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Abstract
The aim of this paper it to discuss some methods of parameter estimation,

such as the direct use of the instrumental variables and an extension of Aitken’s
method with the least square method, applied to the multiplicative version of
some model.

Let us consider the model

yt =
αI

I − λL
xt + ut, t = 1, T , (1)

where xt is an independent variable in the error process and

u ∼ N(0, σ2I), u = (u1, u2, . . . , uT )
t. (2)

We want to present a method of parameter estimation for (1), (2).
First, we shall reduce the model to(

yt = αxt + λyt−1 + wt,

wt = ut − λut−1,
t = 2, T . (3)

If we deal with (3), we shall loose an observation. The simplest choice of the
instrumental variable of estimation is xt , xt−1.

The instrumental equations to be solved are
α

TP
t=2

x2t + λ
TP
t=2

xtyt−1 =
TP
t=2

xtyt,

α
TP
t=2

xt−1xt + λ
TP
t=2

xt−1yt−1 =
TP
t=2

xt−1yt.

Solving this system and replacing in (3), we obtain

µeαeλ
¶
=

µ
α

λ

¶
+


TP
t=2

x2t
TP
t=2

xtyt−1
TP
t=2

xt−1xt
TP
t=2

xt−1yt−1


−1

TP
t=2

xtwt

TP
t=2

xt−1wt

⇐⇒ (4)
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√
T

·µeαeλ
¶
−
µ
α

λ

¶¸
=

 1T


TP
t=2

x2t
TP
t=2

xtyt−1
TP
t=2

xt−1xt
TP
t=2

xt−1yt−1



−1

· 1√
T

TX
t=2

µ
xt
xt−1

¶
wt .

(40)
If we suppose that the explanatory variable is not random and the probability

limit of the matrix that lies in the second member of (4), multiplied by T , is finite
and is not stochastic, then these estimations are consistent. This is true because

p lim
T→∞

1

T

TX
t=i+1

xt−iwt = 0, i = 0, 1.

In what follows we shall suppose that (2) is satisfied or ut are independent
variables, with the same finite variance σ2 and with finite absolute moments of the
third order. We shall use the second assumption.

We shall need the next result [1]:

Theorem 1 Let (xt)t∈N∗ be a sequence of random m-dependent variables, with the
expectation E(xt) = 0 and (∃)K ∈ R+ such that E(|xt|3) < K3, (∀)t ∈ N∗. Let us
consider

σ2 = lim
n→∞

1

n

nX
r=1

Ai+r ,

Ai = 2Cov (xi+j , xi+m) + Var (xi+m),

where Cov (xi+j , xi+m) is the covariance of xi+j , xi+m and Var (xi+m) is the vari-
ance of xi+m.

If [Cov (xi+j , xi+m) + Var (xi+m)] is uniformly convergent with respect to i, then

the asymptotic distribution of

TP
t=1

xt
√
T

is N(0, σ2).

Let us consider the sequence of scalars

st = (a1xt + a2xt−1)wt .

We have to calculate the quantity

Ri = 2
m−1X
i=1

Cov (si+1, si) + Var (si+m)
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that satisfies

lim
n→∞

1

n

nX
i=1

Ri+r = R <∞ (5)

uniformly with respect to r.
In this case m = 1 and (5) holds because

Ri = 2(a1xi + a2xi−1)(a1xi+1 + a2xi)E(wiwi+1) + (a1xi+1 + a2xi)
2E(w2i+1)

= σ2(1 + λ2)a1a2X ·

·
"
x2i+1 − 2λ

λ2+1
xixi+1 x0x−1 − λ

λ2+1
(x0x+ x0x−1)

xixi+1 − λ
λ2+1

(x0x+ x0x−2) x0x− 2λ
λ2+1

xixi+1

#·
a1
a2

¸
.

It results that, asymptotically:

1√
T

TX
t=2

µ
xt
xt−1

¶
wt ∼ N(0, σ2Bt),

where
Bt = (1 + λ2) ·

· lim
t→∞

1

T

"
x0x− 2λ

λ2+1
x0x−1 xixi+1 − λ

λ2+1
(x2i + xi+1xi−1)

x0xi−1 − λ
λ2+1

(x2i + xi+1xi−1) x2i − 2λ
λ2+1

x0x−1

#
,

x0 = (x2, . . . , xT )t, x−1 = (x1, x2, . . . , xT−1)t, x−2 = (0, x1, x2, . . . , xT−2)t.

In order to finish we need the probability limit in (40).
It can be seen that

TX
t=2

xtyt−1 =
TX
t=2

xt(αx
∗
t−1 + ut−1)

because

yt−1 =
αI

I − λL
xt−1 + ut−1 = αx∗t−1 + ut−1,

where

x∗ = (x∗1, . . . , x
∗
T ) and x∗T =

t−1X
i−0

λixt−i.

Since

p lim
T→∞

TX
t=2

xtut−1 = 0,
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we deduce that

p lim
T→∞

1

T

TX
t=2

xtut−1 = α lim
T→∞

1

T

TX
t=2

xtx
∗
t−1

and using

lim
T→∞

1

T

TX
t=2

xtx
∗
t−1 = lim

T→∞
1

T
x0Dx−1,

where

D =

¯̄̄̄
¯̄̄̄
¯̄
1 0 0 · · · · · ·
λ 1 0 · · · · · ·
λ2 λ 1 · · · · · ·
· · · · · · · · · · · · · · ·
λT−1 λT−2 λT−3 · · · 1

¯̄̄̄
¯̄̄̄
¯̄ .

So, asymptotically √
T

·µeαeλ
¶
−
µ
α

λ

¶¸
∼ N(0, C1),

where
C1 = σ2A−11 B1

¡
AT
1

¢−1
.

We discuss about the estimator proposed by Koyck.
We reduce the model and we obtain

yt = λyt−1 + αxt + (ut − λut−1). (6)

Koyck proposed to obtain the OLS estimator for α and λ from the previous
relation and to solve the system

α
TP
t=2

x2t + λ
TP
t=2

xtyt−1 =
TP
t=2

xtyt,

α
TP
t=2

xt−1xt + λ
TP
t=2

y2t−1 =
TP
t=2

yt−1yt + λfw0 ew
1+λeλ

(7)

in order to give the final estimation for α and λ.
We shall deduce these estimations in a different way.
The covariance matrix of the error terms from (6) is

Cov (w) = σ2

¯̄̄̄
¯̄̄̄
¯̄
1 + λ2 −λ 0 · · · 0
−λ 1 + λ2 −λ · · · 0

−λ 1 + λ2 · · · 0
· · · · · · · · ·
0 0 · · · −λ 1 + λ2

¯̄̄̄
¯̄̄̄
¯̄ = σ2Φ,
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where
w = (w2, w3, . . . , wT )

t, wt = ut − λut−1, t = 2, T .

Minimizing with respect to α and λ the quantity

Q = (y − αx− λy−1)TΦ(y − αx− λy−1), (8)

we obtain the minimum estimation, χ2, of the parameters from (6).
In (8) we denote

y = (y2, . . . , yT )
t, x = (x2, . . . , xT )

t, y−1 = (y2, . . . , yT−1)t.

Since the inverse is difficult to obtain and wt are 1-dependent variables, if we
neglect the dependence, then Cov (w) can be written as

Cov (w) = σ2(1 + λ2)I.

Replacing in (8) and minimizing with respect to α and λ, it results:

Q =
1

1 + λ2
(y − αx− λy−1)T (y − αx− λy−1), (9)(

αx0x+ λx0y−1 = x0y,

αy−1x+ λy0−1y−1 = y0−1y−1 +
λ
1+λw

0w.
(10)

It can be seen that we have the same result as in (7).
Solving (10) we obtain

α =
x0y − λx01y−1

x0x
and

λ2
£
(x0x)(y0−1y−1)− (x0y−1)(x0y)

¤
+ λ

£
(y0−1y−1 − y0y)x0x+ (x0y)2 − (x0y−1)2

¤
− £(x0x)(y0−1y−1)− (x0y−1)(x0y)¤ = 0. (11)

The estimation of λ is considered to be the smallest root in (11) and will be
denoted by eλ. Then the estimation of α will be:

α =
x0y − eλx01y−1

x0x
. (12)

Now we prove that the solutions of (11) and (12) give consistent estimations for
α and λ.
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We write (11) in standard form:

λ2 + bλ− 1 = 0,

where

b =
(y0−1y−1 − y0y)x0x+ (x0y)2 − (x0y−1)2

(x0x)(y0−1y−1)− (x0y−1)(x0y)
.

The solutions are eλ = −b±√b2 + 4
2

and

p lim
T→∞

eλ =
−p lim b±

p
p lim b2 + 4

2
⇔

p lim
T→∞

eλ = p lim
T→∞

(x0y)2 − (x0y−1)2
(x0x)(y0−1y−1)− (x0y−1)(x0y)

(13)

is the probable limit of the two roots.
The previous relation holds because

y0−1y−1 − y0y = y21 − y2T .

In order to determine the limit (13) we suppose that the sequence (xt)t∈Z satisfies
the conditions:

• there exist and are finite the limits:

cτ = lim
T→∞

1

T

TX
i=1

xtxt−τ ,

at least one is nonvanishing and cτ = c−τ , (∀)τ .
Let us consider

p lim
T→∞

1

T
x0y = p lim

T→∞
1

T

∞X
i=0

λi
TX
t=2

xtxt−i + p lim
T→∞

1

T

TX
t=2

xtut. (14)

Since xt and ut are independent, the second term in the right-hand side of (14)
is zero and

p lim
T→∞

1

T
x0y = ασ0,
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where

σ0 =
∞X
i=0

λici.

We observe that

x0y = α
∞X
i=0

λi
TX
t=2

xtxt−i−1 +
TX
t=2

xtxt−1 ⇒

p lim
T→∞

1

T
x0y−1 =

∞X
i=0

λici+1 =
α

λ

∞X
i=0

λi+1ci+1 =
α

λ
(σ0 − c0) .

But, by definition:

lim
T→∞

1

T
x0x = c0.

Finally, to evaluate y0−1y, we introduce the notation

eyt = αI

I − λL
xt.

Then:
yt = eyt + ut,

y0−1y =
TX
t=2

eyteyt−1 + TX
t=2

eytut−1 + TX
t=2

eyt−1ut + TX
t=2

utut−1.

Since xt, ut are independent and Cov (ut, ut−1) = 0, then

p lim
T→∞

1

T
y−1y = lim

T→∞
1

T
y0−1y.

To evaluate this limit, we remark that

ey = αx+ λey−1,
y0−1y = αx0ey−1 + λey0−1ey−1, (15)

1

T
ey0ey = α2

∞X
i=0

∞X
j=0

λiλj
1

T

TX
t=1

xt−ixt−j ⇒

lim
T→∞

1

T
ey0ey = α2

∞X
i=0

∞X
j=0

λiλjci−j .
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Adding all the terms that contain σ0, we obtain

σ0

∞X
i=0

λ2i =
σ0

1− λ2
.

Therefore,

lim
T→∞

1

T
ey0ey = α2

 σ0

1− λ2
+

1

1− λ2

∞X
j=1

λjcj

 = α2

1− λ2
(2σ0 − c0) .

But,

lim
T→∞

1

T
ey0−1ey−1 = lim

T→∞
1

T
ey0ey

and using (15), it can be deduced that

lim
T→∞

1

T
ey0−1ey = α lim

T→∞
1

T
x0ey0−1 + λ lim

T→∞
1

T
ey0−1ey−1

=
α2

λ
(σ0 − c0) +

λα2

1− λ2
(2σ0 − c0)⇒

lim
T→∞

1

T
ey0−1ey = α2

λ(1− λ2)

¡
σ0 − c0 + λ2σ0

¢⇒
p lim
T→∞

b =
1− λ2

λ
⇒

p lim
T→∞

eλ = −(1− λ2)± (1 + λ2)

2λ
∈
½
λ, −1

λ

¾
.

Therefore, if we choose the root with the least modulus in (11), we obtain a
consistent estimation for λ since |λ| < 1.

From (12) it results that

p lim
T→∞

eα = ασ0 − α (σ0 − c0)

c0
= α,

i.e., eα is a consistent estimation for α.
Remark 1 If b > 0, then

¯̄̄eλ+ ¯̄̄ = ¯̄̄−b+√b2+42

¯̄̄
< 1.

If b < 0, then
¯̄̄eλ− ¯̄̄ = ¯̄̄−b−√b2+42

¯̄̄
< 1 .

If we consider λ ∈ (0, 1), then we have also to prove that at least one root is in
the interval (0, 1).



Considerations on the study of the errors in the mathematical model 281

References

[1] Dhrymes Ph. I., Distributed lags problems of estimation formulation, North-Holland,
Amsterdam — Oxford, 1987.

[2] Costea N., Mutual independent errors and the maximum verosimility method, Con-
ference of the Romanian Society of Probability and Statistics, 21—22.02.2003. (in Ro-
manian)

[3] Costea N. and Fulina S., The study of the errors in numerical algorithms for the lag
problem, The First Conference of Operational Research and Applications, Constanţa,
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