y00k. (24)

Next,
(S1y0 − S1y00)i =

X
ν∈I

G(i, ν)
¡
Qν(y

0
ν)−Qν(y

00
ν)
¢
.

As above we have

Qν(y
0
ν)−Qν(y

00
ν )

=

½Z 1

0
[∂xf(νh, xν(s), xν(s))− ∂xf(νh, ψν , ψν)] ds

+

Z 1

0
[∂x̄f(νh, xν(s), xν(s))− ∂x̄f(νh, ψν , ψν)] ds

¾
·
¡
y0ν − y00ν

¢
,
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where xν(s) = ψν + sy0ν + (1− s)y00ν . Thus¯̄
Qν(y

0
ν)−Qν(y

00
ν)
¯̄
≤ 2

Z 1

0
2L
£
s|y0ν |+ (1−s)|y00ν |

¤
ds · |y0ν − y00ν | ≤ 4Lµky0 − y00k

and kS1y0 − S1y00k ≤ 4(N −m)MLµky0 − y00k. (25)

From (24) and (25) we obtain

kh(S1y0 − S1y00) + (S3y0 − S3y00)k ≤ 4
£
Nh+m(1− h)

¤
MLµky0 − y00k

and finally

kh(S1y0 − S1y00) + (S3y0 − S3y00)k ≤ 4(ω +m)MLµky0 − y00k. (26)

In order to estimate S4y0−S4y00 we use the representation (15). Let x0 = ψ+y0, x00 =
ψ + y00. Now

(S4y0 − S4y00)i =
mX
j=1

G(i, nj)(δIj(x
0
nj , x

0
nj−1) − δIj(x

00
nj , x

00
nj−1))

and

δIj(x
0
nj , x

0
nj−1) − δIj(x

00
nj , x

00
nj−1)

= −h
Z 1

0

£
∂x̄Ij(x

0
nj , sx

0
nj−1 + (1− s)x0nj )f((nj − 1)h, x

0
nj−1, x

0
nj−2)

− ∂x̄Ij(x
00
nj , sx

00
nj−1 + (1− s)x00nj )f((nj − 1)h, x

00
nj−1, x

00
nj−2)

¤
ds.

Further on,¯̄
∂x̄Ij(x

0
nj , sx

0
nj−1 + (1− s)x0nj )f((nj − 1)h, x

0
nj−1, x

0
nj−2)

−∂x̄Ij(x00nj , sx
00
nj−1 + (1− s)x00nj )f((nj − 1)h, x

00
nj−1, x

00
nj−2)

¯̄
≤

¯̄
∂x̄Ij(x

0
nj , sx

0
nj−1 + (1− s)x0nj )− ∂x̄Ij(x

00
nj , sx

00
nj−1 + (1− s)x00nj )

¯̄
×
¯̄
f((nj − 1)h, x0nj−1, x

0
nj−2)

¯̄
+

¯̄
∂x̄Ij(x

00
nj , sx

00
nj−1 + (1− s)x00nj )

¯̄
·
¯̄
f((nj − 1)h, x0nj−1, x

0
nj−2)

− f((nj − 1)h, x00nj−1, x
00
nj−2)

¯̄
≤ LM0

¡
|y0nj − y00nj |+ s|y0nj−1 − y00nj−1|+ (1− s)|y0nj − y00nj |

¢
+ M2

1

¡
|y0nj−1 − y00nj−1|+ |y

0
nj−2 − y00nj−2|

¢
and thus

kS4y0 − S4y00k ≤ 2mM(LM0 +M2
1 )hky0 − y00k. (27)
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Similarly, in order to estimate S2y0−S2y00 we use the representation (17) with (18)
or (20). If ν − 1 6= nj for any j = 1,m, then

|δf(νh, x0ν , x0ν−1)− δf(νh, x00ν , x
00
ν−1)| ≤ 2(LM0 +M2

1 )hky0 − y00k.

If, however, ν − 1 = nj for some j ∈ {1, . . . ,m}, we have

|δf(νh, x0ν , x0ν−1)− δf(νh, x00ν , x
00
ν−1)| ≤ 2(LM0 +M2

1 )ky0 − y00k,

and as above we obtain

kS2y0 − S2y00k ≤ 2[(N − 2m)h+m]M(LM0 +M2
1 )ky0 − y00k. (28)

From (27) and (28) we obtain°°h¡S2y0 − S2y00¢+ ¡S4y0 − S4y00¢°°
≤ 2M(LM0 +M2

1 )
£
Nh+ (1− h)m

¤
hky0 − y00k

< 2M(LM0 +M2
1 )(ω +m)hky0 − y00k.

Choose an arbitrary number q ∈ (0, 1). By virtue of (26) we can find µ1 ∈ (0, µ̃0]
so that for any µ ∈ (0, µ1] we have°°h¡S1y0 − S1y00¢+ ¡S3y0 − S3y00¢°° ≤ q

2
ky0 − y00k.

Next we find N1 ≥ N(µ1) so that for any N ∈ {Nk}k∈N, N ≥ N1 and h = ω/N we
have °°h¡S2y0 − S2y00¢+ ¡S4y0 − S4y00¢°° ≤ q

2
ky0 − y00k.

Then for any µ ∈ (0, µ1] and N ∈ {Nk}k∈N, N ≥ N1 and h = ω/N , the estimate

kUhy0 − Uhy00k ≤ qky0 − y00k, q ∈ (0, 1),

is valid for any y0, y00 ∈ Tµ.

Thus the operator Uh has a unique fixed point in Tµ, which is an N -periodic
solution {yi}i∈Z, yi ≡ yi(h), of system (12). Now {xi}i∈Z, xi = xi(h) = ψi + yi(h),
is the unique N -periodic solution of system (4). For any µ > 0 we can choose
N so large that for h = ω/N, i = 0, N − 1, we have |xi − ψi| = |yi| ≤ µ, i.e.,
lim

N→∞
max

0≤i≤N−1
|xi − ψi| = 0. This completes the proof of Theorem 1.
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